OPTIMAL STOPPING AND EXPERIMENTAL DESIGN!

By Gus W. HaGcGgsTROM
Unaversity of Chicago

1. Introduction and summary. The problem of finding Bayes solutions for
sequential experimental design problems motivates the study of the following
type of one-person sequential game. If the game is stopped at any stage a, the
loss to the player is the value of a random variable (rv), say Z, . If the player
chooses to continue the game, he can select the next rv to be observed from a class
of rv’s available at that stage, thus bringing the game to one of the stages suc-
ceeding stage a. (The class of all stages can be pictured as a “tree”.) At this stage
the player can again choose to stop, accepting the value of the chosen rv as his
loss, or he may continue by selecting one of the class of rv’s now available for the
next observation. The player is required to stop sometime, and his decisions at
any stage must depend only on information available at that stage.

A model for this situation is given in Section 4. Control variables, which cor-
respond to stopping variables in the usual formulation of sequential games, are
defined which can be used by the player to decide whether to stop or not at any
stage and, if he continues, which rv to observe next. A general characterization
of control variables that minimize expected loss is given, and existence of such
optimal control variables is proved under conditions applicable to statistical
problems. The application to finding Bayes solutions to sequential experimental
design problems is given in Section 5.

As a preliminary to the discussion on control variables, Section 3 provides a
study of the theory of optimal stopping variables. Let {Z,, F,, n = 1} be a
stochastic process on a probability space (2, F, P) with points w. A stopping
variable (sv) is a rv ¢ with values in {1, 2, .-+, o} such that ¢t < « a.e. and
{t = n} ¢ F, for each n. For any such sv ¢, a rv Z, is defined by

Zu(w) = Zu(0), if t(w) =mn,

= o, if #(w) = .

It is convenient to think of Z, as the loss after n plays in a one-person sequential
game and to consider the o-field F, as representing the knowledge of the past
after n plays. The problem of finding a strategy for stopping the game to mini-
mize the expected loss corresponds to finding a minimizing sv, i.e., one which
minimizes EZ; among the class of all sv’s &.
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8 GUS W. HAGGSTROM

The main results in Section 3 are new characterizations of Snell’s solution in
[12] to the problem of optimal stopping which generalized the well-known Arrow-
Blackwell-Girshick theory in [I]. Under the assumption that there is an in-
tegrable rv U such that Z, = U a.e. for each n, Snell showed that when a mini-
mizing sv ¢t* exists, it can be defined as the first integer j such that X; = Z; (or
o if no such integer exists) where {X,, F,, n = 1} is the maximal regular
generalized submartingale relative to {Z,, F,, n = 1}. Under the additional
assumption that {Z,, n = 1} is an integrable sequence, we now show that the
rv’s X, can be further identified as

X, = essinf,.r, E(Z;| F.) a.e.,

where T', is the class of sv’s ¢ such that ¢ = n. It follows that if there is a set 4, in
F, for each n such that
(i) Zn < E(Z,| F.) a.e. on A, for each ¢t in Tyy1, and

(ii) Z, > essinfyr,,, E(Z,|F,) a.e. on the complement A,
then the minimizing sv ¢* defined above is such that, for almost all points w,
t*(0) = nif and only if w e 4, — U 4;.

This comes very close to stating that the player of the sequential game above
should stop playing after n plays if and only if there is no continuation (i.e., sv
in Thnyy) having conditional expected loss given the past which is less than the
present loss Z,(w). Unfortunately, such an interpretation is not valid in general
since it is equivalent to stopping the game after n plays if and only if

Zn(w) é infggrn+l E(Zt | F,.)(w).

The function infi.r,,, E(Z;| F,) not orly may not be measurable, but also in
many cases it may be changed almost at will by choosing different versions of the
conditional expectations involved. On the other hand, the interpretation above is
valid, as is shown in Section 3, for the case where each o-field F, is generated by
finitely many discrete rv’s.

Section 3 also contains a reasonably general development of the theory of
minimizing sv’s, including a more direct proof of Snell’s result using the defi-
nition X, = essinf.r, E(Z,| F,). Hlustrations are given and comparisons are
made with the approaches used by Arrow, Blackwell, and Girshick in [1] and
Chow and Robbins in [4] and [5].

2. Preliminaries. The following definitions are relative to a probability space
(@, F, P) with points w. A collection {Z, , F,, a ¢ A} where (4, <) is a partially
ordered set is said to be a stochastic process if F, is a a-field of F-sets for each a in
A, Z,is arv (with values in the extended real number system) which is F,-meas-
urable, and F, C F;, whenever a < b. A submartingale is an integrable stochastic
process {X,, Fa, a ¢ A} such that X, < E(X,| F.) a.e. whenever a < b; it is
called a martingale if X, = E(X, | F,) a.e. whenever a < b. If the integrability
requirement in this definition is relaxed to the condition that EX, exist for each a
in A, such processes are referred to as generalized submartingales and generalized
martingales.
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For the case where 4 is the set of positive integers, stochastic processes will be
denoted, for example, by {Z,, F., n = 1}. For this case a submartingale or
generalized submartingale {Y, , F, , n = 1} is said to be regular if for any sv ¢,
EY,existsand E(Y, | F,) = Y, a.e. on {t = n} for eachn = 1. A maximal sub-
martingale (maximal regular submartingale)’ relative to a stochastic process
{Z,,F.,n = 1} is a submartingale (regular submartingale) {Y,, F., n = 1}
such that Y, < Z, a.e. for each n and, if {V,, F,, n = 1} also satisfies these
properties, then V, < Y, a.e. for each n. Clearly, any two maximal (maximal
regular) submartingales relative to the same stochastic process must coincide
a.e., and we shall refer to ‘““the’” maximal (maximal regular) submartingale rela-
tive to a process. Maximal (maximal regular) generalized submartingales are de-
fined similarly by substituting “generalized submartingale” for “submartingale”’
in the preceding definition. Snell proved in [12] that if there is an integrable rv U
such that Z, = U a.e. for each n, both the maximal generalized submartingale
and the maximal regular generalized submartingale relative to {Z, , F, ,n = 1}
exist.

The essential infimum of a family of rv’s {Y,, ¢t ¢ T}, denoted by ess infi.r ¥,
is defined as any rv X such that '

(a) X < Y,ae. foreach tin T, and

(b) if Z is any other rv satisfying (a), Z < X a.e.

It is well-known that such a rv X always exists and can be taken as the infimum
of some countable subset of { Y, , t ¢ T'}. Clearly, any two essential infimums must
coincide a.e. Also, if S < T, then ess inf;.s ¥; = ess infir Y. a.e.

LemMa 2.1. For any family of tv’s {Y, te T},

(a) if U is a nonnegative finite-valued rv,

ess inf,.r UY; = Uessinfi,r Y, a.e.;

(b) if Z is a rv such that Z < Y, a.e. on a set A in F for each t in T, then
Z < essinfir Y;a.e.0n A;
(¢) if T = Ui T, then
ess inf;.r Y; = min; (ess inf,.r; Y;) ae.

ProoF. (a) Since UY; = U essinf;.r Y a.e.foreachtin T, also ess inf;.r UY, =
U ess infi.r Y. a.e. The opposite inequality also holds because, from the repre-
sentation ess inf;.r ¥; = inf; ¥, for some sequence {t; , k = 1} from T,

U ess infir Y, = inf, UY,, = essinf.r UY; a.e.

(b) By hypothesis, I,Z < I1,Y.a.e. for each ¢tin T, where I, denotes the indi-
cator function of the set A. Therefore, by part (a),

I.Z < essinfir I.Y, = I essinfi.r Y, a.e.

which implies the result.
(¢) This follows easily from the representation of the essential infimum used
in part (a).
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3. Minimizing stopping variables. Given an integrable stochastic process
{Z.,F,,n = 1} on a probability space (2, F, P), the problem is to find a sv t*,
if it exists, which minimizes EZ, among the class of all sv’s ¢. It will be assumed
throughout that Z, = 0 a.e. for each n, but the case where there is an integrable
rv U such that Z, = U a.e. for each n can also be handled, and all the theorems
below hold under this assumption.

We shall let {X,, , n = 1} be the sequence of rv’s defined by

X, = essinf,r, E(Z,| F.),

where T, denotes the class of sv’s ¢ such that { = n. By the properties of the
essential infimum, we can assume that X, = inf, E(Z,, | F,) for some sequence
{tx , k& = 1} from T, ; therefore, we can also assume that X, is F,-measurable.
With this assumption we shall show that {X,,, F, , » = 1} is a nonnegative sub-
martingale. Clearly, X,, = 0 a.e. since E(Z, | F,) = 0 a.e. for each ¢t in T', . Also,
X, is integrable for each n since X, < Z, a.e., as is seen by considering the sv in
T, having constant value n. The submartingale inequality is implied by part (c)
of the following lemma.

LemMmA 3.1. For each posttive integer n,

(a) X, = min [Z,, essinfrr,,, E(Z,| F.)] a.e.;

(b) E(Xp41| Fn) = essinfir,,, E(Z,| F,) a.e.;

(¢) X, = min [Z, , E(Xat1| Fa)] ace.

Proor. (a) Denoting ess infi.r,,, E(Z, | F,) by V, we have that X, < V
a.e. since Tp O Tpu1 . Since we already have X, =< Z, a.e., this gives
X, < min (Z,, V) a.e. To prove inequality in the opposite sense, let s be any sv
in T, and define s’ = max (s, n + 1). Then s" ¢ T,;1 and, setting 4 = {s = n},
we have

E(Z,|F,) = E(IuZn+ 1420 | Fo) = 14Zn + InE(Zy | Fy)
= 1,7, + I,V =2 min (Z,,7V) ae.

Hence, X, = min (Z,, V) a.e.

(b) Forany svtin Toy1, BE(Xup1| Fn) S E(B(Zi| Fuy) | Fn) = E(Z: | Fr)
a.e. It follows that E(X,41 | F.) < V a.e. To prove the opposite inequality, we
first note that X,,1 = infy E(Z,, | Fay1) a.e. for some sequence {# , k = 1} from
T',+1 where t, is the sv having value n + 1 for all points w. Next, we define a new
sequence {s , k = 1} from T4, as follows:

Sl(w) = tl(w) for all w;
for k> 1, sp(w) = s1(w) on Ay
tk(w) on Akl,
where A, = {E(Zs,_, | Fu1) £ E(Zy, | Fny1)}. Then
E(Zsk | Fn+1) = E(IAstk—l + IAk’Ztk l Fﬂ+1)
= I, B(Zsy_, | Fopr) + 14 E(Zs, | Frpa)
= min [E(Zs,_, | Fur1), E(Zy, | Fap1)] ace.

I
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This implies that {E(Zs, | Fat1), k = 1} is a nonincreasing sequence a.e. and that
Xop1 = infy E(Zy, | Fay1) = limy E(Z,, | Fry1) a.e. Also, this sequence is domi-
nated above a.e. by an integrable rv; namely, E(Z;, | Fat1) = Zn41 . Therefore,

E(Xp1 | Fo) = E(limy, E(Zs, | Faya)| Fa)
= lim; E(Z,, | Fa)
> infy, B(Z,, | Fa) 2 V ae.

(¢) This follows immediately from parts (a) and (b).
THEOREM 3.1. Let t* be the rv defined by

(w) =k if Xiw) <Zjw) for j<k Xi(w)=2Zw)
= w if X;(w) < Zj(w) foral j.

(a) Ift* < = ae., thent 18 amzmmzzmg sv; also, X1 = E(Z | F’l) a.e.

(b) If a minimizing sv ¢ exists, then t* is also a minimazing sv, and t* < ' a.e.

Proor. (a) Since E(Z;| F1) = X, a.e. for each sv ¢, it suffices to show that
X, = E(Z; | Fi1) a.e.; this would imply that X; = E(Z | Fl) < E(Z, |F1)a e.
for each t, and taking expectatlons would then give us that ¢* is a minimizing sv.
We shall first prove by induction that for each integer n = 1,

(1) X1 = E(I(t‘<n)Zt‘ + I(t‘gn) Xn | Fl) a.e.

This clearly holds for n = 1. Also, if it holds for any integer =, it follows forn + 1
because, by the definition of ¢* and Lemma 3.1 (¢),

E(I(t'gn)Xn l Fl) = E(I(t'=n)Zn + I(t'>n}E(Xn+l | F,,) l Fl)
= E(I(tt=n)Zn + I“o>an+1 | Fl) a.e.

By the nonnegativeness of the sequence {X,,n = 1}, it follows from (1) that
for each n, X1 = E(I;s<nyZs | F1) a.e. Since Z;» = 0 a.e., we can take the limit
as n becomes infinite and use the monotone convergence theorem for conditional
expectations to obtain that X; = E(Z | Fy) a.e.

(b) It suffices to show that X, = Z a.e. on the set A, = {¢' = n} for each
n > 1, because this would imply that t* < n a.e. on A, , thus guaranteeing that
t* <t < » a.e. We first claim thatif ¢t ¢ T, then Z, < E(Z,| F,) a.e.on 4,
If this were not the case, the set B = A, n {Z, > E(Z; ] F,)} in F’ would have

positive probablhty and the sv s defined by setting s = It + It would satisfy
= E(IsZ, + IsnZy) = E(I:E(Z,|F,) + InZy)
< E(IBZV + IBIZg/) = EZ;I 5
contradicting the assumption that ¢’ is a minimizing sv. Hence, we now have
Z. < E(Z.| F,) a.e.on A, for each t in T, . By Lemma 2.1(b) this implies that
Z. < X,ae.onA,.SinceZ, = X, a.e,, the result follows.
CoroLLARY 3.1. Iflim, Z, = « a.e. , t* s a minimizing sv.

Proor. Snell proved in [12] that a m1n1m1z1ng sv exists if lim, Z, = « a.e.
By part (b) of the theorem, this implies that ¢* is a minimizing sv.
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TuEOREM 3.2. If thereis a set A, in F, for eachn = 1 such that

(i) Z. £ E(Z,| F,) a.e. on A, for each t in T,.+1,and

(ii) Za, > ess infier,,, B(Z,| F,) a.e. on A,
then the v t* defined in Theorem 3.1 is such that, for almost all points », t*(w) = n
ifand only if we A, — U A

Proor. Condition (i) and Lemma 2.1(b) give us that

Zn < essinfyr,,  E(Z,| F,) a.e.on4, .

Therefore, by (ii) and Lemma 3.1(a),X, = Z,a.e.onA4, and X, < Z,a.e.on 4,
The conclusion follows by the definition of ¢*.

This theorem provides a technique for finding minimizing sv’s without reference
to the sequence {X,, n = 1}. Illustrations will be given at the end of this sec-
tion.

In typical applications there is a sequence of rv’s Y1, ¥,, -- - defined on @,
and F, is the o-field generated by Y1,Y,, - , Y. .AlsoZ, = g, (Y1, Vs, -+, ¥,)
where g, is a Borel-measurable function on Euclidean n-space. If the rv’s
Y:, Yy, - - are discrete, inverse images of points in n-space under the random
vector Y* = (Yy, Y, ---, Y,) provide a countable partition of the space Q
such that F, is the class of all unions of sets in this partition. Since both Z,
and E(Z,| F.) are F,-measurable, these functions must be constant-valued on
each element of the partition. The values of Z, and E(Z, | F,) for any sv ¢ in
T'i1 can be compared for each element in the partition (or, equivalently, for
each value of Y™), and the set 4, in Theorem 3.2 can be taken as the union of
sets @ in the partition for Which Z. < E(Z;| F,)onQ foreach tin T,y; . There-
fore by Theorem 3.2 the rv ¢t* can be characterized as follows: For any point w,
t*(w) is the first integer n such that Z, (w) = E(Z,| Fa)(w) for every sv ¢ in
Tsta - This justifies, at least for this case, the statement that stopping should
occur at the nth stage of a sequential game if and only if no continuation exists
having conditional expected loss given the past which is less than the present
loss, the value of Z, .

TurorEM 3.3. Let {t,*, n = 1} be the sequence of rv’s defined by

tn¥(w) = k, if Xi(w) = Zi(w) where k =n
and Xj(w) < Zj(w) for n<j<k,
= o if Xij(w) <Zj(w) forall j=n.

(a) If t.* < o a.e., then t,* is a minimizing s.v. for the class Th ;also, X, =
E(Z.»|F,) a.e.

(b) If t,* < = a.e. for each n = 1, the sets {An , n = 1} defined by A, =
{Zn = E(Zi,,,+| Fr)} satisfy the conditions of Theorem 3.2.

Proor. (a) This becomes a special case of Theorem 3.1(a) when the original
stochastic process {Z, , F. ,n = 1} isreplaced by {Z;, F;,j = n}.

(b) From part (a),

E(Xn+l | F,,) = E(E(Zt”+lt l Fn+1) I F,.) = E(Zt,,_H‘ ' F,.) a.e.
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Therefore, by the definition of 4, and Lemma 3.1(b),
Z, < ess infier,,, E(Z:| F,) a.e. on A,, and
Zy > ess infier,,, E(Z,| F,) a.e. on A,

These conditions imply those of Theorem 3.2.

Suppose for the moment that lim, Z, = « a.e. Just as this implies that
t* < o a.e. (as in Corollary 3.1), it also implies that t,* < o a.e. for each n.
Therefore, under this assumption, part (b) of the above theorem justifies the
following characterization of the minimizing sv ¢*: Stop at the nth stage if and
only if the present loss, the value of Z, , is less than or equal to the conditional
expected loss for the procedure which takes at least one more observation and
makes the best use of all future observations.

The next theorem provides necessary and sufficient conditions for a sv to be a
minimizing sv. These conditions are similar to those given by Chow and Robbins
in [4].

THEOREM 3.4. A sv i is a minimizing sv if and only if the following conditions
hold for each n = 1:

(i) Zn E’(Zt|F)ae on {t’ —n}foreachtznT,,+1,

(i) Zn = ess infir,,, E(Zt | F,) a.e. on {t' > n}.

Proor. Suppose that ¢’ is a sv satisfying (i) and (ii). Then, by (i) and Lemma
2.1(b), Z, < ess infir,,, E(Z:| F,) a.e. on {t' = n}. It follows by (11) and
Lemma 3.1 that X, = Z, a.e. on (' =n} and X, = E(Xpy1 | F)ae.on{t’' > n}.
From these properties of ¢’ the proof that ¢’ is a minimizing sv proceeds exactly
as the corresponding proof for ¢* in Theorem 3.1(a).

Conversely, if ¢’ is a minimizing sv, then (i) must hold, as was shown in the .
proof of Theorem 3.1(b). To show that (11) holds, it suffices to show that Z,
E’(Z | F.) a.e. on {t' > n} where s = max (' ,n + 1).Let A = {Z, < E(Z, |F ),
t' > n} and assume, contrary to the assertion, that P(4) > 0. If we set s =
nl, + It then s is a sv and

EZSI = E(IAZ,. + IA'Zu) < E(IAE(Zlen) + IAIZV)
= E(IAZs + IA'Zt') = E(IAZtl + IA/ZtI) = EZ;I .

However, this contradicts the assumption that ¢’ is a minimizing sv, thus com-
pleting the proof.

Next we shall show the relationship between the theory above and that given
by Snell in [12]. Where we have used the stochastic process {X,, F.,n = 1}
above in characterizing minimizing sv’s, Snell uses the maximal regular gen-
eralized submartingale relative to {Z,, F., n = 1}. The next theorem will
show that these processes coincide under our assumption that each Z, is in-
tegrable. (With this assumption the word ‘‘generalized” above becomes un-
necessary.)

THEOREM 3.5. The stochastic process {Xn. , Fu , n = 1} is the maximal regular
submartingale relative to {Z, , F, , n = 1}.
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(This theorem and Lemma 3.1(c) were proved independently by Y. S. Chow.
He has also shown that our assumption in these theorems that inf, Z, be in-
tegrable can be replaced by the condition that sup, Z, be integrable.)

Proor. Let {Y,, F,,n = 1} be the maximal regular submartingale relative
t0 {Zn, Fa,n = 1}. Then, forany tin T, , Y, < E(Y,| F.) £ E(Z,| F,) a.e.
Hence, Y, = X, a.e. Since X, is integrable, to show that X, = Y, a.e., it suf-
fices to show that EX, < EY, . We already have that X, < E(Z,|F,) a.e.
for each tin T, , so that EX, < infi.r, EZ, . Since EY, = inf,.r, EZ, (Theorem
3.6 of [12]), this completes the proof.

In [12] the assumption that each rv Z, is integrable is not used. Our assump-
tion could have been relaxed slightly to require only that for each n there exist
a sv ¢ in T, such that EZ, < . It is not known whether Theorem 3.5 holds
without some such assumption.

To relate the results above to those given by Arrow, Blackwell, and Girshick
in [1], consider the case where the stochastic process {Z, , F,,n = 1} is “trun-
cated” to the finite process {Z,, Fn,n = 1,2, --- | N}, which we shall now
denote more concisely by {Z,, n < N}. The theory above clearly applies to
truncated processes with only minor notational changes. Letting {X,", n < N}
be the process defined by X," = ess infi.r, E(Z,| F,) where T, now denotes
the class of sv’s ¢ such that n £ ¢t £ N, we clearly have that Xy" = Zy a.e.
Also, by Lemma 3.1 (c), X, = min [Z,, E(Xny1| Fa)] a.e. for n < N.Hence, the
sequence {X,", n < N} can be computed by recursion backwards. The sv ¢*
defined by stopping the first time that X," = Z, is a minimizing sv by Theorem
3.1.

The above result was proved by Arrow, Blackwell, and Girshick in [1]. Their
method of attack for the nontruncated case was to take the limit of the truncated
procedures. First the sequences {X,", n £ N} are defined for each N = 1 as

follows (compare above):
Xy = Zy, X" = min [Z,, E(Xn1 | Fa)] forn < N.

It is easily seen that {X,", n < N} is the maximal submartingale relative to
{Z.,n < N}. Since {X,"*", n < N} is another submartingale dominated above
by {Z. ,n £ N}, this implies that X," = X,"* a.e. for n £ N. Following [1], we
now let X, = limy X," for each n. Then {X, ,n = 1} is again a submartingale
since

X, = limy min [Z,, E(X¥1|F,)] = min [Z,, E(Xuu|F.)] ace.

To see that it is actually the maximal submartingale relative to {Z,, n = 1},
let {V. ,n = 1} be any other submartingale such that V, < Z, a:e. for eachn = 1.
Since {V,,n < N} is a submartingale such that V, < Z, a.e. forn £ N, and
{X.", n £ N} is the maximal submartingale relative to {Z, ,n < N }, we have
that V,, < X" a.e. With this holding for every N = n, also V, < limy X,” = X,
a.e.

It was shown in [1] that if Z, = r, + ¢, where r, and ¢, are nonnegative F,,-
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measurable rv’s such that 7, < K for all n and {c. , » = 1} is a nondecreasing
sequence such that lim, ¢, = «, then stopping the first time that X, = Z,
gives a minimizing sv. Note that Corollary 3.1 proves the existence of a minimiz-
ing sv in this case. Also, since {¢, , n = 1} is a submartingale, it follows that
¢n < X, £ ¢, + K so that X,, = X; — K whenever m = j. Therefore, the
maximal submartingale is regular under these conditions by Corollary A.1(b)

of [12].
To see that the minimizing sv cannot always be characterized in terms of the
maximal submartingale, consider the case where Y;, Y,, --- are independent

rv’son (2, F, P), each with distribution given by P(Y; = 0) = P(Y; =1) = }.
If we define Z, = 2"Y,Y, --- Y, for each n and let F, be the o¢-field generated
by Y1, Y, -+, Y., then it is easily checked that {Z,, F,, n = 1} is a mar-
tingale. Therefore, the maximal submartingale relative to {Z,, n = 1} in this
case is again {Z, , n = 1}. If stopping occurs the first time that the given process
and the maximal submartingale coincide, this would always be at the first stage
and the expected loss would be EZ; = 1. However, the maximal regular sub-
martingale relative to {Z, ,n = 1} is obtained by setting X, = 0 for each n. To
see this, use the representation given by X, = ess infi.r, E(Z,; | F,) and con-
sider the sv in T, which stops the first time after stage n that Z; has value 0
for some integer k. The minimizing sv ¢t* as given by Theorem 3.1 (stop the first
time that Z, = 0) has expected loss EZ;« = 0.

To illustrate the technique of finding a minimizing sv by applying Theorem
3.2, we shall now consider two one-person games which have been treated in
[4], 15], [6], [9], and [11]. In both games the player can make observations at a
positive cost ¢ per observation on a sequence of independent, identically distrib-
utedrv’s Y1, Y, - - - . In the first game if the player stops at stage n, he receives
the value of the rv M, = max (Y:, Y., ---, Y,) so that his net loss is the
value of Z, = ¢n — M, . In the second game if the player stops at stage n, he
receives the value of Y, and his net loss is the value of W, = e¢n — Y, . The
problem of finding stopping procedures for these games to minimize the expected
loss amounts to finding minimizing sv’s for the processes {Z,, F,,n = 1} and
{W., F,, n = 1} where F, is the o-field generated by Y;, Yy, -+, ¥, . In
the solutions given below it is assumed that there exist real numbers a, b such
that @ < Y, < b for all n; more general cases are treated in the references cited
above.

First note that if G denotes the common distribution function of the rv’s
Yi,Ys, -+,

Zn — E(Zny1 | Fo) = E(—Znys+ Za | Fo) = E(Mpy1— Mo | Fa) — ¢
= [(y — M,)"dG(y) — cae.

If a is now defined by [ (y — «)* dG(y) = ¢, then
(2) Zn £ E(Zuy1 | Fn) ae.ond, = {M, = o},
(b) Zn > E(Zni1 | F,) ae.on 4,
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We shall show that this sequence {4, ,n = 1} satisfies the conditions of Theorem
3.2. Condition (ii) clearly holds by (b). To see that condition (i) also holds,
observe that since A, C A,y;for allj = 0 the collection {I4,Zv;, Furi,j = 0}
is a submartingale by (a). Since Z, = Z, — (b — a) whenever n = m, this
submartingale is regular by Corollary A.1(b) of [12] so that for any ¢in T, ,

IA”Zn é IAnE(Zg | F,,) a.e.,

and this implies condition (i). By Theorem 3.2 t* can now be described as the
first integer j such that M; = « or, equivalently, as the first integer j such that
Y; = a. Since P(Y, > a) > 0 for each n by the definition of «, it is clear that
t* < « a.e. Therefore, t* is a minimizing sv by Theorem 3.1.

For the second game as determined by {W,, F,, n = 1}, since W, = Z,
for each ®, we have that for t* defined as above and for any other sv ¢,

EW: g EZ; g EZ;* = EW:‘ .

Hence, ¢* is also a minimizing sv for {W,, F,, n = 1}; i.e., an optimal proce-
dure again is to stop the first time that ¥; = « for some j.

As a second illustration, consider the problem of testing the hypotheses
Ho:po, Hy:py where Yy, Y., --- are independent, identically distributed rv’s,
each having density p, or p; with respect to a o-finite measure on the line. If
there is an a priort probability that H, is true and if the cost per observation is
constant, the sets A, of Theorem 3.2 can be taken as complements of sets of the
form

{a < T pa(Y2)/po(Y )] < b}

for suitable choices of constants a, b. This will be proved in a more general con-
text in Section 5. The resulting sv is clearly of the type used in the sequential
probability ratio test.

4. Extension to the design case. In the above ‘“‘nondesign case’” we were given
a stochastic process {Z, , F, , a ¢ A} where A is the set of integers. The following
type of problem, which occurs in sequential experimental design, motivates the
extension of the above theory to the ‘‘design case’” where A is a partially ordered
set of a particular type, sometimes called a tree. The problem can be posed as a
one-person sequential game in which, if stopping occurs at stage a, the loss is the
value of a rv Z, , as in the nondesign case. However, one has the option of con-
tinuing the game by observing one of finitely many rv’s which are the ‘“‘successors”
of Z,,88y Za1, Za2, -+ , Lam , Where the choice may depend on all information
available at that stage. If Z,; is chosen (bringing the game to stage a¢) and the
observed value is 2,;, the player may stop the game and accept the loss z,;
or observe one of the successors of Z,;. The over-all goal is to minimize the
expected loss. A model to cover this situation will now be given; however, for
notational convenience it is assumed that there are m successors available at
each stage.
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The following notation will be used:

M : set of integers {1, 2, --- , m},

A : class of finite sequences (a;, az, ---, a;) of elements from M
including the ‘“‘sequence” having no components, which will be
denoted by <,

A : class of infinite sequences (ay , @z, - - - ) of elements from M.

A partial order < is defined on A as follows: If a = (a1, a2, --- ,a;) and b =
(b1,by, -+, b;) are elements of A, thena < bifj < kand a; = b;forall < j.
This is then extended in the obvious way to a partial order < on A u A*. If
a = (m, az, -+, a;) eA and ke M, we shall let ak denote the element
(a1, @z, ---, aj, k); similarly, if b = (by, by, ---) e Au A¥, ab will denote
(aly “rey @, by, b, )

It is assumed throughout that {Z,, F,, a ¢ A} is an integrable stochastic
process on a probability space (2, F, P) where (4, <) is defined as above. We
also assume that Z, = 0 a.e. for each a in A4, although the methods of proof below
also apply with minor changes if there is an integrable rv U such that Z, = U
a.e. for each a.

DEerINITION 4.1. Let ¢ be a function defined on @ with values in 4 u A*.
(The meanings of {(w) = a and {(w) > a are then clear from the partial order
on Au A*) Then t is a control variable (cv) if the following conditions hold:

(i) te A a.e.

(i) for each ain A, the sets {¢ = a} and {t = ak} are elements of F, for each
kin M. .

We shall let To(T...) denote the class of c¢v’s ¢ such that ¢t = a(t > a).

The interpretation of a cv ¢ in the sequential game above is that if {(w) = a
where @ = (a1, az, -+, a;), then the rv’s Zy , Z(ay) y Ziayia) » ** *» Ziarscaneraj)
= Z, are observed in that order, the game stops after the observation of Z, ,
and the loss to the player is the value of Z, . Condition (i) above is a require-
ment that the game stop sometime. An interpretation of (ii) is that at any stage
of the game both the decision to stop and the choice of the next experiment to
perform must depend only on information available at that stage. The problem
is to find a cv ¢ to minimize EZ, where Z, is defined below.

DEeFINITION 4.2. For any cv ¢, Z, is the rv defined by

Zy(w) = Zg(w), if t(w) =a where acA,
= w, if t(w)ed®
We shall let {X,, a € A} be the collection defined by
X, = essinfir, E(Z:| Fa).

Asin the corresponding situation for the nondesign case (see the second paragraph
of Section 3), we can assume that X, is F,-measurable for each a in A. Also, it
is easily verified that 0 < X, £ Z, a.e., so that {X,, F., a ¢ A} is a nonnega-
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tive integrable stochastic process. That it is, in fact, a submartingale will follow
from Lemma 4.1(c) below.

Lemma 4.1. For any a in A,

(a) Xo = min (Z,, ess infir,, E(Z,| F.,)] a.e.,

(b) essinfir,; E(Z,| F,) = E(X,;| F.) ae.,

(¢) Xo = min [Z,, min;y E(X,; | F.)] ae.

Proor. (a) Let V = ess infer,, E(Z. | F.). The proof that X, < min (Z,, V)
a.e. parallels the proof for the nondesign case (Lemma 3.1). To show that also
X4 2 min (Z,, V) a.e., let s be any ¢v in 7', and define s’ in T o as follows:

s'(w) = s(w), if s(w) > a,
= al, if s(w) = a.

Then proceed as in the earlier case.

(b), (¢) Since To, = UZ%, T.;, we have from Lemma 2.1(c) that
V = minjey V; a.e. where V; = ess infi.r,; E(Z,| F,). Hence, (c) follows im-
mediately from (a) and (b). The proof of (b) parallels the proof of Lemma 3.1(b)
and is omitted.

In the theorem below a c¢v ¢* will be defined corresponding to the following
strategy in the game described above. At any stage a beginning with a = <,
if Xo(w) = Zi(w), the game is stopped (i.e., t*(w) = a) and the loss to the
player is Z,(w). If X.(w) < Z,(w), the player continues the game by observing
the value of Z,. provided that w ¢ B(ak) where

B(ak) = {E(Xa | Fo) = minjey E(Xo; | Fa),
E(Xoi | Fo) > minjy E(Xa; | Fa) for 1 < i < k)3

by Lemma 4.1(c) this is equivalent to observing Z, next if k is the first integer
such that X.(w) = E(Xa | Fs)(w). This brings the game to stage ak and the
procedure begins anew, i.e., stopping occurs if Xo(w) = Za(w), etc. In proving
the optimality of this strategy (assuming that t* & 4 a.e.), the following notation
will be convenient: If a = (a1, a3, ---, a;)ed and i < 7, orif a =
(a1, a2, --+) e A¥ a' will denote the element (a1, az, -+, a;).

TreorEM 4.1. Let {B(a), ac A, a 5 &} be the class of sets defined above, and
let t* be defined as follows:

") =a = (&1, a2, -, @), if weB(a™) and Xui(w) < Zoi(w)
Jor 0=2i<j, and X,(w) = Z(w);
= (t,a, ), if weB@@"") and Xoi(w) < Zgi(w) for all 1.

If t* ¢ A ae., then t* is a minimizing cv, i.e., EZ;« = inf,,.TQ EZ,. Also,EZ .
= EXQ .

Proor. As in Theorem 3.1(a) in the nondesign case it suffices to show that
EZ.w = EXy . Let A, denote the set of those elements in 4 having exactly n
components, e.g., Ao = {f}. We shall write t*(w) < A4, below if t*(w) < afor
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some element @ in 4, . First, we shall prove by induction that for each n = 0,
Xg = E(LircanZir + Daean LivsaXa | F) ace.

This clearly holds for n = 0. If it holds for some integer =, it also holds for n + 1
because, by the definition of t* and Lemma 4.1(¢),

E(2acan Iz Xa | )

= B( D aean LivmarZa + Doacan 2oierr Livosaiy B(Xai | Fa) | Fi)
E(IimeanZes + Zaf54n+l E(LirzainXoj | Fa) | Fg)
= E(I(pseapyZoe + men“ Lz Xy | F) ace.

The rest of the proof proceeds as in Theorem 3.1(a).

Note that the counterpart of Theorem 3.1(b) has not been stated as part of
the preceding theorem. The difficulty here is that ¢* may “choose the wrong fork
in the road” as the following example illustrates. Let F, = F = {, Q} for all
a in A where A4 is such that m = 2. Define Z,, to be the constant function 0 on
Q; otherwise, define Z, to be identically equal to 1/(n + 1) if a ¢ A, . Then ¢*
always has the value (1,1, 1, - - -) and is not a cv, but the ¢v ¢’ identically equal
to (m) is a minimizing cv.

TaEOREM 4.2. Suppose that for each a in A, there is a set D, in F, such that

(i) Zs £ E(Z,| F,) a.e. on D, for each t in T,, , and

(i) Z, > ess infir,, E(Z;|F.) ae. on D,

Then the cv t* defined in Theorem 4.1 satisfies the following condition for almost
all points w: If t*(w) = a, then

t*(w) =a, if weDa,
>a, if weD,.

Proor. The proof follows from Lemma 4.1 in the same way as the correspond-
ing proof in the nondesign case (Theorem 3.2).

Suppose that the function ¢* defined in Theorem 4.1 does not satisfy the con-
dition that ¢* ¢ A a.e. and therefore is not a cv. Just as the process {X, , F,,
n = 1} can be used to find “e-good” sv’s in the nondesign case (see [12]), we
would like to state that the process {X,, F,, ae A} can be used to obtain
e-good cv’s by choosing experiments at each stage as in Theorem 4.1 but stopping
the first time that Xo.(w) = Zao(w) — €. The difficulty is that our procedure for
breaking ties in choosing the next experiment to perform may lead to observing a
sequence of Z,’s which never get close to the corresponding X,’s. Forexample,
suppose that

(i) Fo = {&, 2} for all @ in A4,
(i) Z, =1ifa = Jorif ais of the form (1,1, ---, 1),

(iii) Z, = O for all other elements @ in A.

Then X, = Oforallain 4, but t* = (1,1, 1, - - - ). Therefore, along the path of
experimentation dictated by using ¢t*, X, = 0 but Z, = 1.
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The next theorem will show that if {Z,, F,, a ¢ A} satisfies a further hy-
pothesis which is reasonable in statistical applications (and will be illustrated
in the next section), then t* satisfies the condition that t* £ A a.e. and therefore
is a minizing cv.

TaEOREM 4.3. Suppose that the stochastic process {Z,, Fq, a € A} satisfies the
condition that Z, = r, a.e. for each a in A, where {r, ,n = 0} is a sequence of real
numbers such that lim, r, = . Then the function ¢ defined in Theorem 4.1 is a
cv, ie., t* e 4 a.e.

Proor. For any nonnegative integer n consider the set of elements @ in A
such that @ < 4., i.e., the set of those elements in A which have n or fewer
components. Note that a partition of @ is determined by sets of the form { t* = a}
fora < A, and {t* = a} fora e A, . Let F, denote the class of all sets of the
form U,<,, H, where Hy e F, , H, C {t* = a} ifa < A, ,and H, C {t* = a} if
a ¢ A, . Then it is easily checked that F, is a o-field for each » = 0 and that
{F,,n = 0} is an increasing sequence of o-fields.

Next, let {V.,n = 0} be the sequence of rv’s defined by

Vn = I(t‘<A,‘)Xt‘ + ZaeA,, _I(t‘ga)Xa .

We claim that {V, , F. ,» = 0} is a martingale. To see that V, is F,-measurable,
note that V, can be written as a finite sum of terms of the form Is_;X, and
It+50 X, where a < A, . Since each such term is F,-measurable and integrable,
sois V, . By Lemma 4.1(c) and the definition of t*, X, = E(X,; | F.) a.e. on the
set {t* = aj}. It follows that if @ £ A, , so that the class of F,-subsets of {t* = aj}
are also F,-subsets,

LisanXa = Iir3apB(Xoj | Fa) = LiozaiE(Xaj | Frn) ace.
The martingale equality can now be verified as follows:
E(Vaur | Fu) = E(Tuscan,nX oo + Dacan Dient LieszainXai | Fa)
= TincapnXeo + Dcean Doiew Litszan B(Xay | Fa)
= TipecanXeo + Dogeny LivvmarXa + Daean Diene Lo 0t Xa
= IipecanXee + 2aean Ltz Xa
= V,a.e.

Contrary to the statement of the theorem, suppose that t* 2 4 on a set Q of
positive probability. For each a in A, we have that

Xo = ess infer, E(Z, | Fo) = ess infir, E(inf;5n rj | Fa) = inf;z. r; a.e.

This implies that V, = inf;>, 7; a.e. on @ so that lim, ¥V, = « a.e. on Q. How-
ever, since {V,, F,, n = 0} is a nonnegative martingale, lim, V, exists and is
finite a.e. (see [7], p. 319). This leads us to a contradiction, thus completing the
proof.

To obtain a generalization of the Arrow-Blackwell-Girshick theory toinclude
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the design case, suppose that the problem is truncated to N stages, i.e., consider
the finite collection {Z,, F,, a < A,} where {Z,, F,, ac A} is the given
stochastic process and a < Ay again means that a ¢ Ay for some k¥ < N. The
theory above clearly applies to this case after a few notational changes. If
(X", a £ Ay} is the collection defined by X, = ess infier, E(Z, | F,) where T,

is the class of ¢v’s ¢ such that @ < ¢ < Ay, we clearly have that

(1) X" =Z,ae. if acAy,
and by Lemma 4.1(c),
(2) X" = min [Z,, minje E(X2; | Fo)]ae. if a < Ax.

Hence, the collection {X,", a < Ay} can be computed directly from the process
{Zs, a = Ay} by recursion backwards, first using (1), then using (2) to de-
termine X, for a in Ay_1, etc. A minimizing cv for this case is supplied by
Theorem 4.1.

~ Let the collections {W,", a < Ax} be defined for each N = 0 as follows (cf.
(1) and (2) above): '

W =2,, if acAx,
W.Y = min [Z., minj E(WY |F)] if a < Ax.

If we extend the definition of maximal submartingale (in Section 2) in the
obvious way, it is easy to see that {W,", F., a < Ay} is the maximal sub-
martingale relative to {Z,, F,, a < Ay}. By following the corresponding dis-
cussion for the nondesign case, we can show that W,", W,"*', ... is a nonin-
creasing sequence for a in Ay , and if we set W, = limy W,", the resulting process
{Wa,F.,ace A} is the maximal submartingale relative to {Z,, F., a € 4}.

One might wonder when the maximal submartingale {W,, F., a e A} can
be substituted for the process {X,, F,, a ¢ A} in Theorem 4.1 to characterize
minimizing cv’s. In a sense, by the characterization of minimizing c¢v’s above
for the truncated case, this asks the question, “When is the limit of the best
truncated procedures an optimal procedure for the nontruncated case?”” The
example given for the corresponding situation in the nondesign case can be ex-
tended to show that the maximal submartingale cannot always be used and that
some additional condition is needed. The next theorem provides a partial answer
to the question by showing that the stochastic processes {W,, F., a ¢ A} and
{X,,F.,ac A} coincide if a condition is met which holds in statistical applica-
tions and will be illustrated in the next section.

TureoREM 4.4. If {W., F., ac A} is the maximal submartingale relative to
{Zo ,F,,ac A} and if there is a nonnegative integrablerv V such that Wy = W, —V
a.e. whenever a < b, then W, = X, a.e. for each a in A where

X, = ess infyer, E(Z, | Fa).

Proor. Since {W,, F,, ae A} is the maximal submartingale relative to
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{Zoa,Fo,ae A} and {X,,F.,ac A} is another submartingale such that X, < Z,
a.e. for each g, it follows that X, < W, a.e. for each a. To prove that the in-
equality W, < X, also holds a.e., we shall show that W, < E(W,|F,) a.e.
for any cv ¢t in T, . Since W, < Z, a.e., this will give us that W, < E(Z, | F,)
a.e. for any ¢t in T4 , which implies that W, < X, a.e. This will be proved below
for the case a = &, but the proof for any other a in A follows by a change in
notation.

Let {F,. ,n = 0} be the sequence of s-fields defined as in the proof of Theorem
4.3 by replacing each occurrence of t* by ¢; also, let {U, , n = 0} be the sequence

of rv’s defined by
Un = IH<A")Wt + Zaedn I(tga)Wa .

We claim that {U,, F,, n = 0} is a submartingale. The proof parallels the
proof in Theorem 4.3 showing that {V, , F. , n = 0} is a martingale except that
instead of having X, = E(X,;| F.) a.e. on {t* = aj}, we now have W, <
E(W,;| F.) a.e. on {t = aj}. Another property of the sequence {U,, n = 0}
is that Upyx = U, — V a.e. for each k = 0; this follows easily from the condition
that W, = W, — V a.e. whenever a < b. Note that the cv ¢ determines a sv ¢’
for {U,, F.,n = 0} if we set t'(w) = n if t(w) = a where a ¢ A, . Applying
Corollary A .1(b) of [12] to {U,, F.,n = 0}, we obtain that Uy £ E(Uy |Fo)
a.e. Since Uy = Wy, Fo = Fgz, and U, = W,, this implies that Wy =

E(W,| Fg) a.e., thus completing the proof.

6. Application to sequential experimental design. A formulation of the general
sequential decision problem to include the design of experimentation was given
by Wald in [14]. After developing a general theory for sequential experimental
design, he considered the hypothesis testing case and gave a partial characteriza-
tion of the Bayes solution. Later, Magwire gave a slightly different formulation
for the general case in [10] and extended some of Wald’s results on Bayes solu-
tions for the sequential (nondesign) case to the general (design) case. Unfor-
tunately, these results provided little help in characterizing good procedures for
a specific problem, and an asymptotic theory introduced by Chernoff in [3] has.
now arisen which provides workable solutions for some cases. We shall now
reconsider the problem of finding Bayes solutions for sequential design problems
using the techniques of the previous section.

First, consider the problem of testing the hypotheses H, : § = 0 versus H,:
6 = 1, given that the loss if H, is true and rejected is w; where w; > O fors = 0, 1.
Observations can be made sequentially on the rv’s in the following matrix:

Yll Y12 e Ylk
Y21 Y22 e Y2k
le Ym2 e Ymk

The situation we have in mind is that there are m random experiments E,, E,,
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-+, B, available at each stage, and the rv’s in the jth row correspond toin-
dependent replications of the experiment E; . In particular, if experiment E; is
performed at the kth stage, this will correspond in our model to observing the
rv Y , so that rv’s in the kth column correspond to possible observations at the
kth stage. Accordingly, we assume that the column vectors in the matrix are
independent under each of the hypotheses and that rv’s in the same row are
identically distributed. Also, we assume that there is a o-finite measure u on
the line such that under H; each rv Y;; has a Borel measurable density with
respect to 4 which we shall denote by p:(-, j). Let the cost of performing experi-
ment E; be ¢; where ¢; > Oforj = 1,2, --- , m.

If we now suppose that there is an a prior: probability X that H, is true, we can
imbed the problem into a larger probability space (2, F, P) and let 8 be a rv on
this space which takes on the values 0 and 1 with probabilities A and 1 — A
respectively. In this framework our assumptions on the rv’s Yj; become con-
ditional statements given 6, e.g., the rv’s in the jth row are now assumed to be
conditionally independent given §, each having conditional density p.(-,7 )
given § = 1 with respect to u.

Ifa = (a1, az, ---, a;) is an element of A where (4, <) is the partially
ordered set defined in the previous section, let Y* denote the random vector
(Yiay, Yoay, -+, Yis;). If @ = &, let F, be the o-field generated by Y°;if
a= ,define Fpy = {F, Q}. Then {F, ,a ¢ A} is a collection of ¢-fields such that
F, C Fy whenever a < b.

To obtain the Bayes terminal procedure, suppose that the sequence Y* has

been observed where a = (a1, az, ---, a;). Let pr, denote the joint density
of Y*with respect top’ = p X u X - -+ X uon j-space defined by

(1) Pa(y®) = Moa(y*) + (1 — Npia(y®),

where

Pia(y¥’) = Di(Y1a1, 61)Pi(Y20y, @) -+ Di(Yia;, @;) for i = 0, 1.
Also, let \; denote the version of P(§ = 0| F,) given by
(2) A = Mpoa(Y*)/pra(Y?), if paa(Y?) 5 0,
= 0, otherwise.

Since the conditional risks given Y* of rejecting H, and of rejecting H; are
Wokq + coand wy(1 — A,) + ¢, respectively where ¢, = D i_; Cq; , 2 Bayes terminal
decision rule is to reject H, if stopping occurs at this stage on the subset of Q for
which wohe £ wi(1 — No). If A(X,) is the rv defined by A(\,) = min [we),,
w1(1 — A)], this is equivalent to rejecting Ho on the set {h(\,) = woh,}. This
rule also holds for the initial stage a = & if we interpret Ay as the rv having
constant value .

Let {Z., a ¢ A} be the collection of rv’s defined by setting Z, = h(N\,) + ¢a .
Then Z, is the conditional risk given Y* when the Bayes terminal procedure is
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used. Since Z, is F,-measurable, integrable, and nonnegative, the stochastic
process {Z,, F,, a ¢ A} satisfies the assumptions of the previous section. Also,
the problem of finding a Bayes stopping rule and plan of experimentation
coincides with the problem of finding a minimizing cv for {Z, , F,,a e A}.

More general Bayesian decision problems can clearly be treated in the same
way whenever Bayes terminal procedures exist. Assuming a bounded loss fune-
tion, we would again have Z, = R, + ¢, where 0 < R, < K and ¢, is defined as
above or, more generally, {c., a ¢ A} is a collection of rv’s such that ¢, is F-
measurable, integrable, and c.r = ¢, a.e. whenever a ¢ A and k ¢ M. At any rate
Theorem 4.4 applies since {c,, Fo, a ¢ A} is a submartingale such that ¢, < Z,
a.e., and it follows that the maximal submartingale {W, , F,, a ¢ A} relative to
{Z., Fa, ac A} satisfies the condition that whenever a < b, W) = ¢ = ¢o =
Wa — K a.e. Therefore, the Bayes procedure (if it exists) can be characterized
as a limit of the Bayes truncated procedures. If the ‘‘experimentation costs”
¢q are such that ¢, = 7, a.e. for each a in A, where {r, , n = 0} is a sequence of
real numbers such that lim, r, = «, a Bayes procedure exists by Theorem 4.3
and can be characterized by the cv ¢* in Theorem 4.1. In particular, this holds
for the hypothesis testing problem above if we set r, = % ming.y ¢ .

To characterize the Bayes solution further for the hypothesis testing problem
we shall show that the conditions of Theorem 4.2 hold for the family of sets
{D,, a e A} defined by

D, = {>\a Sw o or A\ 2 7"2}

for a choice of constants m;, 7 in [0, 1] to be specified below. This in turn will
yield a stopping rule of the probability ratio test type since the condition that
m1 < Ma(w) < m at a point w for which Y*(w) = y” is equivalent to the condi-
tion that

(1 =N (1 = m)/m < pu(y®)/pua(y®) < /@A = N]- A = m)/m.

As in Section 4, T'4(T,+) will denote the class of ¢v’s ¢ such that ¢t = a (¢ > a);
for a = ¥ the symbols T'and T, will be used. These classes, as well as the process
{Z., ac A} itself, depend on the value of N (assumed fixed up to this point).
To exhibit this dependence, the notation T'()\), for example, will also be used
below. Then when we refer to a ¢v ¢in T' (\o), it is to be understood as relative to
the process {Z,, a ¢ A} corresponding to the a prior: probability Ao .

Supposet & T'(\o) for some \g . Then ¢ corresponds to a decision procedure which
has a risk function, considered as a function of A, of the form

(3) 7‘;()\) = )\[ao’wO + Co] + (1 - )\)[alwl + 01]

where a; = P(reject H; | 6 = 1) and C; is the expected cost of experimentation
under ¢ when 8 = 7. Let p = p()\) be defined by

p(N) = inf r,(N),

the infimum being over all the classes T'(A") for all \". Since each r, is nonnegative
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and linear on [0, 1] by (3), p is a nonnegative concave function on [0, 1]. More-
over, for any fixed \, a c¢v not in 7()\) has risk at N at least as great as the c¢v in
T (M) which makes the same choice of observations at each stage and stops at
the same stage [recall that ¢v’s in T(\) correspond to decision procedures having
Bayes (M) terminal decision rules]. Therefore, .

p()\) = infur()‘) 7';()\) = eSS inftgr()\) E(Zt I Fz).

Similarly, if p; is defined by p.(\) = inf r.(A\) where now the infimum is over
all classes T'()\") for all ', then p, is a positive concave function on [0, 1] and

p+(>\) = infth_‘_()) 7‘;()\) = eS8 inft51v+()‘) E(Zt | Fg)
For a given A the minimizing ev t* = & if and only if
ZQ é ess iIlfteT+ E(Z¢ | Fg) = p+()\).
By considering the graph of Zy = h(\) = min [wo\, w1(1 — )] as a function of
M on [0, 1] and that of the concave function p.()\), we see that there exist real
numbers m , 72 in [0, 1] such that t* = & if and only if \ £ mor A 2 = . We
shall show below that for these choices of m; and ; the sets {D,, a ¢ A} defined
above satisfy conditions (i) and (ii) of Theorem 4.2.

Now suppose ¢t & T, for a # &f. By an appropriate choice of the original
sample space, the set {Y* = 3} looks exactly like Q itself (under the correspond-
ence y* <> y* for a’ ¢ A™). Similarly, the restriction of ¢in s (A) to {Y* = y°}
looks like a ¢v ¢’ in T+ ()s) if we define t" on {Y* = 3°} as follows: If t(w) = ad’
wherea’ e A u A* thent'(w) = a'.

Forany b = (b1, --+, ba), set

(Ubl ) bebz y " Ub) = (Yab1 3 Yablbg y Ty Yab)-
Choose that version of E(Z,| F,) for t &€ Toy which is determined by the con-
ditional density of U’ given Y*(w) = y* defined by
(4) (@) = Do )Pu@’) + (1 — Mpia(y")pw(u’)]/pa(y®)

= NP (") + (1 = Na)pu(u’).

For each bin 4., , let @, be the Borel set of points «” in n-space such that for any
win {¥* = ¢}, #(w) = ab if and only if «’ £ @, . Then
(5) E(Z.]|Y" = y*) = D omet Dovean Jao [RQA) + Calprg, n(u”) du™ ().
If Ry is the subset of Q, corresponding to the subset of {¢ = ab} for which H; is
rejected, we have
Jao BO)prg p(w”) du™(u)

= [roy Wohaprg s () A (4°) + [y wi(1 — Nap)Prg.n(w’) du" (u"),

and, since
Ap = AaPop(W)/Drgn(W0’),
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the right-hand member reduces to

Woka [ oy Pos(”) A" (W) + Wi (1 — ) [y Po(u’) A" ().
Substituting this and (4) in (5) and using ¢ = ¢, + ¢ gives
(6) E(Z:|Y"=79") = Nfaqwo + Co] + (1 — N)[ewwn + Ci] + Ca,

where

@i = Domet Dvean [riy Pa(u) A" (u'),

Ci = 2ono1 Xvean @ [a, P(’) du™(u).
By (3) and the correspondence between the ¢v ¢ in T (\) and a cv {in Ty (Na),
(6) can be written E(Z, | Y* = ¢*) = rv(Na) + ¢a, which implies that
infser, o E(Z,|Y* = y*) = p(N\a) + ca. Since p, is a concave function on

[0, 1], it is Borel measurable on [0, 1], and this interval contains the range of the
rv A, . Therefore, p,(\.) + ¢, is a rv. We now claim that

p+()\a) + Cqs = €88 infm“_ E(Zt | Fa).
We already have that p.(N\.) + ¢. < E(Z, | F.) a.e. for each ¢ in T,y by the dis-

cussion above, and it suffices to show that there is a ¢v s in T,y such that
pr(Na) + ca = E(Z, | F.) ace.

This can be done by letting s be the cv which for every point « treats the a
posteriori probability A.(w) as an a prior: probability and proceeds in the same
way as the minimizing ev in T for that a prior: probability would proceed.

We now return to consider the set D, = {A\s < m or A, = m»}. By the earlier
case for ¢ = (J, this can be rewritten as

D, = {h(\) £ p+ ()} = {h(Na) + € = pr(Na) + ca}

Since Z, = h(X\s) + ¢, and py(N\,) + ¢u = ess infier,, E(Z, | Fo), we see the in-
equality Z, < ess infi.r,, E(Z, | F,) holds on D, and fails to hold on D,. This
completes the verification that the sets {D., a ¢ A} satisfy the conditions of
Theorem 4.2.

It remains to characterize the experimentation plan. Let pi, p2, ** , pm be
the functions defined on [0, 1] by

p](>\) = infmv(,-) 'r‘t(k) = €8S infm-(]-) E(Zt I Fg).
By Lemma 4.1 (b),
E(X(j) I FQ) = €88 infth(j) E(Zg | Fg) = pj(>\).

Therefore, since p,(\) = min;x p;j(\), the sets B((k)) of Theorem 4.1 can be
written as follows:

B((k)) = {p+(\) < pi(\) for 1 =7 <k pe(N\) = (M)}
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Here, each p(\) and p;()\) is to be regarded as a constant-valued rv for a given
value of A, and the set B((k)) is either the whole space @ or &f. By Theorem 4.1
the c¢v ¢* is such that the first experiment to be performed would be the kth
one if k is the first integer for which p.(N) = px(N). It will be helpful below to
think of the graphs of the concave functions p;, p1, p2, -+, pm on [0, 1]. If
Ay, As, - -+, A, are the subsets of (7, m) defined by

A = {A:pr(N) < pi(N) for 1 =25 <k, p(N) = p(N)},

the kth experiment is performed first if and only if A € Ay, .
By the proof above that

P+()\a) + Cq, = €88 inftgra+ E(Zt | F'a),
it is clear that for any j in M, we can also set
pi(Xa) + co = essinfer,; E(Z; | Fa).

Since E(X,; | F.) = essinfir,; E(Z,|F.) a.e. by Lemma 4.1 (b), the class of
sets {B(a), ac A, a # &} of Theorem 4.1 are given by

B(ak) = {p+(\a) < pi(Na) for 1 =7 <k pr(Xa) = pe(Na)}.

Therefore, if the cv t* is being used, the choice of experiment after the observa-
tion of Y* depends on the a posterior: probability A, in the same way as the initial
choice of experiment depends on the a prior: probability \. That is, if the sequence
Y%(w) = y®is observed and if m; < A\(w) < s 5o that experimentation con-
tinues, the kth experiment is performed next if and only if Ns(w) € Ay .

Although this solves the problem in a theoretical sense, the formidable problem
of determining the functions p; for any particular case remains. However, since
the numbers ; , m; and the sets {Ax , k ¢ M} completely characterize t*, we might
hope to estimate these by substituting other functions for the functions p; which
are more readily computable and which would appear to yield good estimates.
For example, if S; is the class of ¢v’s in T'; which use the jth experiment ex-
clusively and @, is the class of ¢v’s in T(; which stop after at most two experi-
ments, we might substitute the functions p;’ or p;,” where p;/(\) = infes; 7:(N)
and p;” = infseq; 7¢(N). The thinking in using pi is that for a given \ the best
choice of experiment for the first stage in a sequential design problem might very
well coincide with or “be close to”” the best choice for the case where the same
experiment must be used throughout. Since p;"(A\) = p;(\) on [0, 1] for each j,
the resulting estimates of m; and m; will be too high for ; and too low for =, . The
computation of p;” reduces to finding probabilities of wrong decisions and ex-
pected sample sizes for sequential probability ratio tests, and the Wald approxi-
mations are available for this.

As an illustration of the above procedure, let Wi, W, --- be a sequence of
independent rv’s on (2, F, P), each having a normal (g, 1) distribution, and
suppose that a test of the hypotheses Hy : u = —1, H; : u = 1 is desired where

there is an @ priori probability N that H, is true and the losses for wrong decision
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are wy = w; = 80. At each stage the experimenter can choose one of the three
“dosage levels” —k, 0, and k where k > 0, and the corresponding experiment at
the nth stage consists of observing whether or not W, exceeds the selected dosage
level. Accordingly, for each n we define the rv Yy, by

Yi(w) =1, if Wilw) = —k,
=0, if Walw) < —k;

the rv’s Y, and Y3, are defined similarly for dosage levels 0 and % respectively.

Consider the family of sequential probability ratio tests for each of the se-
quences {Yi, ,n = 1} where = 1, 2, 3. The rv Y, corresponding to dosage level
k has a binomial distribution with parameter ®(—k — 1) under H, and
®(—Fk + 1) under H; where & denotes the normal (0, 1) distribution function.
In order that the exact theory can be used to compute probabilities of wrong
decisions and expected sample sizes (see [13], pp. 190-191), we shall assume that
k is so chosen that

log [@(—k + 1)/@(—k — 1)] = —2log [2(k — 1)/®(k + 1)].

This guarantees that the resulting random walks for sequential probability ratio
tests using the sequence {¥3, , n = 1} are such that the step to the right at the
nth stage for V3,(w) = 1is twice the step to the left for ¥s,(w) = 0. (The approxi-
mate value of k is .4642.) From the graph of h = A(\) = min [8O\, 80(1 — ))]
and the graphs of p;’, ps’, and p;’ for this case, the resulting estimates of ; and
my are approximately .0243 and .9757 respectively. From the estimates of the
sets A;, level k would be used at the initial stage if .0796 < X\ < .1628, level
—kif .8372 < A < .9204, and level 0 if .0243 < X < .0796 or .1628 < \ < .8372
or .9204 < \ < .9757.

It is of interest to compare this procedure for choosing experiments with the
plan suggested by Bradt and Karlin in [2]. They recommended choosing that ex-
periment at the initial stage for which the weighted average (using the a prior:
probability ) of the Kullback-Leibler information numbers is greatest. At any
later stage the a posteriori probability A, is used in the same way as the a prior:
probability \ is used at the initial stage. In the example above, level k would be
used under this plan at the initial stage if A < .3535, level —k if X = .6465, and
level 0 if .3535 < N < .6465.
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