ON THE ESTIMATION OF MIXING DISTRIBUTIONS

By D. C. Bogrs
Colorado State University

1. Introduction and summary. LetF = {F(z; y), y ¢ E} be a family of cumula-
tive distribution functions (cdf’s) in the variable z indexed by y ¢ E, where E is
a measurable subset of the real line. Assume that F(z; y) is measurable in y
for all z. Then, for any nondegenerate cdf @, whose induced probability measure
assigns measure one to E, the cdf Ho(z) = [xF(z;y) dG(y) is called a “mix-
ture” of §, and G is called the ‘“mixing distribution.” The family § will be called
the kernel of the mixture. \

Among the many interesting problems engendered by mixtures of distributions
is one of great practical importance, namely, the estimation of the mixing dis-
tribution. This problem is simply stated—on the basis of observations from the
mixture Hq , estimate the mixing distribution G. However, before actual esti-
mation can be meaningfully investigated, identifiability of the family of mixtures,
defined presently, must be verified. Let G denote the class of mixing distributions
G, and 3¢ the induced class of mixtures H for some specified family &. A mixture of
 will be called “identifiable” if H(z) = [ F(z;y) d@*(y) = [ F(z;y)dG(y)
implies @* = G. If every member H of ¢ is identifiable, then 3¢ will be said to be
identifiable. For identifiable families 3, the problem of estimation of the mixing
cdf when the elements of & occurring in the mixture are known is dealt with here.
In particular, the problem of unbiased estimation for finite mixtures is con-
sidered. In a finite mixture the kernel is any finite set of known but arbitrary
cdf’s and the mixing distributions are discrete assigning positive weight to each
of the e¢df’s in the kernel.

The estimation of the mixing ratio when two arbitrary known cdf’s are mixed
is discussed at length in Section 2. Identifiability is then evident. Necessary and
sufficient conditions on two distribution mixtures for uniform attainment of the
Cramér-Rao lower bound are derived. The class of 6-efficient estimators is found;
also, as it turns out, the minimax unbiased estimator is a member of this §-effi-
cient class and it is characterized. In Section 3, the results of Section 2 are ex-
tended to any finite mixture. For identifiable finite mixtures, necessary and suffi-
cient conditions for the existence of an estimator which uniformly attains the
minimal ellipsoid of concentration are given. The #-efficient family of estimators
is derived; also, estimators within the 6-efficient family which are consistent
asymptotically normal efficient are characterized.

2. On the estimation of the mixing proportion in a mixture of two distribu-

tions.
2.1. Introduction. Let

% = {Ho(z): =% <0 < 3, Hy(x) = (5 + 0)F(z) + (3 — 0)G(2)}
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denote the family of mixtures of any two fixed (distinet) one-dimensional
cdf’s F(z) and G(z). Here, the mixing distribution is discrete, assigning mass
(2 + 6) to the cdf F(z) and mass (3 — 6) to the edf G(x). Let p be any o-finite
measure on the Borel sets of the real line which dominates both ¥ and G, and
hence also He(x). Then, by the Radon-Nikodym theorem, there exist densities
ho(z) such that Pe{A} = [4he(z) du(z) for any Borel set 4 of the real line,
where P; is the probability measure corresponding to the cdf Hy(x). Let ho(Z)
and Hy(Z) denote respectively the joint density and joint cumulative distribution
functions of X;, ---, X, , where X, ---, X, are independent identically dis-
tributed random variables with common cdf H, . )

For a given random sample z;, - - - , z, from a population with distribution
H, an estimate of the parameter 6 is desired. Here identifiability, of the family 3¢
isevident, forif (3 + 6,)F(z) + (3 — 61)G(z) = (3 + 6.)F(z) + (3 — 6:)G(x),
then (8 — 6,)[F(z) — G(x)] = 0 and since F(z) # G(x), we have 6, = 0, .

The estimation problem confronted here is unusual by virtue of the nature of
the a priori information about the unknown distribution He(z) and the fact that
the parameter enters linearly. This latter fact prompts one to solve for the param-
eter 0 in the equation Hy(B) = (3 + 6)F(B) 4+ (3 — 6)G(B) and form a host of
estimators 6,(B) = {Ho(B) — [F(B) + G(B)]}/[F(B) — G(B)] simply by re-
placing He(B) by an estimator Hy(B). [The notation F(A) = Pz{A} will be
adopted and adhered to hereafter, where F is the cdf corresponding to the prob-
ability measure Pr and A is any Borel set. All ¢df’s are taken to be left con-
tinuous.] H,(B), defined to be the proportion of observations X; - - - X, that fall
in B, is an unbiased estimator of Hs(B) and provides us with the family of esti-
mators

(1) 6.(B) = {HW(B) — 3IF(B) + G(B)}/IF(B) — G(B)]

for any Borel set B such that F(B) s G(B).In particular, if B is restricted to the
infinite closed rays (— «, z], (1) becomes

(2) bu(z) = {Ha(z) — 3[F(z) + G)}/IF(z) — G(2)]

for any z such that F(x) ¢ G(z); here, H,(x) is the sample cdf (taken as left
continuous). The family (1) provides a myriad of estimators, each of which is un-
biased, converges with probability one to the true parameter, and has variance
of order O(1/n), the exact value being given by

Var 6,(B) = {(3 + 0)[F(B) — F*(B)] + (3 — 0O)[G(B) — G"(B)]}/
n[F(B) — GB)I" + [(3 + 6)(3 — 6)/n].

The estimators defined in (1) can take values outside the interval (—3%, 3).

This drawback could be rectified by truncating the estimator, but then un-
biasedness would be lost. Admittedly, the desirability of the property of un-
biasedness is questionable, however, for the most part, unbiased estimation is
considered herein.
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For any class of sets @, define A* such that
[F(A®) — G(A™)| = supaee |F(4) — G(4)], then
SUP4cq [Hiuan(A) — Ho(A)| = supaeq |Ha(A) — Ho(4)];

i.e., Hi,as(A) is a better estimator of Hy than is H,(A) from the standpoint
of the implicit definition of distance. It should definitely be possible to improve
on the sample edf in estimating the distribution Hy(z) since the former in no
way takes cognizance of the fact that Hy(z) is a two distribution mixture. The
family (1) will play an important role in the subsequent investigation.

Bayes estimators encountered here possess a somewhat unusual characteristic
if the risk function is defined as the square error; that is, a Bayes estimator of
sample size n depends on the first n 4 1 moments of the a prior: distribution
and not on the a prior: distribution itself. This singularity follows immediately
from the fact that the parameter enters the distribution function linearly.

2.2. Necessary and sufficient conditions for the attainment of the Cramér-Rao
lower bound. Let {he(%), 0 € @} be a one-parameter family of probability density
functions on R" with Ps{X ¢ A} = f 4 ho(Z) du(Z) for any Borel set A of R",
where u is a o-finite measure independent of 6, and @ is any open set of real
numbers. Let d(Z) be an estimator of 6, that is, a measurable mapping of R"
into R'. Conditions under which the Cramér-Rao bound is a valid lower bound
for the variance of an estimator d(Z) of a parameter 0 are well known. Consider
the case where:

(a) @ is the entire real line or an open interval of the real line.

(b) log he(Z) is an absolutely continuous function of 6 for almost all z.

(¢) Both f he(Z) du(Z) and f d(Z)he(T) du(Z) are differentiable with re-
spect to 6 under integral sign.

(d) 0 < Ey[(3/36) log he(X)]* < 0.

If E, denotes expectation with respect to Py, the preceding conditions are
ample for the validity of

(3)  ad(0) = [Esd(X)(3/30) log he(X)I*/Esl(3/36) log he(X)]*

= [(8/00)Es d(X)I*/Eol(3/06) log he(X)]".

ProrositioNn 1. If Conditions (a) through (d) are satisfied for he(Z) and
d(z) and if oid > 0 for all 0 € Q, then a necessary and sufficient condition that
0a'(0) coincides with the Cramér-Rao lower bound is that he(Z) = A(Z) exp
[d(Z)b(0) + c(8)] where b’ (8) # 0 and A(Z) = 04f and only if he(Z) = 0.

Proor. Fend [4].

Remark. Consider the case where hy(Z) = []71 ho(2:) and u(Z) is a product
measure on R" each component of which is u (ao-finite measure on R'). Then the
joint density he(Z) is of Darmois-Koopman form if and only if the one-dimen-
sional density he(z) is of Darmois-Koopman form, i.e.,

4) ho(z) = V() exp [{(z)s(0) + u(6)].
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In the problem to be investigated (see Section 2.1) p(Z) is as stipulated in
the above remark and

(5) he(Z) = TIT (3 + 0)f(z) + (3 — O)g(z)].

It suffices to confine attention to Sg™ = {z: he(x) > 0} = {z: f(z) > 0 or
g(z) > 0}. Let d() be a Borel measurable mapping from R” into R, and

(6) D = {d(F):05°(0) > 0forallfe(—3% 1)}

It can be shown that the Regularity Conditions (a) through (d) are satisfied
forQ = (—1,3%),hasin (5) and d e D.

Lemma 1. If ke s as in (5) and the Cramér-Rao bound is uniformly attained
by the variance of some d(Z) € D, then there exists a decomposition of Sg* into sets
2 ZZ t . Here, t(x) is as in (4).

Proor. By Proposition 1 and the remark following it, he(z) has the Darmois-
Koopman form, i.e.,

ho(z) = 5[f(2) + g(2)] + 6lf(2) — g(2)]
V() exp [t(z)s(6) + u(6)].

Differentiating the above twice with respect to 6 gives: —[u'(6)]* — u'(0) =
[t(z)s'(0)] + 2t(z)s'(0)u'(6) + t(z)s" (0). Since o > 0, ¢ takes at least two
unequal values, say ¢, and ¢, . Let ¢; also be a value of {(z); then from the pre-
ceding — [ (0)]* — " (8) = [t:s'(0)]® + 2tis"(0)u'(6) + tis”(6) for ¢ = 1,2, 3;
hence [6s'(0)] + 26s'(0)u’(0) + ts"(6) = [ts'(0)]° + 2,8’ (0)u'(0) +
ts” (0); or, (' — 6)[S'(OF = — (b — #)25(6) w'(0) — (b — )5 (6), ie,
(h + &)() = —2¢'y’ — §". Now either £ = # or in similar fashion,
(4 t:)(s) = —2s'u’ — s",and since s'(8) # 0, i+t =t + L or & = o
Thus, A; = {z: {(z) = t;}, has positive u-measure, 1 = 1,2, and A; u As = Sg".

THEOREM 1. If the variance of some d € D coincides with the Cramér-Rao bound,
there exists a decomposition of Sg™ into sets Ay, Ay of positive u-measure such that

A1, A2 of positive n-measure such that t(z) =

(7) he(z) = V(z)-Ki(0) for zeA;,i=1,2.
An equivalent condition is
(8) f(x)/g(x) is constant (possibly ) on A;, i=1,2.

Conversely, if (7) or (8) holds, the Cramér-Rao bound is uniformly attained by the
variance of the estimator d(Z) = ntyH, (A1) + ntH,(Az) for any two real unequal
numbers t, and t, . Recall that nH,(A;) = the number of x1, -+ , n which fall
in A,‘ .

Proor. If the variance of some d £ D coincides with the Cramér-Rao bound,
he(z) has the Darmois-Koopman form, i.e., he(z) = V() exp [t(x)s(8) + u(0)].
t; on A1

ton A ; therefore,
2

Moreover, by Lemma 1, t(z) =



ESTIMATION OF MIXING DISTRIBUTIONS 181

ho(z) = V(x) exp [t(z)s(6) + u(0)] = V(z) exp [t1s(6) + u(0)] on A,
= V(z) exp [t2s(6) + u(0)] on A, .

Conversely, since z € Sz, necessarily K ,(8) > 0,5 = 1, 2. Thus, for any two
real unequal numbers ¢, , &, , we may define

u(8) = [t; log K1(6) — t,log K(6)]/(t2 — t);
s(6) = [log Ki(8) — log K»(8)]/(t: — ).
Then hy(x) has the Darmois-Koopman form, V(z) exp [t(z)s(8) + u(6)],
. _ Jtion Ay
withi(z) = {t«;onAz
Rao lower bound where d(Z) = Y i t(z:) = nthH,(A1) + nteH,(As). The
agserted equivalence is easily verified.

CoroLLARY. If ho(x) satisfies the factorization criterion of Theorem 1 and A,
s as tn Theorem 1, then

bu(M1) = {Ha(M1) — 3[F(A) + G(A)/IF(A) — G(A1)]

s the uniformly minimum variance unbiased estimator of 6. Note that 6,(A,)
belongs to family (1). Also, by the strong law of large numbers (S.L.L.N.), 6,(A;)
converges almost certainly to the true parameter.

2.3 O-efficient class. In the preceding section, necessary and sufficient condi-
tions on the distributions F and @ for the uniform attainment of the Cramér-Rao
lower bound were derived. Achievement of this requirement led to a narrow
circumscription of the distributions (F and @) being mixed. Consequently,
in the remaining but preponderant cases, a less stringent property will be adopted,
namely, that of f-efficiency.

Let 3 constitute a class of estimators of 6.

DEFINITION. An estimator, ¢ €3, is called 6°-efficient in 3 if o3 (6°) < o:2(6°)
for every f e 3.

6°-efficient unbiased estimators have been discussed in the literature under
general background conditions; for example, see Barankin [2], Stein [6], and
Bahadur [1]. In particular, the existence and uniqueness of §-efficient unbiased
estimators has been proved.

Let U denote the class of unbiased estimators of 6, and let

I(6) = Ei[(8/36) log he(X )]

. Hence by Proposition 1, ¢5(%) (6) coincides with the Cramér

The following proposition follows immediately from standard conditions for

efficiency.
ProrositioN 2. Let X, - - -, X, be independent identically distributed random

variables with common cdf Ho(x). For any 6° ¢ (—%, %) the estimator of 6,
(9) 8u(6°) = 6" + [1/nI(6)] 220 [f(X) — g(X)]/heo(X2)
s 6°-efficient in U.
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ReMARK. Each estimator 8,(6°), —% < 6° < 1, is admissible (where the risk
function is taken to be the variance) within the class of unbiased estimators.

REMARK. 6,(6°) converges almost certainly to 6.

Proor. A necessary and sufficient condition for independent identically dis-
tributed random variables to obey the S.L.L.N. is that E|X| < . But
Eo|[f(X) — g(X)]/heo(X)| < oo since

[f(z) — g(2)|/ho(x) < {1/min [§ + 6, 3 — 6]}

hence the S.L.L.N. is applicable.

LemMa 2. The Cramér-Rao lower bound, [nI(6)]™, is a concave infinitely dif-
ferentiable function of 6.

Proor. Infinite differentiability follows from the dominated convergence
theorem. Now, n times the Cramér-Rao lower bound = 1/I(6) = 1/

JI(f — 9)*/he) and
(10)  (d/de)(1/1(8)) = —I'(0)/I%(6) = [ [(f — 9)*/ha'V/ (| (f — 9)*/ha)".
(11)  (d%/d6*)(1/1(8)) = {—2 [ [(f — 9)°/hal [ [(f — 9)"/Ra']
+2(] (f = 9)*/m)}/ ([ (f — 9)*/he)®.
Now
(J((f = 9)/B)*aH)* = (J ((f — 9)/B)((f — 9)/h)" dH)?
< [((F—g)/m)aH-[ ((f — g)/h)" dH

by Schwarz’s inequality, i.e., the numerator of (11) is negative, but the de-
nominator is positive, so (d’/d6’)(1/I(8)] < 0, i.e., the Cramér-Rao lower
bound is a concave function.

LEMMA 3. o},00 (8) is concave quadratic function of 6.

PROOF. oh,00(0) = n7[—(0 — 6")* + [1/I°(0°)] [ ((f — 9)/hee)’ha]-

The point at which the maximum of ¢3,0) (8) occurs is readily calculated to be

(12) Omax = 6° + [1/2I°(6°)] [ [(f — 9)*/ha.).

TuEOREM 2. If §° is the unique value for which the maximum of the Cramér-Rao
bound in [—3, 3] is attained, the estimator 0,(8°) is minimax in U.

Proor. Suppose first that the Cramér-Rao lower bound has a maximum
within (—1, 1). Then &’ is such that (10) is equal to zero. Taking 6° in (12) to
be 8°, we see that ¢},00 (8) also attains its maximum at 8°, so that §,(6°) is mini-
max. On the other hand, if the maximum of Cramér-Rao lower bound in
[—1, 1] occurs at one of the end points, say 8° = %, then the numerator of the
right hand side of (10) is greater than zero for every 6 in (—3%, %), and hence
by (12) 63,00 () attains its maximum for some value to the right of 6° for all
6°; in particular, this is true for 6° = }. Hence maxo <3 (o3, (0)) is attained at
6 = 1. Similarly for §° = —3.

The following theorems show that the estimators (9), though seemingly un-
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related to the family (1) of estimators, are actually, in some instances, averages
of these. Before stating the theorems a useful lemma is stated.

LemMA 4. For any two measurable sets A and B, Cov [Ha.(A), Ha.(B)] =
[H(A-B) — H(A)H(B)]/n, where H, is the sample cdf from a population with
distribution H. In particular, Cov [H.(A), H.(B)] = [-H(A)H(B)]/n if A
and B are disjoint and Var [H,(A)] = {H(4)[1 — H(A )]}/n

TuroreM 3. Suppose the positive spectrum of Ho , Sg', admits a countable
(possibly finite) decomposition into sets A;, ¢ = 1,2, --- , such that' f(z)/g(z) =
Ni =0, on A; ,where \; #= \jfor i #£j. Let fi= F(A) gi= G(A,) hi = Hpo(As), and
F; = F(U;—lAJ) = Za—lfu i = 21—191, H; = Z;‘=lh1” t=1,2 ---.
Further, let di = (fi — gi)/hi — (firr — Gir1) /hina, Bi = [1/I(6)I(F: — G) ds,
(so that D, B; = 1) and put D; = [H,.(U,_IA,) — XF:+ G/ (F: — Qo) if
Fi—Gi#0,Di=04F; =G,i=12, ---.Then 6,(8°) = D j=18;Djis
0°-efficient in WU.

Proor. D 8; = [1/1(0")12°° (Fi — Gi) d: = 1/1(0")121o [(fi — gi)z/hi];
however I(6°) = [ [(f — g) hool = 2t [as (f — )" /oo = 205 (f1 — g:)°hs,
hence Dy B; = 1. Tt remains to prove that o}, (6°) = [1/nI(6")]. ol,00(0°) =
3 %1 8; 05 B: Cov [D;, Dj]. By employing Lemma 4 and noting U%_1 A,
U.,_lA ifj <7and U‘._lA o Ui_iA.if ¢ < j, we obtain

_n—l B: Cov [D;, Dj] = =1 BidH (1 — Hj)/n(F1 — G)(F; — G;)]
+ D BdH; (1 — H)/n(F: — G:)(F; — Gj)]
= [1/nI(6°)(F; — G)]
AF;— G — Hi((fy — g1) /M) + Hi( 227 (1 — Hi) di)].

However, Zl (1 — H;) di = (fi — 91)/b1 = [(fmir — gmi1) /Bmia] (1 — Domihy)
— >, (fi — g4), hence (i — g1)/ha = 21 (1 — H.) di 5 whence

2 _i1B: Cov [D;, Dj] = 1/nI(6°)
and 50 3ot B; 2 ie1 Bi Cov [D:, Dyl = [1/nI(6°)] 227 B; = 1/nI ().

CorOLLARY 1. If F and G are both discrete distributions, then the 6°-efficient
estimator of 0 is a linear combination of estimators belonging to Family (1) .

COROLLARY 2. Under the assumptions of Theorem 3, if the A;’s can be indexed so
that 0 S M < M < -+ < N\; < -+, (in particular, whenever the decomposition
of Su* is finite) then the B;’s form a discrete probabzlzty distribution.

Proor. It suffices to prove 8; = 0,7 = 1, 2, . Now B8; = 0 if and only if
(F; — G;) d; = 0. Also, d; < 0 is readily proved to be equivalent to \; < Ny .
Suppose F; — @; = C > 0for some j, which requires that ;11 > 1. Then Fj, —

Giyr = fin + Fi — g$+1_G_g1+1()‘$+1_1)+F_G>F_GJ_C
Proceeding inductively F; — G; > 0 implies F; — G; = C for every ¢ > j which
contradicts lim; (F; — G;) = 0. Thus F; — G; < 0 every j, and combining this
with d; < 0 for every j, we have 8; = 0,7 = 1, 2, .

1If 8t — Sg+ = 0, then Sg+ — Sg™ = A; for some j, and \; = « for that j; also, if Sgt —
Sst 5= @, then Sgt — Syt = A; for some 7, and \; = 0 for that <.
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THEOREM 4. If F and G are absolutely continuous with respect to Lebesgue
measure, their densities f and g are almost everywhere differentiable, and g/f is
monotone nondecreasing, then 8,(8°) = [ 6a(x)w(z) dz is the 6°-efficient unbiased
estimator of 6, where 0,(z) = {H.(z) — 3[F(z) + G(2)]}/[F(z) — G(z)] as
before, (see Equation 2) and
w(z) = {[F(z) — G(=))/1(6°)}

{lf(2) — g(@)hao(z) — [f'(=) — ¢ (2)]hoo(2)}/h3o(2)
and [ w(z) dz = 1and w(x) = 0, i.e., w(x) is a probability density Sfunction.

Proor. [ w(z) dv = [1/I()] [ (F — @) d((g — f)/h,) = [1/1(6°)]
TF(z) — @) — g(@)/heo(@)] e + /IO [ (F — 9)/he = 1.
(The 2nd equality is obtained by an integration by parts.) Clearly w(z) = 0
if and only if (F — @)[(f — ¢)h' — (f' — g")A] = 0. But g/f nondecreasing
implies that (f — g)h’ — (f" — g")h = 0, and that F(z) — G(z) = O for every
. Hence w(z) is a probability density function. Next, using Fubini’s theorem,

Ey [ bu(z)w(z) do= [ {{Ho(z) — 3[F(x) + G@)/IF(z) — G(z)jw(z) do
= [bw(z) dx = 6, 4

i.e., 6,(6°) is unbiased. It remains to prove that 6,(6°) is 0°-efficient. o3, (6°) =
= Epo(6a(6°) — 6°)" = [ [ {Cov [Ha(z), Ha(y))/{F(z) — G@)]IF(y) — G(y)]}
w(z)w(y) dz dy by Fubini’s theorem. Also, utilizing the preceding lemma and
integrating by parts, we obtain

[ {Cov [Ha(z), Ha())/[F(x) — G(z)}w(z)dz = [F(y) — G(y)/nI(6")],
hence 03,00 (8°) = 1/nI(6°).

3. On the estimation of the mixing distribution in a mixture of a finite number
of distributions.
3.1 Introduction. Let

(13) 3¢ = {He(z): Ho(x) = Ml Fi(x);
0:>0,i=1 -+ k+1;k=2; D550, = 1)

denote the family of mixtures of any fixed set of k -+ 1 (distinet) cdf’s,
Fyi, -+-, Fiy1 . Here, the mixing distribution is discrete assigning mass 6; to
distribution F; ,4 = 1, - - - , k + 1. Let p by any o-finite measure which dominates
F;,i=1, ---,k + 1. By the Radon-Nikodym theorem, there exist densities
ho(z) = 2_%t10.f:(x). As before, let ho(ZE) and Hy(Z) denote the joint density and
joint cumulative distribution functions respectively of Xi, ---, Xa, where
Xi, -++, X, are independent identically distributed random variables with
common cdf Hy .

In contradistinction to a mixture of only two distributions, identifiability
of the family 3¢ no longer holds in general. Teicher [8] proved that a necessary
and sufficient condition that 3¢ in (13) be identifiable is that there exist k¥ + 1
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real values x1, - -+ , T4 such that the determinant |Fi(z;)| = 0,4,5 =1, ---,
kE+ 1.

In the following, it will always be assumed that the family of mixtures at
hand is identifiable, otherwise the problem of estimation is not meaningful.

Since 64, 8y, - - -, k41 are linearly dependent, the parameter space can be taken
as the open set @ = {0:0; > 0,7 =1, ---, k, > % 0; < 1} of k-dimensional
Euclidean space.

3.2. Necessary and sufficient conditions for the uniform attainment of the mini-
mum ellipsoid of concentration. Let {ho(Z), 0 £ 2} be a k-parameter family of
probability density functions defined on R" with Po{X ¢ B} = [ 5 he(Z) d(%)
for any Borel set B of R", where u is a o-finite measure independent of 6, and Q is
any k-dimensional interval of Euclidean k-space. Denote by AU the class of all
estimators, §(Z) = (0.(Z), ---, 6u(Z)), of 8 = (8, ---, 6,) for which the
0:(Z)’s are linearly independent with positive probability for all 8 ¢ @ and for
which Ey(6:(X)) = 6;,4 =1, ---, k. Equivalently, 4 is the class of all un-
biased estimators of § whose variance-covariance matrices are positive definite
for all in Q. The ellipsoid of concentration of any estimator (%) of U is defined as
the interior and boundary of D %.;—1¢"/(0)(u; — 6;)(us — 6;) = k + 2, where
(6*(0))™" = (04;(0)) = (Eo(b: — 6:)(8; — 6;)). Conditions under which there
exists a minimal ellipsoid of concentration, i.e., a (largest) ellipsoid centered
at 6 and lying wholly within the ellipsoid of concentration of any unbiased
estimator, have been stated in the literature. A recent short proof of a result of
this kind appears in [6]. These conditions are k-dimensional analogues of the
regularity conditions for the validity of the Cramér-Rao lower bound of Sec-
tion 2.2. For example, consider the case where:

(a) ©is an open interval of Euclidean k-space.

(b) 6(%) belongs to U.

(¢) log he(Z) is an absolutely continuous function of 6; for almost all z,
i=1,---,k

(d) fho(fv’) du(%) and [ 0:(Z)he(Z) du(Z), ¢ = 1, ---, k, are differentiable
with respect to 0; under the integral sign,j = 1, --- , k.

(e) The matrix (I;;(0)) is positive definite for all 6 £ 2, where

I;(0) = J[(3/96;) log he(Z)-(9/6:) log ho(Z)]he(Z) du(Z).

If the preceding conditions are satisfied, then the minimum ellipsoid of con-
centration is given by

(14) b im L (0) (us — 0:)(u; — 0;) = k + 2.

DEFINITION. An estimator 8(Z) = (0i(Z), --+, 6:(Z)) will be called jointly
efficient for § = (6,, --- , 0;) within U if the ellipsoid of concentration of (%),
centered at 6, coincides with the minimum ellipsoid of concentration.

ProrositioN 3. If the preceding Conditions (a) through (e) are satisfied for
he(Z), and (%) € U, then a necessary and sufficient condition that (6:(Z), - - -,6(%))
be jointly efficient is that he(Z) = A(Z) exp [X s 6:(F)bi(8) + ¢(8)] for some
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A(%), bi(8), and c(8), where A(Z) = 0if and only if he(Z) = 0, and b1(6), b2(6),
oo, bi(0), c(8) are linearly independent and each is differentiable with respect
tob,,a=1 -,k

Proor. This proposition is a generalization of Proposition 1. A detailed
proof for it, as well as for the following remark, is given in [3].

ReMARk. Consider the case where ho(Z) = []i~1 ho(x:) and u(Z) is a product
measure on R” each component of which is u (a o-finite measure on RY). Then
the one-dimensional density ke(z) is of Darmois-Koopman form if and only if the
oint density k(%) is of Darmois-Koopman form.

Consider now the family of densities corresponding to 3¢ of (13), viz.,

g’ = {ho(z) = 217 0:fi(2);
(15) Gy =1 — 216:,0:>0,5=1,---,k+1}
= {Zl{ oi[fi(x) - g(a:)] + g(x)’o = (01 y 70k) € @}

where g(z) = fir1(z) and © = {6: Sk 16.<1,0,>0,i=1,---,k}.Itcanbe
shown that the Regularity Conditions (a) through (e) are satisfied for @ = 0,
ho(z) defined by (15) and § & U, where U is, as earlier, the class of unbiased esti-
mators of § whose covariance matrix is positive definite for all 6 ¢ @. The follow-
ing theorem, a generalization of Theorem 1 follows from Proposition 3 and the
preceding remark. A proof appears in [3].

TarorEM 5. Suppose 3¢ of (15) is identifiable. A necessary and sufficient con-
dition that there exists a jointly efficient estimator within U ts that there exists a de-
composition of Sx' into sets Ay, - - - , Awy1 Of positive u-measure such that

(16) ho(z) = V(x)-K;j(8) for zedA;j,j =1,---,k+ 1

An equivalent condition is that there exists a decomposition of Sut into sets
A1, -+ , Appa of positive u-measure such that f.(x) is proportional to fa(x) on each
Aj,j=1,---,k+1fore,8=1,---,k+ 1

Theorem 5 gives necessary and sufficient conditions for the existence of a jointly
efficient estimator given that 3¢’ (see Equation 15) is identifiable. Unfortu-
nately, not all families 3¢’ which satisfy the factorization criterion (16) of
Theorem 5 are identifiable. The following proposition serves two purposes; first,
it provides a method for checking the identifiability of a family of finite mixtures
for which a jointly efficient estimator exists; and second, it prefaces the derivation
of the jointly efficient estimator given in the succeeding corollary.

PropoSITION 4. For the family 3¢ ! suppose that he(z) = V(x)-K;(8) forx e A;,
j=1,--+,k + 1 where the A;’s are disjoint sets of positive p-measure such that
U“tA; = S, Then 3¢’ s identifiable if and only if there exists a subset
(Aiy s+ A} of {Ar, -+, Aupa} such that |[Fa(As;) — G(Ag)| # 0,0, 8 = 1,

ProoF. Similar to the proof of Theorem 1 in Teicher [8].
CoroLrARY. Let 3¢’ be identifiable and satisfy the factorization criterion (16)



ESTIMATION OF MIXING DISTRIBUTIONS 187

with the sets A; indexed so that [F;(A;) — G(A;)| # 0,4,5 = 1,---, k. Let
6% = (6,%, - -+, 6,™) be the solution to the equations

Ha(A;) — G(A)) = D25 0dF(A) — G(A)), j=1,---,

then 6™ is the jointly efficient estimator of 6.

3.3. 6°-¢fficient estimators. An estimator, 8(6°) = (81(6°), ---, 6(6°)) of
0= (6;, -, 0:),Iis called ¢°-efficient if its ellipsoid of concentration coincides
with the minimum ellipsoid of concentration at the point °. Let

(17) Ti= Tu(Z6) = 07" i lfi(z) — g(x)/heo(z)}, =1,k

andJ;;(0) = E((9/30;) log he(X)(3/90;) log he(X)). Note that I;(6) = nJ:;(6)
for the case of independent and identically distributed random variables, where
I;;(0) is asin (14).

ProPOSITION 5. The estimator §(6°) = (6,(6°), - - , 6,(6°)) of 6, defined by
(18) b:(6°) = 05 + D5 JY(6)T;, i=1,--,k

is 0°-¢fficient, where T; is as in (17) and (J7(8)) = (J4(8)) ™"

Proor. E¢T: = Dk, (8; — 0,)J;(6°); hence, from (18), Eo(b; — 6°) =

52 J9(0)EeT; , ie., §; is unbiased. Also, 0;;(8) = Cov [6:(6°), 8;(6°)] =
Doa 28 ()P (6°) Cov [T, Tgl, 4, §j = 1, -+, k; and, Cov [Ta, Tg] =
2 [(fa — 9)/hoo)- [(Fs — 9)/Paol -ho du(z) — Eol(fa — g)/PsolBo(fs — g)/had),
whence Cov [T , Tg]ls—s0 = T s(6°),and 0 0;5(6°) = 0" D _key D by T (6°)TF-
(6°)J 45(6°) = nJ¥(6°). Equivalently, nJ;;(6°) = ¢'/(6°), hence the minimum
ellipsoid of concentration (14) coincides with the ellipsoid of concentration of
6(6°) at the point 6°.

Remark. If 8,% = (6,%, -, 6,*) is any estimator of § for which §,* = 6
+ 0p(n7?), then 0:(6.%) = 0. + D %5y JY(@,")T;*, i=1, ---, k, in ad-
dition to being 8,*-efficient, is a consistent asymptotically normal efficient
estimator of 6, where T;* = n™" X iy [fi(2:) — g(@:)l/hoe(x:), 5 =1, -+, k.
Here O is the probability order symbol introduced in [5]. A sequence of random
variables is Op[f(n)] if for every ¢ > 0 there exist constants A = A(e) > 0 and
N = N(e) > Osuch that P{|Y./f(n)| > A} < eforeveryn > N.

4. Acknowledgment. This manuscript contains part of the author’s disserta-
tion written under the direction of Professor Henry Teicher; his guidance and
encouragement during the preparation were invaluable.

=

REFERENCES

[1] Bamapur, R. R. (1958). On unbiased estimates of uniformly minimum variance.

Sankhya. 18 211-224.
[2] Barankin, E. W. (1949). Locally best unbiased estimates. Ann. Math. Statist. 20 477-

501.
[3] Boes, D. C. (1963). On the estimation of mixing distributions. Ph.D. thesis. Purdue

University, Lafayette, Indiana.



188 D. C. BOES

[4] Fenp, A. V. (1959). On the attainment of Cramér-Rao and Bhattacharyya bounds for
the variance of an estimate. Ann. Math. Statist. 30 381-388.

[5] ManN, H. B. and WaLp, A. (1943). On stochastic limit and order relationships. Ann.
Math. Statist. 14 217-226.

[6] SmaLAEVSEII, O. V. (1961). A short proof of the Cramér-Rao inequality. Theor. Prob.
Appl. 6 323-324.

[7] SteEIN, CHARLES (1950). Unbiased estimates with minimum variance. Ann. Math.
Statist. 21 406-415.

[8] TercHER, HENRY (1963). Identifiability of finite mixtures. Ann. Math. Statist. 34 1265-
1269.



