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LINEAR MODELS BY SIMPLE WEIGHTING!

By Frank B. MARTIN AND GEORGE ZYSKIND

ITowa State University

0. Summary. Within the set of all linear parametric functions, \'8, estimable
from either or both of two uncorrelated sets of data, y; = X8 + e; and
ys = X988 + e, with known non-singular variances, a general characterization is
presented of those \'8’s for which the best linear unbiased estimator (b.Lu.e.) is
obtainable from one source of information alone or by simple weighting of re-
spective b.l.u.e.’s from each of the two sources. It is shown that if the intersection
of the row spaces of X; and X, has rank r then in the intersection space there are
exactly r independent N vectors for which the b.l.u.e. of A’ is obtainable by
simple weighting. Some related statements are made for k¥ > 2 uncorrelated
sources of information.

In the case of incomplete block designs the reduced intrablock normal equa-
tions and the interblock normal equations may be regarded as originating from
two uncorrelated sources of information on the treatment parameter vector r.
It is shown that an estimable treatment contrast, v'r, is best estimated from one
source alone or by simple weighting of b.l.u.e.’s from the respective sources if and
only if v is an eigenvector of A = (\;;), where \;; is the number of times treat-
ments 7 and j occur together in a block. For symmetric factorial or quasifactorial
designs, it is shown that any effect or interaction degree of freedom contrast is an
eigenvector of A, and hence is best estimated by simple weighting of its interblock
and intrablock estimates.

1. Introduction. Consider two uncorrelated sets of data, y; = X84 e:,
7 = 1, 2, where y; is an n; X 1 column of observations, X; is an n; X p design
matrix, 8isa p X 1 column of parameters and e; is a n; X 1 column of errors with
means zero and known non-singular n; X n; variance matrices V; . A linear com-
bination, )%~ N\;8; = \'B, of the parameters is said to be estimable in set 7 if and
only if there is a linear combination Y 1% a;y:; = a’y: whose expectation is \'8,
i.e., a’X:8 = \'8identically in 8. Thus \'8 is estimable in set  if and only if " is a
linear combination of the rows of X, i.e., \" is in the row space of X; denoted

by Xi »
Let y represent the combined data with'variance matrix V where
_(yl_Xl 6y _ _V1 0]
(1.1) Yy = L?/?] = [XJ 8+ [62] =XB8+e and V = [0 v
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It is well-known (see for example Chapter 5 of [9]) that the b.l.u.e. of a N8
estimable from the combined data y = X8 + e is given by Ng* = XVl
where p is any solution to the conjugate normal equation X "V7'Xp = \. Similarly,
if they exist, we may obtain the separate b.l.u.e.’s of A’ from the first and second
sources and denote them by A’ and \'B respectively. It is also well-known that
here 8%, 3, and B are any solutions to their corresponding normal equations, i.e.,
any vectors such that X'V7Xg* = X'V, X\'Vi'Xi# = Xi'Vi'y and
X2,V2_1X25 = X2,V2_l?/2 .

DeriniTioN 1.1. An estimable parametric function '8 is said to be best com-
binable by simple weighting (b.c.s.w.) if

Ng¥=wNB+ (1—w\B, 0<w<1, or Ng*=NB or \Ng*=\3

The extension of this definition to & > 2 uncorrelated sources of information is
obvious.

The discussion in standard theory texts, [2] and [5], and the literature, [4] and
[8], of the simple weighting of interblock and intrablock information on treatment
contrasts in b.i.b. and factorial designs prompted a deeper investigation of \'8’s
enjoying the b.c.s.w. property in incomplete block designs. It was natural to sub-
sume this investigation to the case of any two known matrices X; and X, a
problem of general interest. Sprott [8] established conditions under which sets of
treatment effects or differences, estimable in both the interblock and intrablock
sources of information, are b.c.s.w. However, his methods relied on heavy alge-
braic manipulations of the solutions to the normal equations and did not bring
out the essential role played by eigenvectors of the interblock information matrix.
Sprott’s results, as well as a rigorous justification of the customary procedure of
simple weighting of interblock and intrablock estimates of degree of freedom
contrasts or interactions in symmetric factorials, follow as a simple consequence
of the theory presented in this paper.

2. A general characterization of b.c.s.w. linear parametric functions.

Lemma 2.1 (Newcomb [7]). Given two real p X p positive semidefinite symmetric
matrices, say, X1 Vi ‘X1 and X,V X, , with rank (X{Vi'X1) = a £ rank
(X, Vs'X,) = b, then there exists a real non-singular matriz T and real diagonal
matrices Dq and Dy, such that D, = T'X:{' Vi "X\ T and Dy = T'Xy'Vy ' X, T where

U 0
(U
_ (L. 0 Lo
(2.1) D, = [0 OJ and Dy “:O#i
e _ .
door
iop-a-b+r
andu; , 4 = 1, - - - , r are positive where r is the dimension of x1n xa .

Consider the reduction of the design matrices, X;, to these “canonical co-
ordinates’ by
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(22) p= (XT)YT8) + e, 1= (XT)(T8)+e
=Zir+ e = Zyr + e

where we now write \'8 = \N'Tr = (T'\)'r = n'r. Theb.Lu.e., 7’7", of n'r estimable
from the combined data (1.1) is given by

(2.3) 2 =0 Z Vi + 02V My
where p is any solution to the conjugate normal equation
(2.4) ' (Da + Dy)p = 1.

If o'r is separately estimable in each set of data, then the respective b.Lu.e.’s 57
and 57, are given by

(2.5) 7% =aZ/Vilyrand 07 = v'Z,'Vyy
where « and y are any solutions to the pair of conjugate equations
(2.6) Dea =9 and Dyy = 1.
If \'8 = n'r estimable in both sources, is b.c.s.w. then
't = wn'? 4+ (1 — w7
(2.7) = wa'Z/Vily + (1 — w)y' 2V ye

= P,Z1/V1-ly1 + PIZ2/V2_IZ/2
from (2.3). Since (2.7) is an identity in % and ., p'Zy = wa'Zy and
0'Zy = (1 — w)y'Zy, and so it follows that n must be such that

(2.8) Dy = wn and Dep = (1 — w)g.

From (2.1) the only possible solutions to (2.8) are given by the classes of vectors
ps = ¢0, -, (1 4+ w)™, +, Oppr, z-2p) 4 =1, - -+ ,r, with (1 + u;) " in the ¢
position, the z’s arbitrary, and zeros elsewhere and with corresponding class
mi=¢(0,---,1;,---,0), where w; = (1 4 u:)™" and ¢ is any scalar >0, or by
linear combinations of these p; with corresponding u; all equal, in which case
entire subspaces of M’s in x1 n x» are such that '8 is b.c.s.w.

Conversely, if 7 is such that the equations (2.8) have a solution then p is also
a solution of (2.3) and 7n'# = w™p'Z) Vi and 77 = (1 — w) ' Z Vs 'y .
Hence

(2.9) Wt = 0TV + 02 Vi s
= wn'? + (1 — w)n7.
This discussion leads to the following sequence of theorems.
TaEOREM 2.2. If X1 n xo has dimension r, then there are exactly r linearly inde-

pendent vectors N i x1n xe such that N’ s b.c.s.w.
Such vectors A are given by \; = (T")'ni, ¢ =1,---,r, where n. =
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¢(0, -+, 1;, -+, 0), ie., the set of linearly independent b.c.s.w. N'8’, N in
X1 N Xz, 1s given by non-zero scalar multiples of the first » rows of 7 1

THEOREM 2.3. A linear combination, iy a:\'B, of b.c.s.w. N'B’s with N, in
X110 xz2, and corresponding weight w;, s tself b.cs.w. of and only if
WL = Wy = *** = Wg .

Consider now the set s, 7 = r + 1, - - - , a, defining a set of parametric func-
tions 'r estimable iny; but noty, . For such »; the set of all possible solutions to the
combined conjugate equation (2.4) is given by the vectors p; = (0, ---, O,,
0, ---,1i, -+, 0450, -+, 2p), but it is immediate that this set is also the
set of all solutions to the pair of equations (2.8) with w = 1. Thus for n',
i=r+1,---,a,it follows from the previous discussion that n:'r* = .'#. Since
wi=147=r+1,---,a,italso follows that the b.l.u.e. of any linear combina-
tion, D —r41 cini'r, is given by

(2.10) Zz=r+1 Cz‘?]i,‘T* = Z‘:=r+l Cﬂli,?-

Equation (2.10) may be formalized in the following theorem.

TurOREM 2.4. If x1 0 X2 has dimension r then there exists an a — r dimensional
subspace in x1 — xa such that for any \ in this subspace N'B* = N8 and there exists a
b — r dimensional subspace in x2 — x1 such that for any N in this subspace
A8* = \B.

COROLLARY 2.5. If x1n x2 = 0, then for every \'B estimable in source i = 1, 2 its
b.L.u.e. is obtainable from that source alone.

It should be noted that there is no essential reason for D, to be an upper left
identity except that an algorithm exists for this resolution. For any non-singular
matrix @ which simultaneously diagonalizes both information matrices, one need
only look to the rows of Q" to determine the b.c.s.w. A'8’s. The case for @
orthogonal is exploited in Sections 4 and 5.

To simplify notation and facilitate the discussion we shall hereafter, with no
real loss of generality, restrict V; to be of the form o.’I. Returning to the original
coordinate system, the discussion of Theorems 2.2 and 2.4 establishes the follow-
ing theorem useful for further development.

THEOREM 2.6. A necessary and sufficient condition for \'B to be b.c.s.w. is that the
set of solutions to the conjugate equation

(2.11) (X/Xy) {(‘“23_11 (022())_11] [X:] p =X\

s 1dentrcal to the set of solutions to exactly o;ze of the 3 pairs of conjugate equations,
Xi'Xp = war XX = o'\ X/Xp=0

(2.12) or or
X' Xop = (1 — w)as’\ X'Xop =0 Xy'Xop = a2\

We point out that for the purpose of determining the b.c.s.w. \'8’s, one may
arbitrarily assign values to o, and ¢+’, say = 1, since in effect only common di-
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rections of the image of p are the ones of interest. In order to determine the actual
weight w it is necessary to know at least the ratio of oy* t0 o4’.

Restricting attention to only those A" in x; n xz one may also state the following
formulation.

THEOREM 2.7. For N in x1n xz , N8 is b.c.s.w. if and only if \ is the image under
either X,'X, or X2’ X, of a vector p, such that p is a generalized eigenvector of the
pencil

(2.13) (X/'X: — kX' X2)p =0

for some generalized eigenvalue k = 0.

We remark that in the original development we derived Theorem 2.6 first,
directly from standard linear model considerations, and that in the search for
further characterization we have availed ourselves of Lemma 2.1. We have de-
veloped the present section beginning with Lemma 2.1 as a result of a simplifying
suggestion from Dr. A. P. Dempster.

For the case of & > 2 sources of information, it is obvious, by an extension of
Theorem 2.6 that if a A8 is b.c.s.w. for the entire set of % sources then \'g is pair-
wise b.c.s.w. for any possible pair of sources. The converse is not true, as can be
shown by easily constructed counter examples for £ = 3 (for an example see

[6]).

3. The full rank case. If X; and X, are both of full rank, the theorems and
corollaries in Section 2 apply as they stand. The proofs may be simplified.

In [1], Fraser showed that a necessary and sufficient condition for each compo-
nent §; of 8 to be b.c.s.w. is that the information matrix from source one be a
diagonal matrix multiple of the information matrix from source two. By applica-
tion of Theorem 2.3, there will be an s dimensional subspace of b.c.s.w. linear
parametric functions if and only if s elements of this diagonal matrix are equal.
For any full rank X; and X, there will always be p independent b.c.s.w. linear
parametric functions by Theorem 2.2.

For the case of & > 2 full rank sources of information, the condition that \'8
be b.c.s.w. for all possible pairs is sufficient for \’8 to be b.c.s.w. throughout the
whole set, since for any 7, j the solution p, to the set of equations

(31) X.',X,'p = w,c,?\

X/ Xp = (1— wi)r
is unique. '

4. Common eigenvectors. If p is a common eigenvector of Xy’ X; and X)X,
it is an immediate consequence of Theorem 2.6 that p'8is b.c.s.w. If 1, - - - , p,is
a set of common eigenvectors, it follows from Theorem 2.3 that a linear combina-
tion D_i_1 aips’ B is b.c.s.w. if and only if the weights of p;'8 and p.’B are the same
for all p;,'8. We therefore state the following theorems.

THEOREM 4.1. A sufficient condition that \'8 be b.c.s.w. is that \ be a common
esgenvector of X1’ X1 and X2'X, .
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THEOREM 4.2. If A1, -+, A, i a sel of common eigenvectors of Xy’ X1 and
X' X, then (Z§=1 a:\:)'B is b.e.s.w. if and only if k = CuCiy = -+ = CnCra,
where ¢y and ci are the eigenvalues of N: under X1 X1 and Xy’ X, respectively.

Theorems 4.1 and 4.2 apply to the case of & > 2 uncorrelated sources of in-
formation.

If there exists an orthogonal matrix O which simultaneously diagonalizes
X1’ X, and X»'X; , then the columns, O;,7 = 1, - - - , p, of O with non-zero eigen-
values under at least one of the mappings, determine the b.c.s.w. functions 0,'8.
Columns of O with respective eigenvalues in the same ratio determine the sub-
spaces of b.c.s.w. parametric functions. In principle, one need only construct
any one such matrix O to determine the complete set of b.c.s.w. \'’s.

5. Incomplete block designs (¢, r, b, k, \i;) with 1 or 0 incidence in a block.
For the purpose of estimating treatment contrasts we may consider the model
yi; = t; + b: + e:; where b; and e;; are random and uncorrelated with mean 0
and variances o;° and ¢ respectively. Then the data ¥ = Xr + b + e may be
written according to blocks as

Yl Xl
(5.1) =]l r+bte
Yb X5

with Var (Y) = block diag [0'Ix + oo’J4", -+ - , 'l -+ o5 Ji"] where J,," is the
m X n matrix of unit elements. We may demonstrate the way in which the usual
intrablock and interblock normal equations are regarded as originating from two
uncorrelated sources of data as follows. Transform Y by the matrix O = block
diag [01, ---, Oy] where O, is a k X k orthogonal matrix with first row KA
and 0;* will denote the ¥ — 1 remaining rows. Then

01 Yl 01 Xl

(52) 0Y =7 = : = : T+ 9
0, Y, 0, X
where 5 has mean zero and Var (Z) = block diag [aZI e+ o [lé_i g] . oI,
2 [k 10
+ o {0— {—6J ] Permute Z by P to get
_w_ (W) _ (x'B) _ (¢ N
e rr=w =[] = 5] - ) e

where B is the b X 1 vector block totals, N is the ¢ X b incidence matrix, and
Var (W) = block diag [(¢* + kos*) s , ¢’ Irg—n]. W1 and W, are two uncorrelated
sources exhausting all the available information on 7. The normal equations for
W, are given by
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(5.4) NN'r =NB =R

where R; is the total yield of blocks containing treatment j. The normal equations
for W, are

(ZLI XiIOi*,Oi*Xi)T = g.=1 Xi,Oi*,Oi*Yi, i e
(20X T = FINHXIr =200 X/ (I = K5 e
(X, X — K20 NN)r = X'V — 6730 X (BJF), i e
(rI — kK'NN)r =T — k'R = @Q
where T'; is the total yield under treatment j.

It is clear, as exploited by Kempthorne in [4], that the interblock and intra-
block information matrices have exactly the same set of eigenvectors. If p is an
eigenvector of NN’ = (\:;) with eigenvalue 0 or 7k then p'Bis b.c.s.w. from one
source alone. Restricting attention to only those vectors A in x: n xe we may

characterize the b.c.s.w. \'8’s by use of (2.13). Thus \'8 is b.c.s.w. if and only
if A is the image under NN’ of a solution p of

(5.5)

(5.6) [(rI — k'NN') — mNN'lp = 0
for some scalar m % 0. But (5.6) may be rewritten as
(5.7) (I —cNN)p=0

where ¢ = (1 + km)(rk)™. Equation (5.7) is an expression of the ordinary
eigenvalue equation of NN’ in terms of reciprocals of non-zero eigenvalues. Thus
we have the following theorems.

THEOREM 5.1. In incomplete block designs a treatment contrast \'r, is best es-
timated from intrablock information alone if and only if NN'\ = 0, and from inter-
block information alone if and only if NN'\ = rk\.

THEOREM 5.2. In incomplete block designs, a treatment contrast, N'r, estimable
from both the intrablock and interblock information, is b.c.s.w. if and only if \ is
an eigenvector of NN'.

It can be verified by simple computation that, for the treatment effects,
vt =71 — 7= tand v)'r = 7, — 7 = t,, v and v, are eigenvectors of NN’ if
and only if NN’ has the form

roA ; PNEREIR Y
L R
(5.8) NN =\ XNir N,
. P .
. |
A A ! )\ij r

in which case y: and v, have the same eigenvalue and form a two dimensional
subspace of b.c.s.w. parametric functions. The extension of the verification to b
treatment effects is immediate, and leads to the following theorem.

TrEOREM 5.3. A necessary and sufficient condition for every treatment effect in
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the set {t;, ---, &} to be b.c.s.w. from the interblock and intrablock sources of in-
formation is that the matriz A = NN’ be of the form

|
| A
_ A ’I’b:
(5.9) A=A L
A
[ \ij r)

where \i; 1s the number of times treatments © and j occur together in a block.

CoROLLARY 5.4. If, in an incomplete block design, the treatment effects {t1, - - - , t}
are b.c.s.w. then so is any linear combination of the set.

COROLLARY 5.5. In an incomplete block design all treatment effects are b.c.s.w.
if and only if the design has a b.i.b. structure.

Every treatment difference ¢; — ¢;, 7, j < k, is b.c.s.w. if and only if the vector
0,---,0,1,0,---,0,—1,0, ---,0), with 1 in the 7th position and —1 in the
Jth position, is an eigenvector of A. Again, simple arithmetic will establish the
following theorem.

THEOREM 5.6. In an incomplete block design, every treatment difference t: — t;,
1, J = b, 18 b.cs.w. if and only if

r A YT )\tw
' . .
I T REY
5.10 A= S 2 _ yhowl T A
( ) >\b+1 . >\b+1 } r )\ﬂ
PR !
) VEEERD VIR D ¥ r

Proofs of Theorems 5.3 and 5.6, restricted to parametric functions estimable
in both sources, were established by Sprott [8] using manipulations of solutions
to the normal equations.

6. Symmetric factorials in incomplete blocks. Since symmetric factorial de-
signs are resolvable into uncorrelated replicates, the set of individual replicates
may be regarded as a set of r sources of information for the estimation of treat-
ment contrasts, and thus yield a total of 2r uncorrelated interblock and intrablock
sources of information. Each replicate may be viewed as an incomplete block
design of Section 5 with the addition of a replicate effect in the model, i.e.,
Ynij = ™ + t; + b; + e;. The only modification occurs in Wy, = kB, =
KTy 4+ KNt + &, so that the corresponding normal equations, similar to
(5.4), become

(6.1a) by + EJNY'r = kG,
(61b) thJbIT}. + NhNh,T = Rh
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where G, is the total of all yields in replicate A. Eliminating r, by multiplying
(6.1a) by (kb)™'NuJ,' and subtracting the product from (6.1b) we obtain the
equivalent system (6.1a) and

(6.2) (NWNY — 677 = Ry — b7'Gy .

We note that whenever the right-hand side of (6.1a) is used nontrivially in
forming a linear estimator, there cannot result an unbiased estimator of a
treatment contrast. Equation (6.1a) is irrelevant for estimating treatment con-
trasts. Since any contrast y'r is an eigenvector of J,* with eigenvalue zero, a
contrast is an eigenvector of the interblock information matrix in (6.2) if and
only if it is an eigenvector of N3N,'. For this reason we shall simply refer to NN,
as the interblock information matrix.

A treatment contrast, v'r, is said to be completely confounded in a replicate
if the components of v, corresponding to each group of treatments occurring
together in a block, are equal within each group. Again, a treatment contrast,
~'r, is said to be completely unconfounded in a replicate if the sum of the com-
ponents of v, corresponding to a group of treatments occurring together in a
block, is zero for every block.

The interblock information matrix, N;N,' = N, for the hth replicate consists
of ones on the main diagonal and zeros and ones off the main diagonal in such
a way that the sum of elements of any row is the block size k. For row u, cor-
responding t0 7, , Nu,, » = 1, - -+, ¢, is unity if and only if the vth treatment
occurs in the block containing the uth treatment. Thus the unit elements in the
rows of NN, correspond to the groups of treatment combinations appearing in
a block. If v'r is completely confounded, the product of the uth row of NN,
and v is equal to kl, , where [, is the component of v corresponding to the wth
treatment in 7. Hence NiNy'y = ky. If 4'r is completely unconfounded the
product of the uth row of N3N, and v is zero, so NNy = 0. Hence, in either
case v is an eigenvector of NNy,

We note that if the confounding scheme in a symmetrical factorial design is
by full sets of effect and interaction degrees of freedom then any effect or inter-
action degree of freedom contrast, v'r, is either completely confounded or un-
confounded in a replicate. Thus for any replicate, v is an eigenvector of N3N,
Since the interblock information matrix, NN', for the whole design is the sum of
the individual replicate matrices, N3N is an eigenvector of NN'.

By the extension of Theorem 4.1 to the 2r interblock and intrablock sources,
any effect or interaction degree of freedom contrast is b.c.s.w. from all 27 sources
in the design. Thus we have derived the following desired result.

TarOREM 6.1. In a symmetric factorial design employing complete confounding
of full sets of effect or interaction degrees of freedom within each replicate, the co-
efficient vector of any effect or interaction degree of freedom contrast, 7, is an eigen-
vector of the interblock information matriz, NiNy', of each replicate, and +'r is
b.c.s.w. from all 2r sources of interblock and intrablock information.



COMBINABILITY OF INFORMATION FROM LINEAR MODELS 1347

The above theorem is applicable to the case where the block size, although
constant within each replicate, may vary from one replicate to another.

It is interesting to note that Theorem 6.1 can also be deduced from notions
developed by Jones in [3], wherein he was investigating the resolvability of ob-
served contrasts into intrablock and interblock observed contrasts.
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