A PROBLEM IN MINIMAX VARIANCE POLYNOMIAL |
EXTRAPOLATION

By A. LeEviNE
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1. Summary. For the problem of optimum prediction by means of kth degree
polynomial regression, it is shown in [3] how to find the observation points and
respective proportions of observations in the interval [—1, 1] in order to obtain
the minimax variance over the interval [—1, ¢] of the predicted regression value
for all £ = #; > 1;t; is the point outside the interval of observations at which the
Chebyschev polynomial of degree % is equal to the maximum value of the vari-
ance of the least squares estimate in [—1, 1]. It is shown herein that if the ob-
servation points and proportions are chosen as specified in [3], then the maximum
of the “least squares’ variance in the interval [—1, 1] is at —1. As a consequence,
an equation is developed which permits the evaluation of #; as a function of .
Moreover, it is shown that & — 1 as k — o, so that, for large %, the solution
given in [3] yields an approximation to the minimax variance over the interval
[—1,¢, all ¢ > 1.

2. Introduction. Let —1 < z; £ 1,7 = 1,2, -- - , n denote the selected values
of a variable z at which observations are to be made on a related variable y
corresponding to those selected values. If y(x;) denotes the observed value of y
corresponding to z; , it will be assumed that the variables y(z;),¢ = 1,2, -- -, n,
are uncorrelated random variables with common variance ¢°. It will also be
assumed that the means of the »’s lie on a polynomial curve of known degree k,
that is, that

Ely(z:)] = Bo + Buzi + -+ + B’

Let §(z) represent the least squares estimate of E[y(x)] as a function of z and
V[g(x)] the variance of the estimate. For the least squares estimator, which is
also the minimum variance unbiased linear estimator, it is well known that the
variance, V[§(z)], is equal to 2’ (X'S™"X) " where 2’ = (1, z, %, ---,2%), S
is the covariance matrix of the y’s, and

) [1 X .’/U12 e .’lz'lk
k

x=|1 2 2 - m
1 2z, & - xn"

It is well-known (see [2] and [3]) that V[§(z)] will be minimized if the observa-
tions are concentrated at k + 1 points and that, consequently, V[§(x)] can be
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written in the form
(1) V()] = (/n) 2% Li*(2) /ps pi = ni/n
where L;(x) is the Lagrange polynomial given by

Li(z) = Hi#i (z — xi)/Hi#i (x; — zj),

and where n represents the total number of observations, while n; represents
the number of observations to be taken at z;,7 = 0,1, --- , k.

The basic problem in minimax extrapolation at a point ¢ > 1 is to find observa-
tion points and the corresponding proportions so that the resulting variance
V:(x) has the property that its maximum in [—1, ¢] is less than or equal to the
maximum of the variance in this interval for any other choice of the set {z;} of
observations and {p;} of proportions; i.e.,

MaXze—1,9 Ve(Z) = mingg,),ip) MAXzer—1,9 VI[§(2)].

It has been shown in [3] that V.(z) = (¢*/n)Tx(x;t) whent = t > 1; where &
is a point such that .

max_i<z<1 T(x; t1) = Ti(ts; )
and where
Ti(z;t) = D i Li(z)pi,
(2) z; = —cos (wi/k), 1=0,1,.---,k
pi = |La(t)|/ 2= ILi(1)].

The points {x;} given by the preceding formula are the points at which the kth
degree Chebyschev polynomial takes on its maxima and minima in [—1, 1] and
are called the Chebyschev points. The next section develops an equation for
the determination of ¢ .

3. Determination of ¢; .

Lemma 1. Let z;, = —cos (wi/k), + = 0, 1, .-+, k, then each product
[T1sms (wi — ;)| possesses the same value for ¢ = 1,2, --- , k — 1 and a value
twice as large as this common value for © = 0 and © = k.

The proof is carried out for 0 < ¢ < k — 1 by substituting the cosine rep-
resentation of each z;, x; in the ratio

|Hi;éi (x; — xj)/H#m (®ip1 — )]

and then using standard trigonometric identities to demonstrate the conclusion.
Lemma 2. If the Chebyschev points are chosen as observation points and if the
Chebyschev weighting in (2) is used, then

maXge[—1,1] Tk(x, t) = Tk(—].; t), t> 1.
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Proor. From (2) it follows that when ¢ > 1
pot = K[ (¢ — z)/|TLim (=1 = 217
where K = ) 5o |Li(t)| and that
Tw(z; t) = D ico Li(z)ps
= (2 |
A 2T Tiws (& — 20 /1T Liws (@ — 2| TLws (¢ — 201}
Let | []ixi (x; — @) = aforj = 1,2, --+ , k — 1: Then, using Lemma 1,
Ty(z; 1) = (K/a){ 251 Tloes (2 — )"/ 1w (¢ — )
+ ILiw (= — 2)*/2] L (¢ — )
+ ITiw (2 — 2)"/2] Lo (¢ — @)}
= (K/a)[ITim0 (¢ — 2T 20551 Tliows (2 — 2)°(2 — =)
+ 3t — D]Loa (= — x?)zl + 4t + D) ]Lon (= — )7}
= (K/a)[ITi=0 (¢ — z)]7'4A

where A represents the coefficient of (K/ a)[ ][0 (¢ — )] in the preceding
expression. Since maxs.—1,1 Ti(z; t) = Tw(—1;1) = po ', to prove the lemma
it suffices to show that

(3) po ' = maxpay Ta(z; ) t>1
or, equivalently, since | [T (—1 — ;)| = 2a, that
(4) 20t 4+ 1)d* = A.

To show (4), we note first that because 1 = |z;|,7 = 0, 1, - - -, k, we have that
t+1=1¢t— z;and so

42 @+ DX o (2 — 2" + 3]Tox (@ — 2)* 4+ 3] Lo (& — )3}

= (¢t + 1)B; all¢ > 1.
Hence it suffices to show that 2(¢ + 1)a* = (¢t + 1)B
or that
(5) 24’ = B.

We shall demonstrate Inequality (5). Let ¢’ () represent the derivative of the
kth degree Chebyschev polynomial. Then (see [4])

J(z) = % (2 — =) ¢ =2"""%
z; = —cos (wi/k) 1=1,2---,k— 1.

Using this expression to find the square of the derivative of (2 — 1)¢'(z) in
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terms of B as well as in terms of both the product [[is,s (x — 2;)* and the
second derivative of (' — 1)¢'(z), we obtain after some calculations,

(6) 2B = {(d/de) (&’ — 1)¢' (@)}’ — (z + 1)%e"(z) — (z — 1)°
3o (@) — (2" — 1)¢'(2)(d"/da”)[(«" — 1)¢' (@)] + 2(2” — 1)¢" ().

We now make use of the well-known relation [4]

(7) (" = 1)¢" (2) + 2¢'(z) — Ko(z) = 0.

Using (7) we have that

(8) (d/dz) (2" — 1)¢'(x) = 2a¢'(x) + (2" — 1)¢" (2)
= ¢’ (x) + Ko(z).

Hence

(9) (d/da”) (2" — 1)¢'(2) = 20" (x) + (K" + 1)¢'(x).

Putting (8), (9) in (6) weh » '
VKB = D = {zo'(a) + Ko(@)}' — 3z + 1)°%"(2)]
(10) — 3 — 1)) — 22 — 1)¢" ()¢’ (2)
- (@ = D) (K + 1) + 2(2 — 1)e(a).
Using (7) we can substitute the value of (2* — 1)¢”(z) in (10) to obtain
D = 2'0"(2) + 2k'zp(2)¢' (z) + K'¢'(2) — 2"6™(2) — K'zp(2)¢ (x)
— 2% () — ¢"(2) — (2" — 1)"(2) (K" + 1) + 2(2" — 1)¢"(2)
Ko (z) + Kag' (2)e(z) — K (2" — 1)¢"(z) + 2(2" — 1)¢™ ()

— 22%"(x).

Il

Thus, we have
D = K'¢'(z) + Kzo(2)e' (z) — K'(a" — 1)¢" () — 20" (2).

From [4] we know that if z = cos 6 then

o(z) = cos ko

¢ (2) = k sin k6/sin 9 = 6=0.
Then
D = k' cos’ k6 + k° cos 6[(sin k6 cos k6)/sin 0] + &' sin® k9 — 2%* sin® k9/sin® 6
or

D = k* + K cos 6(sin ko cos k§/sin 6).

Note that the maximum of cos 6, cos k6 is equal to 1 and that the maximum of
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sin k6/sin 6 is k when 6 € [0, 7. Hence D < 2k* or B £ 2k*/2°*™. To complete
the proof we must show that

(11) 2k% /2% < 242
We note that @ = [, |x: — 2], 7 # 0, ¢ # k. Thus

a= (28 — 1) (2)/C; #0417 k.
From (7)

Ca = |—z (z:) + Ko(zs)|
But ¢'(z;) = 0, o(z;) = +1 or —1. Thus C’¢* = k*; but ¢ = 2°%. Hence
a = k/2*7'. Substituting back into (11) we have 2k*/2°*™ < 2k*/2** which
completes the proof.
TureorEM 1. The value of & can be found by solving the equation

(12) 2o |Lit)| = T4 (=1 — ) |/|TTa (8 — 23)| 20 = —cos (mi/k)

Proor. This equation is obtained from Lemma 2 by applying it to the equa-
tion defining # just before Formula (2). It should be remembered that
Tk(—l; t) = po_l whent = ¢ .

4. Determination of the range of ¢ .

TaroREM 2. The solution of Equation (12) above is in the interval (1, 2].

Proor. Reference [3] has shown that ¢, , the solution to (12), is greater than 1.
To demonstrate that #; < 2 we note once more that

(13) Tiu(z;8) = 250 Li'(@)pi ™ = 2iao [[Lims (& — 2,)*/D4]
where D, is a positive constant depending only on ¢ and ¢. Suppose first that

kE > 1. By symmetry of the “Chebyschev points”, z; = —cos (wi/k), we have
that

Ti(z; t) = i [(z — wj)zII?ii"é"‘“’” (x2 - -’Ejz)z/Di], k> 1, keven
Te(z; t) = Do [(x — )’ [[E/=%2 & — 25?/Dy), k> 1, k odd.

Since z; € [0, 1], if z £ [—1, 1] then 2’ £ [0, 1] and [[}5/5** (2* — 2/)® < 1,
(z + z:)* < 4. But if ¢t > 2, then J[35/5** (¥ — 2z7)® > (9)** > 4
and (¢ — z;)* = 1. Hence, terms of T,(¢; ¢), t > 2, are larger or equal to the
terms, term by term, of Ty (x; ¢). Consequently, T%(¢; ) = Tw(x;t) whent > 2:
thus ¢ cannot be greater than 2.

We now prove that there exists a solution to (12) in (1, 2]. First, let &£ > 1.
When # = 1, the left side of (12) is equal to 1 while the right side is unbounded.
We have already shown that if ¢ > 2, then

Tk(tl ; tl) > po_l k > 1

or that the left side of (12) is greater than the right side. Since both sides are
continuous in # , their graphs must intersect in (1, 2] thus proving that the so-



MINIMAX VARIANCE POLYNOMIAL EXTRAPOLATION 903

lution is in this interval. To prove the above result for k¥ = 1, (12) can easily
be solved directly yielding t; = 2.

It follows immediately from the above results that lim;., & = 1. Moreover,
it is a simple manner to demonstrate that the convergence is at most of order
k7Y, for (12) can be written in the form

(14) o(t) = 2ak27/(ts — 1)¢'(t).
Hence, for #; close to 1 (& — 1 = ¢ > 0),
(15) o(t) = o(1) + &' (1) + o(e).

Using (7) and noting that ¢(1) = 1, we have
o(t) =1+ & + o(e).
Clearly ¢'(#,) is an increasing function of # when # = 1. Hence from (14), (15),
o(tr) = 14 &' + o(e) = (2ak2" /¢’ (1)) + 0(€) = (2ak2"/e¢'(1)) + 0(e)
= (202" k) + o(e).
Since @ = (k/2"™) we have 1 + e’ < (2/¢) + |o(e)|. Consequently, 0 < ¢ <
EHA[(1 + [8 — 4 |o(e)|IK*)* — 1]}, so that forall k, 0 < ¢ < (2 — |o(e)|)/k,
which demonstrates that e is at most of order £
The above remarks show that for large k, the solution given in [3] becomes a
good approximation to the minimax variance in the interval (—1, ¢] all ¢ > 1.

The convergence of #; to 1 is rather rapid even for small k£ as is indicated below
by the partial reproduction of one of the tables in [1]:

k 1 2 5 10 100

b 2 1.44061 1.13185 1.04918 1.00133

Finally, we observe that the solution # to (12) is unique. This conclusion i
obtained at once from (14) by using the fact that both () and ¢’(¢) are in
creasing functions of ¢ for ¢ > 1.
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