SEQUENTIAL HYPOTHESIS TESTS FOR r-DEPENDENT MARGINALLY
STATIONARY PROCESSES'
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1. Introduction. In [3], and more generally in [4] and [5], Robbins and Samuel
respectively treated the following recurring statistical decision problem. Suppose
we sequentially observe a sequence of independent random variables {X,}:
n=0,1,2, --- , where the distribution of X, depends on a random variable 6, .
The process {6,} is a sequence of independent identically distributed random
variables. After each observation X, we test a hypothesis H, : concerning the
value of 6; . If the common a prior: distributions of the 6; were known, one could
find and use the “Bayes’ decision function which would be optimal (as defined).
However, if the a priors’ distribution of the 6; was unknown, Robbins has shown
that under certain general conditions one could find a sequence of decision func-
tions whose risk asymtotically approached the ‘“Bayes’ risk (i.e., the risk in
using the ‘“Bayes” decision function). Such sequences of decision functions are
called asymptotically optimal.

In [6] the results obtained by Robbins were applied to problems of pulse de-
tection in noisy environments. They were shown to be quite ‘“‘good” (i.e., the
risk in using the asymptotically optimal sequence differed slightly from the
Bayes risk) under certain conditions. One of the difficulties in using Robbins’
results was that the noise was assumed to be uncorrelated. Thus it is of interest
(theoretically and practically) to extend certain results of Robbins and Samuel
to processes which are dependent. In this paper some results are extended to
r-dependent strictly stationary processes. We will consider in detail the problem
of testing a completely specified simple hypothesis against a simple alternative.
This will show how basically the results of Robbins can be extended to mildly de-
pendent processes. The treatment of this problem will parallel Robbins’ treat-
ment of the same problem for independent processes (see [3]). In the remarks and
extensions section we will show that other problems and ideas given by Robbins
in [4] can be similarly extended. Also the processes can be extended to rth order
Markov processes under suitable conditions.

2. Definitions and notation. We observe a sequence of random variables
{Yu}):mn =0,1,2 - sequentially. After observing Yo, Y1, ---, Yi(k = 0,
1,2 ---) we are required to make a decision about the value of a random param-
eter 0;(6y, 01, - - - , 0 remain forever unknown). We suppose that the {6,} are a
sequence of independent identically distributed random variables with two pos-
sible values, say “0” and ‘“1”” with probabilities,
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p = Pr{6, = 0}, 1—p="Pri{o, =1}, n=20,12 ---.

We suppose that the distribution of Y, is Py if 6, = 0 and P; if 6, = 1. It is
further required that the sequence {Y.} be r-dependent. More precisely, let
B, = B(Y,, Y., ---) be the o-field generated by (Y, , Y,i1, --- ) and let

C,=C(Yy, - ---,7Y,) be the o-field generated by (Yo, ---, Y,) for alln = 0.
Then we define,

DeriniTION 2.1. The sequence of random variables {V,}:n = 0,1,2, - - - issaid
to be r-dependent if C, is independent of B,,y1foralln = 0,1, --- Je.g., YV, is

independent of Y, , Y, is independent of Y, ete.

We will further require that the sequence {Y,}:n = 0, 1, 2, --- be strictly
stationary in the usual sense. However, since we are actually dealing with a
sequence of two ‘‘dimensional” random variables, i.e., (Y, , 6,) we will define
precisely the strict stationarity of the sequence {Y,}.

Let ki, k2, - -+ , ks be any s subscripts of the {Y,} sequence. Let g(6x, , - - -,
6:,) be the joint density of the corresponding s 8’s. (Note that g can be written
as a product.) Let Fo, , ..., o (¥r,, ~*, Yx,) be the conditional distribution
function of (Yy,, -+, Yi,) given by, , - - - , 0x, . Then we define,

DeriNTioNn 2.2. The stochastic process {Ya}:n = 0, 1, 2, --- is said to
be marginally strictly stationary if its marginal distribution function
F(yx, , -+, yx,) for any s subscripts satisfies

F(ykly“'yyks) :F(yk1+hyyk2+h7"'7yks+h)7 h=0, 1)2)”"

We assume that the sequence {Y,} is marginally strictly stationary, thus by
definition it is strictly stationary in the usual sense. Furthermore, by the defi-
nitions given above we have

(2.1) F(ykl y ,!/ks) = Zf‘:x Z;kfﬁ F0k1»~~-,0k,(?/k1 y T yks)g(okl y T ,Bks)
where
g(okl y T 0’03) = (1 - p)(2;=10kj).p(3‘2;:,10k,-)

by the definition of the {6,} process.

Thus the general problem can be stated as follows. Each time we observe
a Y, say Y,, we must decide on the value of 6, which is unknown. Since
Y.(m =r -+ 1)dependson (¢m_1, -, Ynr) the decision about 8,.(m = r + 1)
will depend on y,, and conditionally on the r-latest past.

Hence at each observation of Y we take one of two decisions or actions, say

Agpand A, , where A, is correct if § = 0 and A, is correct if 6 = 1.
We assume the following simple loss structure.

L6 =0 if 6=4,
—a if =0 6=1,
—a if =1, §=0,

and suppose L,,;(6) = 0, where L4,(6) is the loss incurred when taking action 4;
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when 6, = 6(60 = 0, 1). (We assume the loss structure is the same for each
decision.)

Thus we seek a sequence of decision functions 7' = {t;},k = 0,1,2, --- , with
valuesin A = {A,, 4.} (which henceforth we denote by {0, 1} = A) which is
optimal. The sense of optimality will be that it minimizes the Bayes risk at each
decision.

Let R.(p) be the Bayes risk at the nth decision, and although ¢, depends on the
last (r + 1) y’s we will denote it by ¢ suppressing the functional dependence: it
will be clear from the context what ¢, depends upon.

We proceed to solve the Bayes problem with p = Pr {6, = 0} known, and then
consider the empirical Bayes problem with p unknown.

3. Bayes solution: Known p. It is clear that the loss on any decision, say the
vth, depends on 6, and y, and is conditionally dependent on y,_,, - - - , ¥,—1 . For
v > r we have immediately

(3.1) R.(p)
= J.A, Ez,so UALtv(ev) dFOv(yv I Yvery * 00y yv—l)]g(0»') AF (Yoery *** 3 Yp1)
where Fo,(Yy | Y¥»—r, - - , Y»—1) is the conditional distribution function of Y, given

Your, -+, Y., and 6,, ¢g(6,) is the density of 6, and F(yy—r, - -+ , Yr—1) is the
joint distribution functionof (Y,—,, -+« , ¥,_1). A, is the Cartesian product space
of values of the y’s, say A. To shorten notation we denote Fo, (Y, | Yo—r , =+ , Yr—1)
by Fe,(y, | Y,) and F(¢—r, - - , Y»—1) by F(Y, ). Thus by the definition of g(-)
and L., (-) we have by elementary manipulation,
(3.2) R.(p) = (1 — pla
+ [a. Jalpoit dFo(y, | ¥2) — (1 = p)asty dFs(y, | Y)] dF(Y..0).
There is no loss in generality in assuming that Fo(y, | Y,) and Fi(y, | Y,) are

absolutely continuous with respect to some measure p thus (3.2) becomes, de-
noting the densities by fy , fi respectively,

(33) R.(p) = (1 —pla
- fAr fA [(1_ p)alfl(yy l Z") - palfo(yr I Xr)]tr dM dF( Yy_r)

which is the function we seek to minimize, where ¢, is either zero or one. (We have
assumed throughout that randomized rules were not needed to be considered.)

Let ¢,(y,) = (1 — p)asfi(y, | ¥Y,) — paifo(ys | ¥»). Then clearly the optimal
t, is given by
(3.4) L(y) =1 if ¢,(y) 20

=0 otherwise

and the corresponding Bayes risk is
(3.5) R.(p) = (1 — plas — [, [[n [6p(¥)]" dul dF (Y, ,),
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where [H(z)]" = max [0, H(X)]. (Note: R,(p) is independent of »if » > r.)
Similarly, the obvious corresponding results hold for the first r decisions.

4. Empirical Bayes solution: Unknown p. We now ask if there exists a sequence
T* = {t,*} of decision functions such that the associated risks R,*(p) satisfies

(4.1) limnaw R2*(p) = R.(p) = R(p) forall 0<p<1
where p is unknown. The answer is yes and we proceed to exhibit such a sequence.
Let pn = pa(%o, - -+, Ya) be a sequence of functionssatisfying forevery fixed

(T + 1) tuple y(l)y y(2)7 IR} y(r+l).
Pr {limn»w lpn(yO y sy Yn—r—1, y(l); R} y(r+l)) - pl > 6} =0

1.e., strong convergence with0 < p, = 1.
Such a sequence will be exhibited later in this section.

Let ta*(Yn) = ta (%o, - - , Yn) be a sequence of decision functions defined as
follows for n > r.
(4.2) tn*(yn) =1 if ¢p,(¥n) 20
=0 otherwise
where
(4.3) ¢’p,.(yn) = (1 — pn)azfi(Yn l Y.) — pararfo(ya l Y,).

Thus the risk on the (n 4+ 1)th decision using ¢, *(ya.) is clearly
(44) R.*(p) = (1 — p)az — (1 — p)a:E[t,* (V)] 6, = 1]
+ palE[tn*(Yn)l on = O]

where expectation is with respect to the (n 4 1) random variables ¥y, --- ¥, .
Hence by elementary computation we have using the r-dependence of {¥,},

R.*(p) = (1 — p)az — (1 — p)as fauyy, tn*(yn) d
(4.5) “Fyo, -+, Yn1) % Fi(ya| X))

+ pas fA(n+1) t,,*(y,,) d[F(yO y Ty yn—l) X FO(yn ] Xf)]

where the zero and one subscripts imply that the conditional distribution func-
tions are also conditioned on 6, . Since all F’s are by definition finite measures,
the cross product measures can be broken up by the iterated integral theorem
(See e.g., Lotve), and we then combine the expressions and obtain

R.*(p) = (1 — p)a
6) — [a, st W) — pasdFi(yn|Y,) — paidFo(yn|Y,)]
“dF (Yo, -+, Yal1).

Using the absolute continuity of Fi(y. | Y7), Fo(yx | Y») with respect to u, (4.6)
becomes
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(4.7) R.*(p) = (1 — plaz — [u, s ta™(Wa)bp(yn) du] dF (o, -+ , Yua).
But we now further decompose the measure F(yy, -+ , yn—1) into
FYnsry -5 Un1) X F(Yo, -+ s Ynora [ Ynr, =+ 5 Yna).
Using this decomposition and the iterated integral theorem, (4.7) becomes
R.*(p) = (1 — p)a
(48) = Ja, Uhiwen & Wa) AF (Yo, -+, Ynrct | Yner s =+ 5 Yn)]

[ 65(yn) du dF (Y,.,).
By strict stationarity we have for alln > 7,

R.*(p) = (1 = pla,
— Jar b @) dF (o, -+ 5 Ynra | 4P, -+, ¥™)
Ja(y"?) du dF (Y, -, y?)
where there is no dependence on » in the last integral, i.e.,
(4.10) Jxr Jado(y™) du dF (4, -+, y).

We recognize immediately the relationship between (4.9) and (3.5), thus to prove
R.*(p) goes to R(p) it is sufficient to prove that

Taon @Y AP o, s Yoo |42, -+, 4™)
(4.11) -1 if ¢,(y") >0
—0 if ¢,(y"™") <0
and that the remaining integral converges for » > r to
(412)  [aq, [fal6p(9)]" dul dF(Y,,,)
= Ja. Us ooy dudP (y®, -+, y).
First we have from (4.11) that
(4.13)  [ar @)Y AF (Yo, - Ynra | Y©, -, ™)
= Pr{¢p,Wo. - ueriit oG > 014, -y
Now since ¢,(y) is a continuous function of p and since we have assumed that

) (r+1) )

(414) Pr {linln—)w Ipn(yo y .- yYn—r—1,Y 5 0, Y - pl > G} =0

for every fixed y®, - - -, y*?, it follows that (4.11) is true: thus we have
(415)  [facen " dF (yo, -+ s Yaera |40, - ¥y — [0, (5" )]

It remains now only to prove that the entire integral in (4.9) converges to
(4.12).
This will follow by the Lebesgue dominated convergence theorem once we
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show that the integrand is absolutely bounded by an integrable function. This is
easy since the left hand side is bounded by |¢,(y"*")| and |¢,(y"*")]| is in-
tegrable as follows

(4.16)  [4|(1 = plasfi(y"y®, -+, y)
— parfo(y™ P, Ly de £ (1 = plas + .

Thus the sequence T* = {t,*} given by (4.2) is asymptotically optimal if we
can exhibit a sequence {p,} satisfying the required properties.

To this end let Fy(y) be the conditional distribution of Y, given 8, = 6. (Note:
the { Y.} all have the same marginal distribution.)

Let h(x) be any function satisfying

(4.17) [ah(z) dFy(z) =6, (6=0,1),
for example (following Robbins ([3], p. 198),
(4.18) h(z) = [1 — Pyo(B)]/[P1(B) — Py(B)] if zeB
= [~ Po(B)]/[P:(B) — Po(B)] if z¢B
where B is any event for which Po(B) = P,(B).
Now define,

Pa(Yo, =5 ¥n) = (n 4 1)7 200 h(ya).
Thus since the y’s are marginally identically distributed with,
Elh(y:)] = p.

Hence we must show that Pr {lim,.. #, = p} = 1, i.e., (strong convergence).
For if that is true then for any fixed y*, - - -,y we haven™ D X1 h(y®) — 0
as n — «, so that convergence still holds for the sequence,

ﬁn(yo y 00y Ynera1, y(l); ] y(r-f—l))’

and furthermore the convergence will hold if we restrict p, to satisfy
pn =10 if p. <0
= Pn f 0sp. =1
=1 if g > 1,
e.g., if Fy(y) is Gaussian with mean 6. Then we can set A(y) = y, i.e.,
Po= (n+ 17 2oy

will satisfy the requirements after we prove the strong convergence of , .
In order to prove the strong convergence we need the following lemma (which
must be well known) which we prove since we have no reference for the lemma.
LeEvMA 4.1. Let {Y,} be an r-dependent strictly stationary process, and let h(Y)
be any function with E[[h(Y)|] < «. Then
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[A(Yo) + h(Y1) + -+ + h(Ya)])/(n + 1) —as E[R(Y)].
Proor. From the ergodic theorem we know that
[R(Yo) + h(Y1) + -+ + W(Y,)]/(n + 1) =, E*[R(Y)]

where A is the invariant os-field and expectation is conditional with respect to 4.

Now A < CwhereC = ) @0 B, with B, as in Definition 2.1, is the tail o-field
of the sequence {Y,}.

Thus to prove the lemma we must show that, a.s., C = (4, ¢) i.e., the whole
space and the null set. This follows from the fact that C is independent of itself,
i.e., if D is any event P(D-D) = P(D)-P(D) hence D is A or ¢. First we have
that C is contained in the tail o-field of the sequence {Y,}. But C, is independent of
Bajriaforalln = 0,1, 2, --- . By the known result that limits of independent
o-fields are independent it follows that C is independent of the os-field generated
by (Yo, Y, ---) but as above it is also contained in that o-field, hence the lemma
follows.||

COROLLARY. P, as defined above converges a.s. to p.

This completes the proof of the asymptotic optimality of the sequence
T* = {t,*} as defined above.

In the remaining sections we will generalize most of these results and discuss
applications to signal detection in correlated noise.

5. Extensions and remarks.

A. rth order, discrete parameter Markov processes with general state space. The
first extension of the above results will be to rth order, discrete parameter Markov
processes, with general state space. There is clearly no difficulty in carrying
through the above results to this Markov case if one assumes that the initial dis-
tribution is the stationary absolute probability distribution. To sketch this proof
we observe that the distribution of Y, given the past depends only on the r
previous observations, thus (4.5) holds. The remainder of the results are by
formal manipulation, hence all results hold up to Lemma 4.1. But this lemma can
be replaced by Theorem 6.1, (See Doob, [1], p. 219) if one assumes in addition
that

(a) There is only one ergodic set

(b) Doeblin’s hypothesis: (Hypothesis D, Doob)

Let &4 be the Borel field of A sets, and let p(¢, 4), ¢ € A, A € T4 be a probability
measure for fixed { € A, and p™ (¢, A) its »th iterate. Then there is a (finite-
valued) measure ¢ of sets A € F, with Y.(A) > 0, aninteger» = 1,and ane > 0,
such that
(5.1) P, A) S1—¢ if $(A) S e

B. Let 6, assume a finite number of values. The extension to this case follows

immediately by direct analogue to Robbins’ (see [4], p. 5) Corollary 1. This result
also follows for arbitrary loss functions satisfying

D tet Lay(0)ps < oo
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where p; is the a priori probability of 6 assuming the sth value; we suppose there
are n-possible values. The only difficulty that occurs in this case is the sequential
estimation of the p;, (¢ = 1, - - - , n). However, it develops that the construction
scheme given by Robbins for this case (see [4], pp. 17-18) also carries through for
the r-dependent stationary case, if we use the finite number of conditional densi-
ties of Y given 0 generate the linear manifold and replace the strong law of large
numbers by Lemma 4.1, (or in the Markov case by the ergodic theorem for
Markov processes) to prove convergence of the estimates.

6. Applications to pulse detection in correlated noise. We will detail applica-
tions only for the simplest case discussed in Sections 3 and 4. Let {Y,} be a
sequence of r-dependent stationary random variables and suppose

Y. =1+ n; if pulse say of unit amplitude is present
= n; if noise alone is present.

It is supposed that the {n.} sequence is r-dependent and strictly stationary
(i.e., noise samples more than r units apart are uncorrelated). Thus the {Y;}
t=0,1,2, ... is r-dependent and marginally strictly stationary, where the
pulse train is random and pulses occur, or do ‘not occur, independently from ob-
servation to observation. If the a prior: probability of no pulse is p, and of pulse
is (1 — p) at each observation and p is unknown, we can use the procedure of
Section 4, in particular the sequence T* = {t,*} as given by (4.2) and (4.3)
which we proved was asymptotically optimal. For the estimating function we can
use h(y) = y. If the noise is Gaussian the conditional densities have a convenient
form as can be obtained from modifying expression (7.4.25) in Wilks [7] for
example.

Furthermore, all remarks in Section 5 also carry over to these applications.
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