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0. Summary. It is well known that the future life distribution of a device
remains the same regardless of the time it was previously in use, if and only
if; the life distribution of that device is exponential. For this reason expo-
nential life distributions are accepted as characterizing the phenomenon of no
wear. The problem of finding a class of life distributions which would similarly
reflect the phenomenon of wear-out has been under investigation for some time.
In answer to this problem we introduce in this paper the class of IHRA (Increas-
ing Hazard Rate Average) distributions and show that it has, among others,
the following optimal properties: (i) it contains the limiting case of no wear, i.e.,
all exponential distributions, (ii) whenever components which have THRA life
distributions are put together into a coherent system, this system again has an
IHRA life distribution, i.e., a system wears out when its components wear out,
and (iii) the THRA class is the smallest class with properties (i) and (ii).

1. Introduction. The nature of many physical devices is to wear out in time.
In this paper we endeavor to determine how the wear-out process is reflected
as a property of the corresponding life distributions.

Wear-out is an intuitively suggestive concept, but its precise stochastic mean-
ing is not immediately evident. However, as a beginning, we review the long
accepted stochastic characterization of the phenomenon of no wear. Let T = 0
be the failure time of a device. Let F(t) = P{T > t} be the complement of the
usual distribution function, which we will call the “survival probability.” The
conditional survival probability for remaining life, given that the device has
survived to age z, is F.(t) = F(z + t)/F(z) if F(z) > 0, F.(t) = 0if F(2) = 0.
A device does not wear if regardless of age an unfailed device is like new, i.e.
F.(t) = Fo(t) for all 2, t = 0. It follows that the class of no wear survival prob-
abilities is the class of solutions of the functional equation

(1.1) F(z +t) = F(x)F(t), z,t =0,

i.e. the class of exponential survival probabilities F(¢) = exp (=), 0 < \
< + «. Our first requirement of the class of survival probabilities describing wear-
out 1s that it should admait the boundary case of no wear, i.e. contain the exponential
survival probabilities.

It is tempting to characterize wear-out in a way similar to no wear, by supposing
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that increasing age has a deleterious effect on the conditional survival probability
of a device, i.e. Fo(t) 2 F,(t), all t = 0, whenever z < y. This condition defines
the increasing hazard rate (IHR) class of survival probabilities. The name derives
from their property that when there is a density £, the hazard rate (failure rate)
r(t) = f(t)/F(t) is non-decreasing. The THR class meets our first requirement,
since it does contain the exponential survival probabilities. It has been extensively
studied and a number of interesting results about it are now known (see [1]
for a survey and bibliography).
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Fia. 1. Representative shapes of the system hazard rate for two exponential lives in
parallel.
r(t) = [eMf 4 e — 1171 [\ 1622t - NpeMtt — 1]is the system hazard rate where A, and A,
are the component hazard rates, Ay + A\, = 1. The condition A 4+ A2 = 1 always
holds if the system hazard rate is measured in units equal to the sum of the two
actual component hazard rates, and time is measured in the reciprocal units.

If two components, with failure times 7,, T, form a series system, i.e. the
system failure time 7' equals min (7, 7%), and if the components have IHR
survival probabilities, then it is immediate that the system has an THR survival
probability. We can say that the THR class is closed under the formation of
series systems. On the other hand if two components form a parallel system, i.e.
T = max (T1, Ts), the system need not have an THR survival probability even
though the components do. This may be seen by an argument given in [7] or
from Figure 1 which exhibits the shape of the hazard rate for parallel systems
of two components with exponential survival probabilities. Thus the IHR class
is not closed under the formation of parallel systems. The family of coherent
(Section 2) systems contains the series and parallel systems, and many that are
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more complex. Coherent systems are, from one view, those in which the shorten-
ing of any component life tends to shorten the life of the system. For such systems
it seems reasonable that if all the components in the system wear out, then the
system should wear out. Our second requirement on the class of survival probabilities
describing wear-out 1s that it should be closed under the formation of coherent sys-
tems.

The increasing hazard rate average (IHRA, Section 4) class of survival
probabilities # is named from its property that the hazard rate r(t) when de-
fined has a non-decreasing average [ r(u) du/t. The class could be alternately
defined by a condition intuitively related to wear-out, that for each z = 0 and
X chosen so that F(z) = exp (—\z),

(1.2) F(t) = exp (—\t) if t<=x
=

=< exp (—N) if t = x.

This condition says that if an ITHRA device and a device that is not wearing
have the same chance of surviving some period of time [0, z], then the IHRA
device has the better chance of surviving any shorter period and the worse
chance of surviving any longer period. The IHRA class contains the exponential
survival probabilities. In fact, it contains all ITHR survival probabilities. We
show that the IHRA class is closed under the formation of coherent systems,
and that it is essentially the smallest class containing the exponentials which is
so closed.

ReEMARK. We have said it is reasonable to expect that if the components of a
coherent system wear out, then the system will wear out. It might seem equally
reasonable to expect that if the components of a coherent system do not wear,
then the system should not wear, i.e. to expect the class of exponential survival
probabilities to be closed under the formation of coherent systems. This, as we
have seen by example, is not the case. An intuitive explanation is that compo-
nents which do not wear may still fail; their failure is a form of cumulative
damage to their system, and when there is cumulative damage there is wear-out.

2. A reliability inequality for coherent systems. We need to introduce the
family of coherent systems, and obtain for it an inequality which is necessary
to our later results. This is most conveniently done if we ignore, for the present,
the role time plays in our problem.

A system has some finite number, n, of components, each capable of just two
modes of performance. The performance of the 7th component is represented by
an indicator variable z; with z; = 1 if the component is functioning and z; = 0
if the component is failed. The system is capable of the same two modes of
performance, and we assume that the indicator of system performance is a

function ¢(x1, 22, - -+ , &) of the component indicators. ¢ is the structure func-
tion of the system. The system is coherent ([9], [2], [1]) if ¢(1, 1, -+, 1) = 1,
¢(0,0, ---,0) = 0, and ¢(mla Tz, +00y Tn) = (Y1, Y2, '+, Ya) Whenever
s S ysfori =1, nm.

We assume that the component performance indicators are independent binary
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random variables X1, Xz, -+, X, . Then p; = P{X; = 1} is the reliability of
the ¢th component. The reliability function of the system is

h(p) = P{¢(X) = 1},
where p = (p1, D2, *+* , Pn), X = (X1, Xz, -+, X»). A standard decomposi-
tion of a system structure function

where (1;,X) = (X1, -+, Xi1, 1, Xipa, -+, Xa) and (0;, X) issimilarly
defined, leads immediately to a corresponding decomposition of the reliability
function

(2.1) h(p) = pih(1l:,p) + (1 — pi)h(0:, p).
From (2.1),
(2'2) 3h(P)/6Pa = h(li ) P) - h(O' ’ p)'

For coherent systems, (1,1, ---,1) = 1,2(0,0, -+ ,0) = 0, and A(1:, p) =
h(0:,p) forallp,z = 1, -+, n. Thus 0h(p)/dp: is always non-negative.
TaEOREM 2.1. If h is the reliability function of a coherent system and ¥ s de-

fined on [0, 1] by esther y(u) = —wulogu or Y(u) = —(1 — %) log (1 — u),
the inequality

(2.3) 2_1-10h(p)/dps-¥(ps) Z Ylh(p)]

holds for all p.

Proor. The proof is by induction on n. For n = 1 there is just one coherent
system, ¢(z) = z with h(p) = p, and (2.3) is true.

Let h be the reliability function of a n-component coherent system with struc-
ture function ¢. (1, , p) is the reliability function of the (n — 1)-component
system with structure function ¢(1,, x). This system is either coherent or
¢(1,, x) = 1, e.g. when the n-component system is a parallel system. If it is
coherent, (2.3) holds for 2(1. , p) by inductive hypothesis. If it is not coherent,
then (1., p) = 1 and (2.3) holds since ¢(1) = 0. (0., p) is the reliability
function of the (n — 1)-component system with structure function ¢(0,, x), which
is coherent unless ¢(0,,x) = 0, (0., p) = 0, e.g. if the n-component system
is a series system. Since ¥(0) = 0, (2.3) holds for 4(0, , p). Then, from (2.1) and
(2:2),

3-10h(D)/3pi-¥(ps) = Pa2i= O1(1a, D)/3pi-¥(p:)
+ (1 — pa) 2215 (0, D)/0ps-¥(ps)
+ [A(1a, p) — 2(0n, P)W(pn)
Z padlh(la, P)] + (1 — pa)¥[A(0a, p)]
+ [2(1a, p) — 2(0s, P)W(Pn).
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We must now show that
mp(h) + (1 — r)g(he) + (b — ho)¥(r) = (rhy 4+ (1 — r)ho),

where r = pn, bx = h(1l., p), ho = A(0., p), and h(p) = rhy + (1 — 7)he.
When ¢(u) = —u log u, the inequality above is equivalent to ¢ (rhy + (1 — r)hg) —
Y(ho) = ¥(rhi) — Y(rho). Since, for a coherent system h = ho, and ¥ (u) is
concave on [0, 1], thislast inequality is true. When¢/(u) = — (1 — u) log (1 — u)
the argument is similar. []

The inequality (2.3) holds also when ¥ (u) = (1 — u) ([6], [1]). For this
choice of ¢ it was first obtained by E. F. Moore and C. E. Shannon [10] for the
case p1 = P2 = -+ = p,. The functions ¢ defined on [0, 1] for which (2.3) is
valid form a convex cone. It is fairly easy to show that these functions must be
concave with ¢(0) = 0 and ¢(1) = 0, and that if a function ¢ is in the cone,
then its dual ¢°(u) = ¢(1 — %) is in the cone. It may also be shown that (2.3)
becomes an identity in p only for A = p; ps - -+ p. (a series system, ¢(x) =
21%e -+ ;) and Y(u) = —ulogu, or for 1 — h(p) = (1 — p)(1 — pg) ---
(1 — p.) (a parallel system, 1 — ¢(x) = (1 — x)(1 — x3) -+ (1 — 2,)) and
Y(u) = —(1 — u) log (1 — u). '

3. Closed classes of life distributions. Now we do consider time and assume
that each component in a system functions until some time at which it fails, and
that subsequently it remains failed. We assume that the failure times of the
components are given by independent, non-negative, and possibly infinite random
variables Ty, Te, -+, T\ . The reliability at time ¢ of the sth component is
Fi(t) = P{T: > t}. Welet Xi(t) = 1if T: > t, X.(¢) = 0if T < t. If the system
is coherent, it functions until some time of failure and then remains failed. We
let T be the failure time of a coherent system with structure function ¢. Then
T > tif, and only if, ¢[X(¢)] = 1. The reliability at time ¢ of the system is

(3.1) F(t) = P{T > t} = P{¢[X(1)] = 1} = A[F(1)].
Systems, as considered here, must be coherent to have the “once failed, stays
failed” property for all possible independent distributions for 7y, Ty, -+, Th

[5].

Suppose @ is some class of survival probabilities. We define the closure @
of @ under the formation of coherent systems to be the class of all survival prob-
abilities #(¢) = h[F(¢)] where A is the reliability function of some coherent system
and F;e@,7 = 1, - - -, n. Closure under coherent systems is a legitimate closure
operation, i.e. @ C @ (since the system consisting of just one component is
coherent), @ C ® implies @% < &, (@)% = @°® (since a coherent system
whose components are in turn coherent systems is, after composition, a coherent
system), and the closure of the empty set is empty. We define the closure @"°
of @ under limats in distribution to be the class of survival probabilities which are,
at their continuity points, the limit of a sequence of survival probabilities chosen
from @. Closure under limits in distribution is, of course, also a closure opera-
tion.
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We write @' for the closure of @*” under coherent systems, and @°*”
for the closure of @°° under limits in distribution.
TueorEM 3.1. For any class of survival probabilities @,

LD,CS ¢S8,LD
Q cC Q@ .

Proor. If F ¢ @*>%, F(t) = h[F(¢)] forallt = 0, where F'y , Fy, - -+ , F, e @"°.
For each F; there is a sequence of survival probabilities 7;* ¢ @ such that, at
continuity points of F;, F;®(¢) — Fi(t) as k — . The collection of discon-
tinuity points of F; or Fzor - - - or F, being countable, the points of simultaneous
continuity of Fy, Fy, --- , F, are a dense set C' in [0, » ). From the continuity
of h, F®(t) — F(t) on C where F®(¢) = WE®(t)] € @°*. Thus F £ @°*”. []

If, for example, @ = {deg}, i.e. the class of all survival probabilities which are
degenerate at some ¢ ¢ [0, -+ «], equality holds in Theorem 3.1, since {deg}*” =
{deg} and {deg}®® = {deg}. The inclusion can also be proper, e.g. for @ = {exp},
the class of all exponential survival probabilities. Using (1.1) it is easy to show
that {exp}™ = {exp}. Since every survival probability in {exp} is continuous
on (0, + «), and coherent reliability functions are continuous, every survival
probability in {exp}*”*® = {exp}®® is continuous on (0, + ). With the excep-
tion of the survival probabilities degenerate at 0 and + «, no degenerate survival
probability can be in {exp}™”'". On the other hand

(3.2) {exp} “*P D {deg}.

One can show (3.2) for any class such as {exp} which contains a continuous sur-
vival probability Fy with support [0, + ) as follows. For a sequence of ‘%
out of n”” systems (¢rq(X) = 1if Sp(X) = D212 2 k, duna(x) = 0if Su(x) < k,
1 £k = n) chosen so that n — » and k/n — 60,0 < 6 < 1;and for F; = F, =
ceo =F, = Fy,

healF(1)] = PSX(D]/m = k/n} - 1 if ¢ < Fo ()
— 0 if ¢t > FoY9).

4. Closure properties of the IHRA distributions. A life distribution with sur-
vival probability F is THRA if —log F(t)/t is non-decreasing as t increases. It is
easily seen that this condition is equivalent to (1.2). It is also equivalent to say
that —log F is starshaped [4], i.e., —log F(at) < a[—log F(#)],0 < a =< 1.

We write {THRA} for the class of IHRA survival probabilities. It is immediate
that

(4.1) (IHRA}*® = (THRA)}

from the preservation of the defining property under limits in distribution.

We write {a.c. [HRA} for the class of IHRA survival probabilities which are
also absolutely continuous.

THEOREM 4.1. {a.c. THRA}®® = {a.c. ITHRA}.

Proor. We will show that {a.c. IHRA}°® < {a.c. IHRA}. The reverse in-
clusion is automatic.



822 Z. W. BIRNBAUM, J. D. ESARY AND A. W. MARSHALL

An absolutely continuous survival probability F is IHRA if, and only if,
—dF(t)/dt = —[F(t) log F(t)]/t = 0,all ¢t = 0.

Let F'y, Fy, - -+, F,be a.c. THRA and F(f) = h[F(t)], where & is the reliability
function of a coherent system. Then, using Theorem 2.1,

—dF(8)/dt = D7y ORIF(1)]/0F - [—dF (1) /di]
= D or, Oh[F(2)]/0F - [—Fu(t) log Fu(8)]/t
= —[F(¢) log F(1)]/t.

It follows that F is both absolutely continuous and THRA. []

The following theorem is our principal result, that the IHRA class of survival
probabilities is closed under the formation of coherent systems, and that the
closure under coherent systems of the exponential class of survival probabilities
is dense in the THRA class with respect to limits in distribution.

THEOREM 4.2. {IHRA}® = {IHRA} = {exp}®**®.

Proor. We leave until last a proof of

(4.2) {THRA} C {exp, deg} °*?,
where {exp, deg} = {exp} v {deg}. Given (4.2), the proof is accomplished by
verifying
{IHRA.} Ccs c {exp, deg}C'S,LD,C'S c {exp}CS,LD
c {a.c. IHRA}***” = {a.c. IHRA}"”
c {IHRA}*® = {IHRA}.

The first inclusion follows from (4.2). The second inclusion from (3.2) and the
application of Theorem 3.1. The third inclusion from {exp}  {a.c. IHRA}.
The fourth equality from Theorem 4.1. The fifth inclusion from {a.c. IHRA} C
{IHRA}. The last equality from (4.1).

It remains to prove (4.2). Excepting the survival probabilities degenerate
at 0 and at + o, IHRA life distributions cannot concentrate any mass at either 0
or + . The survival probabilities degenerate at 0 and at 4+ are in both
{exp} and {deg}, so it suffices to show (4.2) for the IHRA survival probabilities
F for which (a) F(0) = 1 and (b) whatever e > 0, F () < e for some finite ¢ .
We complete the proof by showing that (i) an IHRA survival probability F
subject to (a) and (b) can be approzimated uniformly from below by a survival prob-
ability H of the form

(4.3) H(t) = expl— Mt hat -+ if taSt<te, 5=1,---,n,
=0 it ¢, <t

I

where 0 = th < 1 < -+ <t < +o and 0 < N\; < 4+, and (ii) piecewise
exponential survival probabilities of the form (4.3) are in the class {exp, deg}“".
The following construction indicates how (i) may be verified. Its essential
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Fig. 2. Piecewise exponential approximation of an IHRA survival probability F.

details are illustrated in Figure 2. It is convenient, and harmless, to substitute
the restrictions 0 < $y < t, £ -+ £ t, < +o0 and 0 < Z'ﬁ:l NS (AL IDW
< 4w,k =1, --,n — 1, for those stated in (4.3). We choose some ¢ > 0
and let 8 = log (1 4 ¢). We determine ¢: by —log F(t:—) < i < —log F(t:+).
That 0 < # follows from (a). That 4 < &, < --- from —log F being non-de-
creasing. From (b) we can find an n such that {. < ¢, < + . Then from (4.3)
0<F(t) — H(t) < efort = t,. Wedefine Y_suy \; = k8/t; . That 0 < A, follows
from #; < t, < 4oo. That D %N < D_¥1\ from —log F(t)/t being non-
decreasing. That D 7\ < + o from0 < t; < ¢, . From (4.3) 0 < [—log H(t)]
— [~log F(t)] < 6for0 <t < t,, and consequently 0 < F(t)y — H@t) £ e
on [0, t,).

To show (ii) we consider the coherent system ¢(e1, -+, €, dr, *+- , dy) =
ei(es v di)(es v de) -+ (en V duy) dy,wheree v d = e+ d — ed. A network
analogue of this system is shown in Figure 3, in which each component is a closed
switch when functioning, an open switch when failed, and the system functions
when a “signal” can pass through the network. We assume that the e; are the
performance indicators of components with exponential survival probabilities
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Fia. 3. ¢(e1, ---‘,e,.,dl,'-- , dn) = eilez V di)(es V d2) *+- (éa V dn-1) dn

E. having hazard rates \; , and that the d are the performance indicators of com-
ponents with survival probabilities D; degenerate at ¢; . The survival probability
of the system is

H(t) = Ev(t)[Ea(t) v Du()]Es(t) v Do(t)] -+ [Ea(t) v Dua(t)1Dn(t)
which reduces to (4.3). []

6. Remarks. If Ty, Ty, - - - , T, are the failure times of a set of n» components,
the corresponding order statistics 7@ < T® < -.. < T™ are respectively the
failure times of the “k out of n” systems, & = 1, -+, m, built from the com-
ponents. It is immediate from Theorem 4.2 that T4, Ts, -+, T independent
and THRA implies that 7@, 7®, ... | T™ are THRA. In [7] it is observed that
Ty, Toy -+, Th 1ndependent 1dentlcally dlstrlbuted and THR implies that
% 7% ... T™ are THR.

The 1nequahty (2.3) has. other applications to reliability theory. One of these
is indicated in [3].

We have shown that if a coherent system has components with independent
exponentially distributed lives Th, -+, T, , then the system life is THRA. If
instead, T1, ++-, T» are possibly dependent but multivariate exponential as
defined in [8], then again the system is JHRA. This follows directly from our
result and the fact that if T, - -+, T, is multivariate exponential, then each T';
is the minimum over some subset of a set of independent exponential random
variables.
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