STATISTICAL REPRODUCTION OF ORDERINGS AND
TRANSLATION SUBFAMILIES
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0. Summary. For a given family of distributions let ¢ be a parameter which
takes on different values on different subfamilies but is constant on each. The
values of the parameter may be taken to define an ordering of the subfamilies.
Various concepts of statistical reproduction of such an ordering are introduced.
They generalize concepts such as unbiased estimators and tests.

In the latter part of the paper it is assumed that in each subfamily all distri-
butions may be obtained from a single one by translation of the random variable.
As an application we consider testing for decrease in variability when the indi-
viduals tested may have different means.

1. Introduction. The purpose of this paper is to introduce certain generaliza-
tions of concepts such as unbiased and consistent, estimators and tests.

We shall consider an observable random variable X—usually it will have values
in more than one dimension—with distribution function F which is known to
belong to a certain family & of distribution functions; and a specified parameter
o(F) of F, more precisely a functional ¢ over &, which, for the sake of simplicity
of presentation, we shall restrict to be unidimensional. On the basis of X it is
required to make some ‘‘evaluation” h(X) of o(F).

If ¢ can take only two values (which we may take to be 0 and 1 without loss
of generality), the problem is one of testing. (The case in which ¢ can take on
more than two values may also be of interest in testing problems; thus in testing
the hypothesis o(F) = 0 against ¢(F) > 0, mean reproduction (defined below)
refers to the behavior of the power function of the test.) Let & be thesubfamily
of § for which ¢(F) = 0 and &, the subfamily for which ¢(F) = 1, and let H;
be the hypothesis that F belongs to &; (7 = 0, 1). In the non-randomized case,
to which we shall confine ourselves, one generally requires # to have the same
two possible values as ¢ with certain maximum probabilities « and 8 of misevalua-
tion (both strictly between 0 and 1) :

Pr{h(X) = 1} < a when o(F) = 0, Pp{h(X) = 0} = B8 when o(F) = 1.

The test of Hy consists in rejecting H, if h(X) = 1.

More generally, any ¢ partitions a family & into a collection ® of (mutually
exclusive) subfamilies on each of which ¢ is constant and such that ¢ has a dif-
ferent value on each element (subfamily) of the collection. Moreover, this parti-
tion @ of F is linearly ordered by ¢, and & is partly ordered by ¢. The problem may
be to decide, on the basis of X, to which subfamily of the partition F belongs. It
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is not always practicable to require & to have the same range of values as ¢,
since such a restriction may lead to serious mathematical difficulties. Also, such a
requirement may be inconsistent with other properties we may desire  to have.

In the testing problem we say that the test based on & is unbiasedifa < 1 — B,
and strictly unbiased if o < 1 — B. In the more general problem we shall say
that an ‘“‘evaluation’ A of ¢ is unbiased (or, more explicitly, mean unbiased) if
8rh(X) = o(F) for all F in ¥, median unbiased if Pr{h(X) = o(F)} = % and
Pp{h(X) £ o(F)} = ,1.e.if, under F, o(F) is a median of A(X). In many prob-
lems such an estimator either does not exist or has much lower precision than
slightly biased estimators. It is therefore worthwhile to consider requirements on
h which are weaker than unbiasedness.

2. Mean or median point reproduction of a p-ordering. In particular, we shall
consider a requirement that i should, on the average, place each element of &
in the same relative position as ¢ does:

(1) &rh(X) < &ph(X) for o(F) < o(F)

or a similar requirement in terms of medians. (Thus, in place of (1) comes:
any median under F of h(X) is less than any median under F' of h(X) if o(F)
is less than ¢(F’).) Note that the test previously discussed, if it exists, satisfies
(1)ifa < 1 — Bsince Pr{h(X) = 1} = §7h(X), and also satisfies the correspond-
ing condition for mediauns if « and B are less than } since then the median of
h(X) under Fis 0if o(F) = Oandis 1if o(F) = 1. (The referee suggests that it
might be more appropriate to call a test satisfying o < 1 — B strongly unbiased,
and one satisfying only (1) strictly unbiased. Note that in this paper we shall
only consider an expectation to exist if it is finite.)

We shall call a mean or median reproduction! by h of the ordering (of ® by ¢),
proper if h and ¢ have the same range of values (perhaps after deleting from the
range of h, a set of values to which each element of F assigns zero probability).
As noted before, it may not be desirable to restrict consideration to proper repro-
duction. But then, since we observe only X, requirement (1) is not usually
sufficient to permit us to associate F in some reasonable way with any definite
element of ®, even if & should have complete precision in the sense that A(X) =
&rh(X) with probability 1. In the case of complete precision, it would suffice to
require in addition that the ranges of k and ¢ coincide, but whether this would
suffice otherwise depends on the spacing of the ¢ values relative to the precision.
An additional condition that would make it possible to associate F' with a par-
ticular element of @ in a reasonable manner is the existence of a functional ¢
over ¥ which induces the same @ (i.e., po(F) < o F') if and only if o(F) < o(F'))
and which satisfies

(2) &h(X) < @o(F') and ¢o(F) < 8ph(X) for o(F) < eo(F).

1 The general concepts ‘“‘h reproduces the p-ordering of & in mean or in median’’ are de-
fined at the end of this paragraph; equivalently, proper reproduction can be defined by (1)
and the equality of the ranges of ¢ and h.
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When (1) and (2) hold, we shall say that h reproduces the g-ordering of & in
mean; when similar condltlons hold in terms of medians, we shall say that h
reproduces the p-ordering in median.

If

(%) o(F') < o(F) < o(F"),
and thus the same holds for ¢, , (2) implies that
8rh(X) < @o(F) < 8ph(X) and ¢o(F') < 8h(X) < oo(F").

Hence:

(A) If the range of ¢ is an 1nterva1 condition (2) 1mp11es condition (1), since
in this case for every pair F’, F” with o(F') < o(F” ) there is an F satisfying
(%).

(B) If the range of ¢ is an open interval, condition (2) implies that & is an
unbiased estimator of 0 since in thls case for every F there is a pair F', F”
satisfying (*) with ¢o(F’) and ¢o(F”) arbitrarily close to ¢o(F).

One could also define a concept of reproductlon for the case in which % is an
interval.

We briefly note that one obtains another concept of reproduction by replacing
expectations in (1) and (2) by appropriate upper and lower fractiles.

3. Reproducibility. We shall say that a p-ordering is mean reproducible if an
h exists which reproduces the ¢-ordering in mean. If this is still so when % is
restricted to a given class 3¢,we shall call the p-ordering 3¢-reproducible in mean.
Similar concepts may be defined for medians and other fractiles.

4. Relation to certain other concepts in the literature. Consider again ¢ which
is 0 over §o and 1 over F; and a procedure for deciding to which of these two sub-
classes which make up & the distribution F of some X belongs if F is known to
belong to §. If a procedure has a probablhty of erroneous decision which is never
less than %, deciding by a flip of a coin would do at least as well.

Berger and Wald [3] consider a requirement that this probability be always
less than 3. They show that such a procedure exists if ¥ is a dominated family and
if the set of probability mixtures of &, and the set of probability mixtures of &,
have no common elements; and that under certain conditions the converse
holds as well. (Actually [3] and [4] are in terms of the least upper bound of the
actual errors involved. However, one may prove this result, and a parallel result
in [4] which does not require domination, with just the condition on error prob-
abilities stated in the text.) If the error probability is always less than 1, the
sum of the probabilities of the two kinds of error is always less than 1. The
existence of a test with the latter property is called distinguishability in [4];
it is equivalent with the existence of a strictly unbiased test and proper mean
reproducibility of the p-ordering of .

[3] also introduces the concept of distinct hypotheses: the hypothesis H,
that F belongs to %, and the hypothesis H; that F belongs to &; are called distinct
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if, given Fy in § and F, in §; , there is a function 4 with possible values 0 and 1
such that &rh(X) # &rh(X). Distinctness is implied by proper mean repro-
ducibility of the ¢-ordering. In [1] it is shown that, if & is a denumerable collection
of continous one dimensional distribution functions, the hypotheses are distinet.

[2] considers the case of infinite sequences (X;, Xz, - -+, Xx, - --) of random
variables with X, taking values on a k-dimensional space, and speaks about
distinguishability if the error probabilities can be made arbitrarily small: given
any ¢ > 0 there is an n and a function &, over X, with values 0 and 1, such that
8h.(X,) < ein Fo and &h,(X,) > 1 — ein F; . This corresponds to asymptotic
unbiasedness and consistency of tests. Hoeffding (who also considers sequential
and randomized tests) calls this (finite) absolute distinguishability in [4] and
distinguishability in [5].

5. Some propositions on mean reproducibility of an ordering of translation sub-
families. Let §., a subfamily of the partition @, consist of the distributions
F . with 6 ranging over a set A, . If each ¥, contains a distribution F, such that

(3) Fo(x) = F(x — 0),

we shall say that @ is a partition into transldtion subfamilies. It is possible to
give a very simple criterion for the absence of mean reproducibility for this case.

We shall say that conditzon A is satisfied for two subfamilies &, and F.. if A,
and A, are such that ., assigns probability 1 to A, and F. assigns probability 1
to A, . For a simple illustration, let

F.(z) = Ziéz (;)pcj(l - po)4—j

and let A, consist of the numbers 0, 1, 2, 3, 4 and 5 for each c¢. Each &, has 6
distributions in it; let ¢(F) = p. for F in F, with p, between 0 and 1. It follows
from II below that on the basis of an observation from one of these populations
one cannot find an estimate of ¢(F) whose mean will always be smaller for F in
¥, than for F in F, if p, < p. even if we know p. and p,. .

We state these propositions:

1. If the range of h is bounded from above or from below and condition A holds for
two subfamilies of the partition, the p-ordering is not mean reproducible.

II. If condition A holds for two subfamilies of the partition and the distributions
in these two subfamilies assign probability 1 to a finite number of points, the p-order-
ing s not mean reproducible.

II1. If condition A holds for two subfamilies §. and F. of the partition, if F, and
F. have densities which tail off eventually® and are continuous except perhaps at a
finite number of points, and if, for any h for which &z h(X) and &r, h(X) exist,
Spch(ZX ) and &r,.h(2X) also exist, the p-ordering is not mean reproducible.

Easy proofs of the first two propositions are given in the next section; let us,

2 We shall say that a (possibly) multidimensional density f tails off eventually if, for some
k=1anda =0, fly) < kf(z) whenever z-y = z-2 = a, where the dot indicates inner
(or dot) product.
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however, note two consequences. (Actually, what is shown is a stronger con-
clusion, viz. that (1) cannot be satisfied.) It follows from I that no strictly
unbiased test exists of H, of Section 1 if F, and F; constitute a partition into
translation families. From III it follows that, for most density functions that
are met with in practice, sufficiently wide translation subfamilies have no un-
biased estimators of ¢(F) if we impose the restraint that §-4(2X) should exist
whenever &zh(X) does. Such a restraint is natural if ¢ is a scale parameter:
o(F,) =1#0,0(Fs) = 1,F.(z) = Fo (7 'z). It follows from I that no positive
estimate h exists of (F') with &r,,h(X) < &r,.,.h(X) if 7 < 1, no matter what
be the properties of the subfamilies. (In each of these cases we assumed condi-
tion A to hold.)

6. Proofs of Propositions I and II. To show II consider two subfamilies F.
and F. and let F, assign positive probability py to a, (¢ = 1, ---, Q) and Fo
positive probability p,” to b, (r = 1, --- , R), with 2. p, = > pr = 1; then
(4a) Erh(X) = Zq h(aq + 0)pg,

(4b) Erpp M(X) = Zr h(bf + 0,)p7,~

Let ¢ be such that, e.g., o(F.) < ¢(F.). We shall show that there is no &
for which &r,,h(X) < &p,,,,h(X) for all 6in A, and all 8" in A, .

For suppose otherwise, then each of the numbers (4a) for 6 in A, is less than

each of the numbers (4b) for 8" in 4, . Since by condition 4, by, - - - , bz belong
tod.and a;, - -, aq belong to 4, , each of the B numbers

Zq h(ag + br)pq
is less than each of the @ numbers

> h(be + a))p/,
and so the (weighted) mean

Zr {Zq h(a, + br)pq}pr,

of the former numbers is less than the (weighted) mean
Zq {Zr h(b, + aq)pr,}pq

of the latter numbers. Since the last two displayed expressions are equal, we
have a contradiction.

In the proof of I we replace sums by integrals and identify two iterated in-
tegrals by Fubini’s theorem for semibounded functions. The proof of III is
more complicated and will be given elsewhere jointly with R. Sacksteder to
whom I owe the idea of the proof of II.

7. An application. An example of a problem to which condition A4 applies is

the following: Consider n patients and measure their blood pressure X once on
each patient under standard conditions. (We assume that it is not possible or
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practicable to obtain several independent observations under standard conditions
on each patient.) Let the n; first patients serve as controls, and let the other
patients take a drug; we wish to study the possibility that the drug decreases the
variability of the patients’ blood pressure. Suppose that for the 7th patient X has
distribution K ,(z — ;) if ¢ £ 1, and K ,(+ (z — 6;)) if £ > n, . 7 is unknown,
except that it lies in the closed interval from b to 1, where b is a known positive
number less than 1.

Condition A is fulfilled if it is known that the 6, lie in an interval which in-
cludes a set to which F, assigns probability 1, where F'§ is defined by

(6) FR(x) = Ko(m — 61) -+ K o(@n, = 02))K (77 (Tayps — Onpy1))
cee K,('r—l(x,, — 0,)),

whenz = (z1, +++ ,2,),0 = (61, -+, 0,). Usually ¢ is assumed known to lie in
a certain interval and we have K ,(z) = Ki(z/7).

If we do not wish to make an assumption about the range of o, validity of
condition A implies that we are not willing to put a przori bounds on the range
of variation of the 6; . If a variate with distribution K, can only take values be-
tween a; and a; (>a1), and if ¢ is at most oo when the 8; can vary between —c and
~+c¢, condition A is fulfilled if ¢ exceeds the maximum —aoa; and oo, . Proposition
I implies that under condition A we cannot estimate or test hypotheses about 7
in any reasonable way when K; is known (and so also if K, is not fully known).

Consider a slightly different model in which it is supposed that the mean
responses are also affected by the drug. Then,

(6) F%)(x) = K,(:El - 01) Ka(xm - oﬂl)K"(T_lx"l+l - 0n1+1)
e K o(r e — ).

Note that (6) does not satisfy (3). Indeed, if, as is usual, the drugs are assigned
to the patients by a random mechanism, the situation in this second model can
be readily handled when n; > 1 and » > 3, and K; is the standard normal dis-
tribution. Writing

m(Yy, -+, ¥) = 25 Yi/l,

82(Y1 y T Yl) = Z;'=l (YJ - m(Yl y " Yl))z/(l - 1)7
we can use the F statistic s*(Xn41, +++, X»)/8 (X1, +-+, X,,;) to make in-
ferences about 7, if we approximate the situation by assuming that each X,
before treatment is the sum of two independent normal components, X; and
0; , with means 0 and 8 and variances o and o’

For then (n — my — 1)’ (X1, -+, Xa)/{(d® + &")7'} and (n, — 1)s*
(X1, -+, Xn,)/(c® + &) are independent chi-square variates withn — n, — 1
and n; — 1 degrees of freedom respectively, and we can use the lower 100a%
point, F,, of the corresponding F-distribution. E.g., to test whether 7 =
against 7 < 79, we reject when

70—282(Xm+1 y T Xn)/sz(Xl y oty Xay)
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falls below F, ; the power of this test equals the integral of the F-density between
0 and (ro/7)°F..

8. Transformed translation subfamily problems. There are problems which
can be transformed into a translation subfamily problem. Among the obvious
examples are problems with positive variates and scale families, so that the loga-
rithms of the variates form translation subfamilies.

In another class of problems a sufficient statistic for ¢ exists. Sometimes the
families of distributions cf a sufficient statistic corresponding to the families of
parent distributions are translation families. The following case and its generaliza-
tions are discussed elsewhere ([6], [7]) in more detail.

Suppose Yy, ---, ¥, are joint normal with equal means u, equal positive
variances o and equal pairwise correlations p, all completely unknown and we
wish to estimate the variance of Y. It can be shown that, if an unbiased estimate
of this parameter exists, it must depend on ¥ alone. But by III such an unbiased
estimate does not exist.
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