A ROBUST VERSION OF THE PROBABILITY RATIO TEST
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1. Introduction and summary. A statistical procedure is called robust, if its
performance is insensitive to small deviations of the actual situation from the
idealized theoretical model. In particular, a robust procedure should be insensi-
tive to the presence of a few ‘“bad” observations; that is, a small minority of
the observations should never be able to override the evidence of the majority.
(But at the same time the discordant minority might be a prime source of
information for improving the theoretical model!)

The classical probability ratio test is not robust in this sense: a single factor
p(z;)/po(x;) equal (or almost equal) to 0 or o may upset the test statistic
T(z) = JIT pu(2;)/po(x;). This leads to the conjecture that appropriate robust
substitutes to both fixed sample size and sequential probability ratio tests might
be obtained by censoring the single factors at some fixed numbers ¢ < .
Thus, one would replace the test statistic by 7" (z) = J]1 #(z;), where n(z;) =
max (', min (¢”, p1(z;)/po(2;))).

The problem of robustly testing a simple hypothesis P, against a simple
alternative P; may be formalized by assuming that the true underlying distribu-
tion lies in some neighborhood of either of the idealized model distributions
P o Or P 1.

The present paper exhibits two different types of such neighborhoods for
which the above mentioned test, to be called censored probability ratio test, is
most robust in a well defined minimax sense.

The problem solved here originated through the earlier paper Huber (1964),
over the question how to test hypotheses about the mean of contaminated
normal distributions.

2. Setup of the problem. Let (X, @) be a measurable space, and let Py,
P, be two distinct probability measures on it, having densities po, p: with
respect to some measure y, e.g. u = Py + P; . In order to formalize the possibility
of unknown small deviations from the idealized models P,; we blow them up to
composite hypotheses

®:=1{Q|Q=(1—-e)P+ eH;, H;e 3}, (i=0,1),

where 0 £ e; < 1 are fixed numbers, and 3¢ denotes the class of all probability
measures on (%, @). We shall always assume that ®, and ®, do not overlap
(cf. the remark after Lemma 2 below).

Let ¢ be any test between ®; and @, rejecting ®; with conditional probability
¢i(x), given that x = (a1, - - -, x,) has been observed. Assume that aloss L; > 0
is incurred if @®; is falsely rejected, then the expected loss, or risk, is R(Q.’, ¢)
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= L; Eq,'(¢:), if @/ is the true underlying distribution. Here and in the follow-
ing Q. is used as a generic notation for elements of ®; . We are interested in the
following minimax testing problems:
(i) to minimize max;—o1 supe;s R(Q:, ¢);

(i) to minimize supg,- R( Q., ¢), subject to supe,s R(Q0, ¢)
test”, see e.g. Lehmann (1959), p. 327];

(iii) the mixed Bayes-minimax problem, to minimize the maximum risk it
®; is true with known prior probability A;, i.e. to minimize

SUpPgy,Q,’ ()‘OR(QOIy ¢) + )‘IR(Ql,y ¢))'

We shall see that there is a pair of distributions @; & ®; such that for any
probability ratio test between @, and @,

(1) R(Q/, ¢) < R(Q:, ¢), (1=0,1).

Now consider the auxiliary problems
(i’) to minimize max;o1 R(Q:, ¢);

(ii") to minimize R(Q: , ¢) subject to R(Qo, ¢) < a;

(iii’) to minimize NR(Qo, ¢) + MR(Q1, ¢).
It is well known that these auxiliary problems can be solved by probability
ratio tests; let ¢ be a probability ratio test solving a particular one of them. In
view of (1), the same test then is a solution of the corresponding unprimed
problem.

In other words, we have proved that (1) implies the following theorem (com-
pare Lehmann (1959), Chapter 8, for the notion of ‘least favorable’):

TuEOREM 1. The pair (Qo, Q1) is least favorable for any of the testing problems
(1), (ii) or (iii).

3. The least favorable pair of distributions. Intuitively speaking, if there
exist two elements Q; & ®; (¢+ = 0, 1) having the above mentioned properties,
then @, should be ““as close as possible” to P;, and similarly with reversed in-
dices. Furthermore, according to the conjecture mentioned in the introduction,
the probability ratio of @; and @, should correspond to a censored version of that
of P; and P,. This led to the following trial version (which turned out to be
successful ). Define the @; by their densities with respect to u as follows:

< «; [“maximin

go(z) = (1 — eo)po(x) for pu(z)/po(z) < ¢’

(2) = (1/¢")(1 — e)pa() o for pu(z)/po(z) 2 d,
a(z) = (1 — e)pi(x) for pi(x)/po(x) > ¢

= c'(1 — e)po(x) for pi(x)/po(z) < c.

The numbers 0 < ¢’ < ¢’ £ o have to be determined such that go, . are
probability densities, i.e.,

(3) (1 = e){Po[pr/po < "1+ (C”)-lpl[pl/po = C”]}
(1 = &) {Pips/po > '] + ¢'Polps/po < ']}

L,
L,

Il
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and then one will have Q; ¢ ®;, as one checks easily. By interchanging the roles

of Py and P; and of ¢’ and (¢”)™ the two relations (3) are interchanged, so it

suffices to discuss the existence of a solution for the second one of them, as fol-

lows: Let ¢y = essinfy, pi(2)/po(x), and let f(c) = Pi[pi/po > c] + cPolps/po < .
Lemma 1. The function f is continuous; f(c) = 1for 0 < ¢ £ ¢ ;f(c) is strictly

increasing for ¢ > co, and tends to © asc T . '
Proor. We have

fle) = 1 + cPopi/po = ¢] — Pi[py/po = ]

=1+ f[m/pogc] (¢ = p1/Po)po du.
Thus

fle + 8) = 7€) = [t<pmzerar (¢ + & — p/po)Podp + A [(pypeger Do dny

hence 0 = f(c + A) — f(¢) = A for any positive A, and continuity and mono-
tonicity follow. If ¢ = ¢; > ¢, then f(c + A) — f(¢) = APpy/po £ ¢1] > 0,
thus f(c) is strictly increasing and tends to « asc¢ T .

Lemma 1 implies in particular that the Equations (3) have solutions for all
0 = & < 1, and that these solutions are unique if 0 < ¢; < 1. Moreover, if the
e; are sufficiently small, then we have also ¢’ < ¢”, provided P,  P;.

It follows from (2), withb = (1 — &)/(1 — ), and if ¢’ < ¢”, that

01(z)/q0(x) = bc’ for pi/po = ¢
(4) = bpu(x)/po(x)  for ¢ < pi/pe < "
= bc" for pi/po = .

In other words, the probability ratio ¢i:(x)/qi(z) equals b times the probability
ratio pi(x)/po(x) censored at the points ¢’ and ¢”.
LemMa 2. For any Q' € ®; (4 = 0, 1), and any real number ¢, we have

Q'la/a < 8] Z Qular/q0 < 1] = Qilg/0 < 1] 2 Q[ar/g0 < 1,

provided ¢’ < ¢”.
Proor. The lemma is trivially true for ¢ < bc¢’ and for ¢ > be”. Assume be’ <
t < bc”, and let E be the event [g1/go < ¢]. Then

Q' (E) = (1 — «)Py(E) + «Ho (E) = (1 — &)Py(E) = Qo(E),
and similarly
Q' (E) = (1 — &)Pi(E) + «H/(E)'S (1 — «)Py(E) + & = Qu(E).

The middle inequality expresses the well known fact that the power of a prob-
ability ratio test never falls below its size [Lehmann (1959) p. 67].

ReMARK. If the ¢; are sufficiently small, then @, # @:, and the middle in-
equality in Lemma 2 must be strict for some . This implies that the @; are
disjoint for sufficiently small ;.

Put v(z) = log ¢i(z)/qo(z). Lemma 2 implies that there exist a random
variable » and nondecreasing functions f;’ < fo < /i < fi’ of v such that the prob-
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ability distributions of f,(v) and f.(v) coincide with the distributions of v(z)
under Q; and @, respectively [see, e.g., Lehmann (1959), p. 73].

4. Fixed sample size problems. This and the following section are based
exclusively on the validity of Lemma 2, and do not use particular properties of
the @®;.

It is well known that the testing problems (i’), (ii’) and (iii’) defined in
Section 2 can be solved by probability ratio tests (for (ii’), this is the conclusion
of the Neyman-Pearson lemma, (i) is an easy consequence of it, and (iii’)
is immediate). Now let ¢ be any probability ratio test between Q, and Q,, ie,
a test which rejects ®, given that = (z,, -+, x,) has been observed, with a
conditional probability ¢(z) satisfying

K if y.(z) = K,
=0 if y.(z) <K,

where v,(z) = > 7 v(z;); K and 0 < « < 1 are some numbers.
Then for any losses Ly, Ly, and any Q; ¢ ®;, the risk is

R(Q, $) = Lo{Q'Tva > K] + «Qi[v» = KJ}

= LO{KQOI['Yn =z K+ (1- K)Qol[’)’n > Kl}
Lo{xP[ 225/ (v;) 2 K] + (1 — «)P[2, /¢ (v,) > K]}
Lo{xP[2_5fo(v;) 2 K] + (1 — ©)P[X, fo(v;) > K]}
R(Qo, ¢).

Here, the v; are independent replicas of the random variable v introduced at the
end of the preceding section. Similarly, one shows R(Q,’, ¢) < R(Q,, ¢), which
establishes (1). Thus, the proof of Theorem 1 is complete.

Remark. The limiting case ¢ = ¢” is of particular interest. Assume for
simplicity e, = &, then (3) yields for the common value ¢ = ¢ = 1. Assume
furthermore that Po(pi/po = 1) = Pi(py/po = 1) = 0. It is convenient to
normalize vy by putting v'(z) = (y(z) — log ¢)/(log ¢" — log ¢). Then, as
¢ 1 1,¢ | 1, the test statistic v (2) = 2 ;'(z;) tends to the number of
times the Inequality pi(z;) > po(x;) holds. So the limiting test is a sign test.

Il

(5)

A1t

b. Sequential tests. Let & be a sequential probability ratio test of Q, against
Q:, terminating as soon as K < .7 v(z;) < K” is violated for the first time
n = N(z). If one replaces the stochastic process v(z;) by fi(v;) andf/(v;)
respectively (¢ = 0, 1), one sees that if ) fy'(v;) leaves the interval (K’ K")
first at K”, then _ fo(v;) does so even earlier. Therefore, the probabilities of
error satisfy the inequality Qi[yx = K”] < Qo yx2 K”"],and similarly
Q'lys = K'] £ Qilvw < K'].

Thus, as far as the probabilities of error are concerned, the pair (Q,, Q)
is also least favorable in the sequential case.
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The behavior of the expected sample sizes is more difficult to determine, and I
have only the following partial result: If the probabilities of error tend to zero,
then the pair (Qo, @1) is asymptotically least favorable with respect to expected
sample size.

Proor. If the probabilities of error tend to zero, which means that K’ ——
K” — + =, then the expected sample sizes behave asymptotically as Eq, (N) ~
K'/E(f)) and Eqy(N) ~ K'/E(f,), respectively. We have fo' < fo; if E(fy) =
E(fo), the stochastic behavior of our test is the same under both @, and Q,
and the assertion is trivially true. Thus we may assume E(fy) < E(fy) < O.
But then Eq(N) = Eq, (N) for sufficiently large negative values of K’, and
similarly Eq,(N) = Eq,(N) for sufficiently large positive values of K”.

Notice that & is not quite a censored probability ratio test, unless ¢ = ¢,
since it has a built-in drift (the factor b in (4)).

6. Monotone likelihood ratio. Assume that pe(z).is a family of densities
having monotone likelihood ratio in z [cf. Lehmann (1959), p. 68]. We cannot
test the hypothesis H(0 = 6,) against the alternative K(8 > 6,) if we allow
arbitrary contamination, because hypothesis and alternative would in general
overlap. We can however test H(6 < 6,) against K(6 = 6,), 6, < 6. Then it
turns out that the least favorable pair of distributions for testing H(8 = 6,)
against K(6 = 6,) under contamination is also least favorable for the broader
problem of testing H(6 < 6,) against K(6 = 6;) under contamination. The proof
generalizes that of Lemma 2. Let Q' = (1 — e)Ps + ¢H'. For t < bc’ and for
¢t > bc”, one has Q¢'[q1/qo < t] = 0 and 1 respectively for all Q,". Forb¢’ < t < bc”
and § < 6y, one has (with the aid of Lemma 2, p. 74 of Lehmann (1959))

Q'lg/q0 < t] = (1 — &) Polar/q0 < 8] + eH'lg1/g0 < 1]
2 (1 — e)Poylar/q0 < t] = Qulqr/q0 < 1],

and similarly for 6 = 6;, Qolg/q0 < f] < Qo,[01/q0 < t], where Qp,, Qs, is the
least favorable pair for the narrower testing problem. Thus, a variant of Lemma
2 holds, and the conclusions of Sections 4 and 5 generalize.

7. Uncertainty in terms of total variation. Let @; = {@|]|Q — Pi| =< ¢},
where || || denotes total variation.
Now define two probability measures Q,, @ by their densities as follows:

2(2) = (1 4 ) (po(2) 4+ pu(2)), @u(2) = [¢'/(1 + )](Po(%) + po(2))
for p(x)/po(z) = ¢,
(6)  gqo(z) = po(), (7)) = pi(2)
for ¢’ < py(z)/po(2) < ¢,

qo(z) = (1 + ) (po(2) + pu(2)), @(z) = ["/(1 + ¢")(po(x) + pa())
for pi(z)/po(z) = ¢".
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Obviously, the probability ratio gi(z)/go(x) equals the probability ratio p,(z)/ po(x)
censored at the pomts ¢, .

The numbers ¢, ¢” have to be determined such that Qo, @1 are probability
measures and [|Qo — Po|| = [|Q. — Pi|| = ¢ which is the case if

(7) f[m/posc’] (g1 — p1) du = 3¢ f[m/pozc"] (g0 — po) du = 3%e.
Since both conditions (7) are analogous we shall only investigate the first one.

It is convenient to put k' = ¢/(1 + ¢ "), and to write the first of the conditions
(7) as

Jto sworoorn (Do + pO)E’ — p1) du = Le.
Define the function

9(k) = [t sweteon ((Po + 1)k — p1) di.
Let A = 0, then
g(k + A) — g(k) = [z, ((po + p1)(k + A) — P1) du +A [1, (Do + pi)d,
where Ly = [(po + p1)k < pr < (po + p1) (k + A)] and Le = [p1 < (po + p1)kl.
Thus 0 < g(k 4+ A) — g(k) < 24, therefore g is continuous and monotone
increasing. If we put ko = ess infp, pi/(po + p1), the following lemma is im-
mediate.

Lemma 3. The function g is continuous; g(k) = 0 for 0 < k < ko, g(1) =
and g(k) s strictly increasing for ko < k < 1.

Lemma 3 implies in particular that the Equations (7) have solutions for all
0 = e < 2, that these solutions are unique for ¢ > 0, and that ¢’ < ¢”, provided
P, % P, and ¢ is sufficiently small.

Now one establishes the validity of Lemma 2 as in Section 3. Hence all con-
sequences of Lemma 2 remain valid in the present context, in particular all the
results of Sections 4 and 5; also the result of Section 6 holds. The proofs have to
be modified as follows, e.g. 1n the case of Section 6:

Fort < ¢ and fort > ¢”, one has Q, [ql/qo <t=0and1 respectlvely for all
Q. Forc <t=c¢" ando < 80, one has Qo'lg1/q0 < 8] = Polqi/q0 < ¢ Ze >
Pyyl1/q0 < t] — 3¢ = Qu,la1/q0 < 1], ete.

8. Open problems.

(1) Is it true that the pair (Qo, @) is least favorable for the expected sample
size, if the probabilities of error are smaller than 3 (Section 5)?

(ii) What are the minimax tests, if both hypothesis P, and alternative P,
are contaminated by the same unknown distribution?

(iii) Instead of the two-decision problem, one might consider the k-decision
problem of deciding between ®;, ---, ®, k > 2. Presumably, one would first
attack the mixed Bayes-minimax problem, assuming that ®; is true with a
priors probability A;.
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