ON A THEOREM OF BAHADUR AND GOODMAN!

By E. L. LEHMANN
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1. Introduction. This note is concerned with the problem of selecting the best
one (or any other specified number) of several populations. It is restricted to the
symmetric case where typically the observations consist of samples of equal size
from the different populations. For certain families of distributions, Bahadur
(1950) and Bahadur and Goodman (1952) have proved that the natural selec-
tion procedure uniformly minimizes the risk among all symmetric procedures
for a large class of loss functions. In Section 2 we give an alternative proof of
this theorem, and in Section 3 show that the theorem implies many other opti-
mum properties including one obtained in a different manner by Hall (1959).

The problem of selecting the best one of s populations is a finite decision prob-
lem with s possible decisions. Let us more generally consider any finite decision
problem with possible decisions dy , - - - , ds . A (randomized) decision procedure
isavectorp = (g1, - -+ , ¢s) Where p;(z) denotes the probability of taking deci-
sion d; when the value of the random observable X is 2, and where ) ¢; = 1
for all . We suppose that the distribution Py of X depends on the parameter 6
and that the loss resulting from decision d; when 6 is the true parameter value is
L(6,d;) = Li(9)..

Corresponding to the symmetry assumed for the selection problem, we shall
assume that the problem is invariant under the finite transformation group
@ = {g1, -+, gy} : if the distribution of X is d[X] = Py, the random variable
¢:X has distribution d[g;:X] = P;,o where g; and §; are 1:1 mappings respectively
of the sample space and of the parameter space onto themselves; furthermore

there exist transformations gl*, S, gN* of the decision space (i.e. permuta-
tionsof di , - - - , d,) such that for any 7, j and 0

A procedure ¢ is then said to be invariant if
(2) g*o(z) = o(gr) forall z and g.

The procedure taking on the value ¢(gz) at the point z will be denoted by ¢g,
and (2) can then be written as g* og = ¢.

To prove that their procedure uniformly minimizes the risk among all in-
variant procedures, Bahadur and Goodman first characterize the totality of
invariant procedures. An altenative proof can be based on the following lemma
concerning general finite invariant decision problems.
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LeMMA 1. A necessary and sufficient condition for an invariant procedure ¢®
to minimize the risk R (0, ¢) among all tnvariant procedures is that it minimaizes the
average risk

(3) (6, 0) = 2251 R(§i 6, 0)/N

among all procedures.

Proor. (i) Let ¢ be an invariant procedure which minimizes (8, ¢) among
all procedures. If ¢’ is any other invariant procedure, it follows from the fact
that the risk function of any invariant procedure is constant over each orbit
{(Gg#: i =1, ---, N} that

R(6,¢) = r(8,¢) = (0, o”) = R(6, o)

Hence ¢ minimizes R (6, ¢) among all invariant procedures.

(ii) Suppose conversely that ¢” minimizes R(6, ¢) among all invariant pro-
cedures and let ¢’ be any procedure. Then there exists an invariant procedure
¢" such that r(6, ') = 7(6, ¢"). (This follows*fr’omlLemma 2 in Section 3, or

can be verified directly by taking ¢" = ¥ ¢:."¢'g:""/N). We now have
7(0’ ‘P,) = 1‘(0, 90”) = R(oa ‘P”) = R(e’ ¢(0)) = 7'(0, ¢(0))7

2. The Bahadur-Goodman theorem. Let the random observable X have a
density of the form

(4) ho(t) = C(0)fo,(tr) - -+ fo,(ts)

with respect to some o-finite measure u, where 6 = (6;, - -- ,0,),t = (v, -+ , &)
and where t; = t;(x),7 =1, --- , s, arereal-valued statistics. Suppose that f; has
monotone (non-decreasing) likelihood ratio in ¢; for each ¢ = 1, - - - , s. Consider

the problem of selecting the largest among 6:, - - -, 6, and let d; denote the
selection of 6; .
The following are some typical examples of (4).

(i) X5;G=1,---,n;7=1, ---,s) are independently normally distributed
with mean 6; and variance ¢".

(ii) X, are independently distributed according to the binomial distribution
b(0,~ y n)

(iii) X, are independently distributed according tothe Poisson distribution
with mean 6, .

(iv) (X1, ---, X,) havea multinomial distribution with success probabilities
(61, -+ ,0).

(v) A population consists of N items of s different types with 7; = 6;N items
of type <. A sample of n items is drawn at random. If X; denotes the number of
items of type 7 in the sample, then the joint distribution of (X, ---, X,) is the
multiple hypergeometric distributon

P(X1=IE1,"',X3=IE3)=(;})"' ;:)/(Z)r (Zri:N’ in:n)'

In all these examples, the distribution is of form (4) with T; = > X in
(i), and T'; = X;in the other cases.
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Invariance can be introduced by assuming that x = (2, ---, 2y) and that
there exist permutations of the 2’s which leave u invariant. It is perhaps simpler
instead to reduce the problem first to the sufficient statistics t = (t;, -« - , ¢,)
whose joint density is given by (4) with respect to a o-finite measure » in ¢-space
which we assume to be invariant under the group G of all permutations of
(i, -++, t). (For a discussion of the relation between these approaches, see
[9]; for the particular problem at hand it is also discussed in [2]).

THEOREM (Bahadur-Goodman). Let the distribution of the sufficient statistics
T = (T, ---, T,) have density (4) with respect to a o-finite measure v which is

invariant under G. For any permutation g of (ti, -+ - , t,) define § and g* as the
same permutation of (61, - -- , 60,) and (di, - - - , d,) respectively, and suppose that
the loss function L satisfies (1) and
(5) 0; < 0; = L;(8) = L;(6).

Let qo(o) be the procedure which takes decision d; when t; 18 the unique largest among
(tr, --+, t), and which takes decisions d;, , - - s, each with probability 1/r if
(tsy 5 -+, ts,) is the set of t-values equal to max ¢; (1 e. whzch breaks ties at random).

Then ¢ ) uniformly minimaizes the risk among all procedures based on t which are
tnvariant under G.

PROOF To prove this theorem, it is by Lemma 1 enough to show that the pro-
cedure ¢, which is clearly invariant under G, uniformly minimizes r(6, ) among
all procedures Now

(6) r(0, ¢) = D i [ Awi(t) du(t)
where
(7) = 251 Li(g8)hs0(t).

Suppose without loss of generahty that 6; < --- < 6, and consider the dif-
ference A; — Ay for 7 < k. For any permutation g of (1, ---,s), say

= (ji, - Js), with j; < ji let ¢’ denote the permutation obtained from gby
1nterchang1ng Jiand ji . The contribution to A; — A; from the terms (in (7))
corresponding to g and ¢’ is

(8) [Li(§0) — Li(§8)1hs0(t) + [Li(§'0) — La(7'0)Ihio(2).
Since the loss function is invariant, we have
Li(g0) = Li(§8) and Li(g9) = Li(g'0)
so that (8) reduces to
(9) (Li(g0) — Lu(§0)][hio(t) — hiro(2)].
The second factor in (9) is = or < 0 as
Jo; (@)fo;,(8) is = or = fo; (:)fs;, (%)

and hence, since 6;; < 6;, and fs has monotone likelihood ratio, as ¢;is < or = .
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Hence, for a given point ¢, the quantity A; is a minimum for all values of 4 for
which ¢; = max t; . The average risk r(6, ¢) is therefore minimized for any pro-
cedure ¢ which puts ¢;(¢) = 0 whenever ¢; < max ¢; . Since Lemma 2 requires the
procedure to be invariant under G, a minimum risk procedure is obtained by
selecting a population with maximum ¢-value, where ties between maxima are
broken at random.

We conclude this section with a discussion of two extensions of the theorem.

(i) One extension is indicated by the example of samples X (j = 1, --- , n;
i=1,---,s) from the normal distributions N(¢:, ¢.%). Suppose we wish to
select the population with the smallest variance, with a loss function independent
of the &’s, satisfying (1), and

(10) of <of = Li(ol, -+, 0) £ Li(al, -+, 0).

If the £; are known, the theorem applies with t; = Y (2i; — &) If they are un-
known, the problem remains invariant not only under permutations of the
samples but also under the translations

(11) X:‘j= X,’j-l—ci.
These induce in the parameter space the transformations
§o=t+c, oir=uo

and leave the decision space unchanged (i.e. d;» = d;).

A necessary and sufficient condition for a procedure to be invariant under
these translations is that it only depend on the differences X,;; — X within
samples, and for these differences the statistics 7T = >, (Xy — Xi.)%
7 =1,---, s form a set of sufficient statistics. Application of the Bahadur-
Goodman theorem to the distribution of the 7’s now proves the selection of the
population for which 7'; = min 7';, to uniformly minimize the risk among all
procedures which are invariant both under the translations (11) and under per-
mutation of the T'; (or of the samples). _

(ii) The theorem extends easily to the ordered or unordered selection of a
fixed number of populations greater than one. The situation is sufficiently well
illustrated with the selection of two populations. A selection procedure may now
be denoted by ¢ = {¢:;}, the loss resulting from the selection of the 7th and jth
population by L;;(6). In the unordered case, (in which we do not specify which
of the two selected populations is considered the best and which the second best)
condition (5) is replaced by

(12) 0; < 0;= La(6) = Ly(6) and Lyi(0) = Lyj(0).

The optimum procedure selects the two populations with the largest {-values,
with ties being broken at random. This procedure uniformly minimizes the risk
among all procedures that are invariant under @. If in the proof of the original
theorem, A;in Equations (6) and (7) is replaced by A . we must show that for
fixed ¢, A = Ax(f) is minimized by taking for 7 and k the subscripts of the two
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two largest t’s. But this follows from the earlier argument by first holding 7 fixed
and minimizing with respect to & > 7 and then, having determined &, minimizing
with respect to 7.

In the ordered case, in which d;; corresponds to the selection of 6; as the largest
and 6; as the second largest value, we must add to (12) the condition

(13) 0; < 0; = Li;(8) = Lj:(9).
Then it is seen as in the original proof that
Ap < A if 2 4,

and this, in conjunction with the result for the unordered case, establishes the
optimum property of the obvious procedure in the ordered case.

3. Other optimum properties of . The fact that ¢ uniformly minimizes
the risk among all invariant procedures entails a number of other optimum
properties. The approach which is essentially that of [10], is most simply given in
terms of the general finite decision problem discussed in Section 1. In such a
problem, which is assumed to remain invariant under a finite group @, suppose an
ordering < is introduced among the procedures (read ¢ < ¢’ as ¢’ is at least as
good as ¢).

LemMmaA 2. (a) If the ordering is such that

() ¢ = ¢ =g"eg" = g%'g ", and

(i) ¢ <@ i=1-,r=¢ = 2iie"/r
then given any procedure o there exists an invariant procedure ¢’ such that ¢ < ¢'.

(b) Suppose that in addition to (i) and (ii) the ordering satisfies

(iii) R(6,¢') < R(6,¢) forall0=¢ < ¢'.

Then, if there exists a procedure ¢V that uniformly minimizes the risk among all
invariant procedures, ¢ is optimum with respect to the ordering <, i.e.

)

0 =60 forall o.

Proor. (a) The argument is familiar from many special cases, for example
Theorem 8.6.4. of Blackwell and Girshick (1954), and consists in noting that

¢ = Diagiegr

is invariant and, by (i) and (ii), at least as good as ¢.

(b) This is an immediate consequence of (a).

Before applying the lemma we note that it remains valid if insteadof con-
sidering all procedures ¢, attention is restricted to some class € of procedures
which is closed under convex combinations and such that

peC=g%*pg ee forall geQ.

The following are examples of some orderings satisfying (i)—(iii).
ExaMmpLE 1. Minimaz. ¢ < ¢ if sup R(6, ¢') < sup R(8, ¢)
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In this case, Lemma 2 reduces to Theorem 8.6.4 of Blackwell and Girshick
(1%5;1\)1;11)1& 2. M<inimax regret: For a finite decision problem this ordering is
given by ¢ < ¢ if

sup [R(6, ¢') — min; Li(6)] < sup [R(6, ¢) — min; L(9)]

ExampLE 3. Average risk. ¢ < ¢ if for some specified 6,

2 R(§,¢)/N = 2 R(§fo, ¢)/N.

Lemma 2, in conjunction with the Bahadur-Goodman theorem proves, for
example, that the procedure ¢ of that theorem maximizes the minimum proba-
bility of a correct decision whenever the best population is sufficiently much
better than the second best (and hence establishes an optimum property of the
procedures given in {4], [5], [6] and [11]). This result was proved by the method of
least favorable distributions by Hall (1959). It also follows that ¢ minimizes,
for example, sup [max 6; — _ 0,Fp;(X)], a measure of regret considered in [1]
and [3].
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