ON A MINIMAL ESSENTIALLY COMPLETE CLASS OF EXPERIMENTS!

By Synvain EHRENFELD

New York University

1. Introduction and summary. The purpose of this paper is to show that a
certain class of experiments is minimal essentially complete asymptotically and
to demonstrate that this is not generally the case for finite sample sizes.

The model to be discussed involves linear experiments consisting of uncorrelated
observations. That is, the experimenter may choose n uncorrelated random
variables Y (z1), Y (2,), - - - , Y(«,) with expectation,

(1.1) E[Y ()] = 2’0

where 6 is a parameter vector in k dimensional space E® and z is a vector also
in E®, to some extent to be chosen by the experimenter, and the variance
VY (x)] = ¢”. An experiment, e, of size n is fully specified, using the terminology

of Elfving [6], by a spectrum (z;, 22, -+, x,) consisting of the different z’s
and an allocation (n1, ns, -+, n,) where ny + ny + -+ + n, = n. Thus, e
can be represented by e = (n1,m2, -+, n, ; 1, 22, -+ -, 2,). We are concerned

with the case where z is restricted to lie in a set A. The questions to be discussed
relate to the choice of the 2’s in A. Some results in this direction have previously
been obtained and are discussed by Elfving [5], [6], [7], Ehrenfeld [2], [3] and
Kiefer [9], [10].

The information matrix, F'(e), associated with experiment e, is given by

(1.2) F(e) = mmw + -+ + naa, = n(pwwy + -+ + pa,’)

where p; = n;j/n is called the relative allocation at z; . Also, p; = 0 and p; + ps +
-++ =+ pr = 1. Strictly speaking, in the exact theory, the p,’s can only range over
multiples of 1/n. However, in the approxzimate or asymptotic theory, the p,’s
have been allowed to range continuously from 0 to 1, see Elfving [5], [6] and
Kiefer [9], [10]. We will show later that the exact and asymptotic theory differ
in essential ways.

We will assume throughout that the set A is symmetric about the origin. This
can be done, without essential restriction, since — ¥ (z) is automatically available
with Y (z), see Elfving [6].

Before stating some results we have to introduce some notation for certain
classes of experiments. In the approximate theory we denote by &[A] the set of
experiments e with the x’s restricted to be in A. We assume that any e ¢ §[4] is

described by a spectrum (z;, 3, ---, 2,) consisting of a finite number of z’s
in A and a relative allocation (py, p2, - -, pr). The sample size plays no role
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here since we are dealing with the asymptotic case. Also, the value of r is part
of the choice of the experiment. .

In the exact theory, we denote by &x[A] the set of experiments e where the
2’s are restricted to be in set A and the sample sizen < N.

To compare experiments, we introduce a partial ordering e; = e, which will
mean that

(1.3) Valt8] < V,[t'4] forallt

where V[t'6] denotes the variance of the least square estimate of ¢8 with experi-
ment e. When ¢'0 is not estimable with respect to e, V,[t'6] is set equal to infinity.
It was shown, Ehrenfeld [3], that relation (1.3) is equivalent to F(e;) — F(es)
being a non-negative definite matrix.

Finally, we consider comparing two classes of experiments & and &, . We say
that &, is essentially complete with respect to &, when for any e, ¢ &, there exists an
e; € & such that e; = e . Furthermore, & is said to be a minimal essentially com-
plete class when no proper subset of & is complete with respect to &, .

We also define a weaker kind of minimality, designated by minimal essential
completeness (W),in the exact or asymptotie case. Suppose &,depends on a set B
of experimental points. The essentially complete class 8, is minimal essentially
complete (W) with respect to &, if no subset of &, depending on a proper subset
of B, is essentially complete with respect to 8. That is, one cannot remove any
elements of B without losing essential completeness.

Various results concerning essentially complete classes were proven and dis-
cussed by Ehrenfeld [3], Elfving [6] and Kiefer [9], [10].

Let E(A) denote the extreme points of the set A. A point z is an extreme point
of A if it isnot a convex combination of two or more points of the set A. We will
show when A is compact that, in the asymptotic case, §[E(4)] is minimal
essentially complete (W) with respect to §[4]. Furthermore, we will demonstrate,
with an example and some general theorems, that in the exact case 8y[E(4)] is
not necessarily even essentially complete with respect to &x[A].

2. The asymptotic case. Before proceeding to the main result, we state as
Theorem 1 a result which follows essentially from Theorem 2.3 of Ehrenfeld [3].
Denote by P(by, bs, ---, bw) the polyhedron generated by the vectors by , b,
«++ ,bm.Thatis, P(by, by, -+, bn) is the convex hull of by , by, -+ , by .

TraEOREM 1. In the asymptotic case, &by, by, ---, bu] 7s essentially complete
with respect to §[P(by, by, -+, bw)].

This result means essentially, in the asymptotic case, that given any e =
(pr, *+,Pr; %1, 22, +++, %) with 2,, 22, -+, z, vectors in thepolyhedron
generated by some vectors by, b2, - - - , bn , then there exists a relative allocation
(p1*, p2*, -+, pm") such that,

e* = (pl*y p2*7 "’ypm*; b17 b, '°°7bm) = e

= (p17p27 Py %1, T2, "'axr)°
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For a proof of this result let
Z= 2N with Ay =0 and XAy = 1.
Then,
t(zad)t = (F2)" = [ZFan(@B)F £ i1 his(tby)”.
Hence,
tF(e)t £ n2 i pol i hy(t)?) = n X im0 *(th;)* = (F(e*)y,

where p;* = D e pa; and p;* = 0 with D%, p,* = 1.

We can now state the main result for the asymptotic case.

TuEOREM 2. In the asymptotic case, if A is a compact set in E®, (symmetric
about the origin) then E[E(A)] is minimal essentially complete (W) with respect to &[A].

Proor. It is sufficient to demonstrate the result when A is compact and con-
vex since it can be shown, using results from the theory of convex sets, that if
C(4) denotes the convex hull of A (i.e., the smallest convex set containing A4 )
then E(C(A)) = E(A).

We first show the essential completeness of §[E(4)] with respect to &[4].
Let #1, @2, ---, z, be vectors in A. Again, from the theory of convex sets, it
may be shown that the compact convex set 4 is spanned by its extreme points.
That is, A = C(E(A)), see Eggleston [1] and Karlin [8]. Furthermore, from
Caratheodory’s theorem, see Eggleston [1], it follows that each z; is included in
a polyhedron generated by no more than k¥ + 1 extreme points of A. Hence,
all the vectors x1, xz, ---, z, are included in a polyhedron generated by no
more than r(k + 1) elements of E(A). The essential completeness of [E(4 )]
with respect to §[A] now follows basically from Theorem 1.

We now demonstrate that §[E(A)] is minimal essentially complete. Let
st(A) and E'(A) = {z|zeE(A) and z 5 v or —v}. We must show that
8[E'(4)] is not essentla.lly complete. To do this it is sufficient to produce an
expemment ¢* not in §[E'(A)] such that for each e ¢ &[E'(A)] there is a f, with
taF(e)ty < tF(e*)ty, (since then F(e) — F(e*) cannot be non-negative defi-
nite). Note that f, may depend on e. -

Consider ¢* = (1; ») which is not in &[E'(A)] and any experiment ¢ =
(pl’ D2y **° 5 Pr; &1, Tz, <00, &,) With j SE,(A), (i'e'7 € SS[E,(A)])~NOW’

(2.1)  {F(e*)t = n'(w')t = n(tv)?  and
' tF(e)t = nt' (ptawy + -+ + )t = n D jey pi(¢'z;)%

Using the theorem on separating hyperplanes in the theory of convex sets, see
Eggleston [1] and Karlin [8], and the symmetry around the origin, it follows that
there exists a ¢, such that,

(2.2) (t'2;)? < (to'v)? G=1,2 --,7r).

Hence,
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(23) to’F(G)to = nZ}=1p,~(to'x;)2 < n(toli))2 = to’F(b‘*)to,

giving the required result.
Theorem 3.6 in [9] shows that the minimality result is not generally true in
the stronger sense.

3. The finite sample case. Before stating some general results concerning the
non-essential completeness of &x[by, bz, -, bn] with respect to &y[P(b;, b.,

-, bx)] we consider some examples. :

Exampre 1. Let b = (1,1);b = (1, —1); b = —b = (=1, —1) and
b/ = —by = (—1,1). Here k = 2 and m = 4. We now study the special case
where N = 1 mod 4. That is N = 4n + 1. Consider the particular experiment
e* = (n,n,m,m,1;b,by,bs,bs,v) wherev' = (1, 0). Thevectorv & P(by, by,
bs, bs) and e* is not in &y[by, by, bs, bs. It is clear that, for any e = (n;, n,
N3, N by, ba, bz, bs), we have min (n; + 73 ; ns + ns) = 2n. Suppose that
min (n; + 73 ;N + ng) = ny + ns . Then, if we choose any ¢ = {, orthogonal to
vector b, we have, '

(3.1)  tF(e)to = 2n(ty'dy)® and ' F(e*)te = 2n(t'by)® + (t'v)>
Hence, since (tv)* > 0 we have ty F(e)to < to'F(e*)to . If min (ny + ng ; ng + n4)
= ny + n4, a similar procedure works with any ¢ orthogonal to b; . In any case,
no choice of e & &x[b1 , bs, bs , by will make F(e) — F(e*) a non-negative definite
matrix.

This example illustrates the fact there can be an infinite number of values of N
for which &y[bi, bz, ---, bn] is not essentially complete with respect to
Ex[P (b1, be, -+ -, bm)]

ExampLe 2. Let by = (1, 1) and b, = —b; = (—1, —1). Here, k¥ = 2 and
m = 2. In this case, it is clear that for all N we have &y[b; , bs] essentially com-
plete with respect to &x[P (b1, bs)]. This is also a special case of Theorem 2.1
of Ehrenfeld [3].

We now prove the non-essential completeness of &x[by, bz, -, b,] with
respect to &x[P(b1, bz, - bm)] in some general contexts. However, the com-
plete story remains to be told. In the following theorem let d(b:i, ---, bm)
denote the dimension of the vector space spanned by by, bz, -+ - , bn .

TaeoreM 3. If N < d(by, by, * -+, bu) then &x[b1, by, -+, ba] s not essen-
tially complete with respect to Ex[P(by ,bs, -+, b,)].

ProoF. Any experiment e £ x[b1, b2, - - -, bn.] must include a set of no more
than N of the b’s. Denote these by bs, , b, , - -+, bs, . Let the allocation, asso-
ciated with these vectors, be ny, n2, -+, n, withn; +ns + --- 4+ n, £ N.

For any such set of b’s consider the vector space, V, orthogonal to the space
spanned by these b’s. Since N < d(b1, - -, bn) the space V is not empty. There
are a finite number of such subsets of b’s and hence a finite number of V’s, say
Vi, Vo, o, Ve.

Choose a vector v % 0in P(by, by, -- -, bw), not equal to any of the b’s and
also not in any one of the subspaces Vi, Vo, -+, V,.
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Now, consider experiment ¢* = (N; ») which is not in &y[by, bs, --- s bml.
With any e € Ex[b1, by, - -« , b] We have:

(3.2) tF(e)t = ny(t'0:))” + na(t0:,)* + -+ + n,(£'s,)7
{'F(e*)t = N(&'v)"

For any such e we can choose ¢t = £, as a vector in the space orthogonal to the
space spanned by the set b;, , bs,, - -+, bs, (i.e., one of the V’s). Hence,

(33) (tolbil)z = (tolbsz)2 = e = (tolbi‘) = O, and (to,v)2 >0
because of the way » was chosen. Thus,
(3.4) W F(e)te — toF(e* )ty = —N(t'v)® < 0,

which proves the result.

Before stating the next theorem we note that, because of the symmetry of the
set P(by,bs, -+, bm), we can take m = 2w. That is, the b’s come in pairs. We will
order the b’s so that byy; = —b;forj =1,2, ---  w.

TuEOREM 4. If by, bs, -, by are independent vectors and N = s mod m where
0 < s < w, then 8y[b1, by, ---, bn] is not essentially complete with respect to
En[P(b1, b2y -+, bu)l.

Proor. Let N = mn + s with 0 < s < w. Furthermore, let V; denote the
vector space spanned by the vectors b1, by, - - -, b, excluding b; for ¢ = 1, 2,

-, w. We choose e*eSN[P(b1 y ***, bm)] and not in &x[by, by, - -, ba] as
e = (n,n, -+ ,mv;b1,b2, -, bn,s) where v £ 0, in P(by, by, --- ,bm),
not orthogonal to any of V1, Vs, - -+, Vu, and not equal to any of the b’s.

For any experiment e = (n1,72, « -+ ,Nm 301,02, -+ ,bm) € 8Ex[b1, b2, - - +,by]
we have ng + ng + -+ + n, = N. Also, it is clear that min (n; + 7,41 ; ns +
Ttz 3 *** 3 Mw + Nm) = 2n. That is, there is an ¢ for which n; + n,,.; < 2n.
For any such experiment e we can choose ¢ = ¢, as a vector orthogonal to V.
Then,

WF(e)te < 2n(k'd:)? and &F(e®)t = 2n(t'b:)? + s(t'v)%

The result follows since s(t'»)* > 0, from the way ¢ and » were chosen.

One of the implications of Theorems 3 and 4 is that examples can be constructed
where &x[b1, b2, - -+, bx] is not essentially complete with respect to &y[P(b;,
bz, * -, bm)] for an infinite number of N. From this it also follows, in particular
for these examples, that &[E(A)] is not essentially complete with respect to
&x[A]. For these examples 4 is, of course, P(by, bz, -+, bam).

Some open questions which remain are to fully characterize essentially com-
plete classes of experiments for the exact, finite sample, case. Some theorems
relating to essential completeness, in the exact case, are given by Ehrenfeld
[3]. However, further questions remain, particularly concerning minimal essen-
tially complete classes of experiments.
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