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0. Introduction and summary. Bell and Doksum (1965) proposed a new class
of nonparametric tests which have the advantage of possessing exact and well
tabulated distributions under the null hypothesis. The basic departure from the
usual nonparametric tests, suggested by the above authors is that of taking an
additional sample from a known distribution such as normal, uniform, expo-
nential, etc. and use those observations as the rank scores. Throughout this paper
such procedures are called ‘Randomized Rank Score’ (RRS) as opposed to the
usual Rank Score (RS) procedures.

Bell and Doksum (1965) have shown that the RRS tests have the same Pitman
efficiency behaviour as the corresponding RS tests. One could interpret this
result by saying that the effect of the superimposed noise of the additional sam-
ple dissipates near the null hypothesis as the sample size tends to infinity. How-
ever, as will be shown here, for the finite sample sizes the noise does create un-
desirable properties for the RRS tests. Firstly, in most of the familiar testing
problems the power of the RRS test remains bounded away from unity as the
parameter varies over the entire region of the alternative. Secondly, the confi-
dence sets based on RRS procedure have the following peculiar property. With
positive probability, the confidence set becomes the whole parameter space and
the procedure completely disregards the observations of the experiment.

1. Nonresolving tests and consequences. Let ® = {Py: 0 ¢ 2} be a family of
probability distributions defined over the sample space {X, @} of a random varia-
ble X. A statistical test based on X is proposed to test the hypothesis Hy: 6 ¢ w
against the alternative Hy: 0 ¢ @ — w. Let B e @ be a level « critical region, i.e

(1.1) supseo Po[X € B] = a,

and B be the acceptance region, Bu B’ = «.
DeriniTION 1. The test based on a critical region B is resolving if

(1.2) SUpsee—o PolX € B] = 1;
it is called nonresolving if (1.2) does not hold or equivalently if
(1.3) infeq_o PolX € B'] > 0.

The interpretation of this notion in the familiar testing problems is that the
power of a test increases to 1 as the alternative recedes from the null hypothesis.
Thus a ‘resolving’ test distinguishes or resolves a distant alternative from the
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hypothesis with a high probability. This is certainly a desirable property of a
test.

In view of the concept of ‘Relative Distant Efficiency’ (RDE), which meas-
ures the rate at which the power approaches unity as the alternative recedes from
the hypothesis, it can be said that a nonresolving test will always have RDE
zero when compared with a resolving one.

In the following a brief formulation of the RRS tests proposed by Bell, Doksum
(1965) is given for the specific problems viz. (i) two sample problem, (ii)
c-sample problem and (iii) problem of testing independence in bivariate popu-
lations.

(i) Suppose X;1, ---, X, ; Y1, -+, Y, are two random samples from popu-
lations having absolutely continuous distribution functions F'(z) and F(z — A)
respectively. Let (Ry, --- , R») and (81, - -+, S,) be the sets of ranks of X and

Y observations respectively among the combined sample of N = m + n obser-
vations. In order to carry out the RRS test for testing Ho: A = 0 against Hy:
A > 0, an additional sample of NV observations is taken from a standard normal
population and the order statistic Z(1) < --- < Z(N) is formed. The level a
RRS test rejects Ho: A = 0 in favor of A > 0 whenever

(1.4) (mn)n ™ 2t Z(8)) — m7 2f Z(R,)} > N'K(a),
where
(1.5) (271')—%J.°K?(a) exp(—2°/2) dz = a.

For the two sided test of Hy: A = 0 against A # 0, the acceptance region of the
level « RRS test is given by
(1.6) —NK(a/2) < (mn)Yn 2 r0Z(8:) — m ' Dorey Z(R;)}
< N'K(a/2).
(ii) For considering the c-sample problem, let X,;, 5 =1, -+ ,n,;4 = 1,

-, ¢, be ¢ random samples from populations with absolutely continuous distri-
butions Fi, - -+ , F, and R;; be the rank of the jth observation in the 7th sample

when ranking is done among all n; + n, + --- 4+ n, = n observations. Let
Z(1) < --- < Z(n) denote the ordered observations in a random sample of n
observations from a standard normal population. Further let
(L.7) Zi = D11 Z(Rij) /ns i=1,-,¢
Z.= 222 Z(Rij)/n.
The RRS test rejects Hy: F1 = --- = F, whenever
(1.8) DiandZi — Z..)" > Cla)
where C(a) is the upper 100a% cutoff point of the x>_; distribution.
(iii) Let (U;, V4),2 = 1, - -+ , n be a random sample of pairs from a bivariate

population with absolutely continuous distribution function ¥ (w, v). The prob-
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lem is to test the hypothesis Hy: U and V are independent against the linear
alternative

(1.9) U=6W+ (1 —0)W,
V=60W:+ (1L —-0)W;

where 0 < 6 £ 1, and W1, W and W3 are mutually independent random varia-
bles. Here § = 0 is equivalent to the hypothesis of independence. Such alterna-
tives were considered by Bhuchongkul (1964). She showed that the bivariate
analogue of the normal score test for the above problem has the same efficiency
behaviour as that of the normal scores test in the two sample problem.

Let R; be the rank of U, among the U observations and S; be that of V; among
the V observations. Two independent random samples each of size n are drawn
from the standard normal population and the corresponding order statistics
Z(1) < --- < Z(n) and Z'(1) < .-+ < Z'(n) are formed. Then the level «
RRS test rejects the hypothesis of independence in favor of the linear alternative
given by (1.9) whenever

(1.10) 2 Z(RYZ(8:) > Cola),

where C,(a) is the upper 100a% cutoff point of the distribution of the sample
correlation coefficient p, the sample being of size n and drawn from a standard
spherical bivarate normal distribution.

Although not given by Bell and Doksum (1965), by using their method and
results of Bhuchongkul (1964) it can be shown that the Pitman efficiency of the
RRS test given by (1.10) is at least as good as the correlation test under all
possible disributions of U and V.

TuroreM 1. (a) For the problems (1), (ii) and (iii) considered above the RRS
tests are all nonresolving for every finite sample size and at levels of significance,
0 < a < 1, (except for the one sided test in the two sample problem where  has to
be less than %).

b) For the same problems sign tests, Wilcoxon tests and normal scores lesls are
resolving for a larger than the smallest natural level.

The proof of the theorem follows from the following lemma which gives a
sufficient condition for a test to be nonresolving.

SupposeZu < Z12 < - < Zlm1 ;Z21 < e < Z2m2 IR ;Zkl < -2 < kak
are & ordered samples derived from % independent random samples obtained
from a population having an absolutely continuous distribution function. Fur-
ther let m = m; + ms + --- + my. Consider a discrete random variable X,
independent of the Z’s, which takes values on the set S of all possible m-tuples
obtained by permuting the subscripts of the Z,; within k groups. Thus S con-
tains ma! mg! - - - my! elements. The distribution of X is assumed to depend on
a parameter 0 ¢ 2. Let Z(z) denote the m-tuple obtained from Zu, -+, Zim,
by permuting the subscripts according to z ¢ S and T[Z(X)] be a real valued
statistic whose distribution will depend on the parameter 6. For testing the
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hypothesis Hy: 6 ¢ w against § ¢ 2 — w let A be the acceptance region of a level
a test so that if T ¢ A the hypothesis H, is accepted.

Lemma 1. The level o test based on the acceptance region for the statistic T given
above is nonresolving if for every x € S

(1.11) P[T(Z(z)) € A] > 0.

Proor. First note that due to independence of X and the Z’s the probability
in (1.11) does not depend on 6. Since the set S has a finite number of elements,
(1.11) implies that

(1.12) € = ming s P[T(Z(z)) e A] > 0

which in turn implies that for every 6 ¢ @ the power of the test
1 — P[T(Z(X)) e A]

1 = 2 ees PIT(Z(2)) e A]- PiX = 2]

< 1 — Minges PIT(Z(2)) € A]D zes PolX = 2]

1—e

Il

(1.13)

Thus the power being bounded away from unity the test is nonresolving,.
CoroLLARY. Condetion (1.11) s satvsfied if

(1.14) PlNees {T(Z(2)) € A}] > 0.

As a consequence, (1.14) ¢mplies that the test based on A is nonresolving.

Proor. Obvious.

Proor or THEOREM 1. The proofs will be given for the one and two sided two
sample problems only. The others follow exactly the same pattern.

The acceptance region for the two sided test is given by (1.6). The observations
of the Z sample may satisfy the following inequalities simultaneously

(1.15)  (mn)4n ™' i Z(m + 3) — m7 2 ()} < N'E(a/2),
(mr) " i Z(5) — m D Z(n + §)} > —N'K(a/2).

Obviously the probability that (1.15) holds is positive and under such circum-
stances no matter what the X and Y observations are the RRS test will always
accept the hypothesis. The Corollary to Lemma 1 applies and the test is non-

resolving.
To see this happen in the case of the one sided alternative note that & < 1

implies that K(a) is positive. Thus, with positive probability
(116)  (mn)Hn X Z(m + 9) — m™ 25 Z()} < N'K(a),

and the Corollary to Lemma 1 applies. The proof for the c-sample RRS test is
similar. In considering the problem of testing independence in bivariate popula-
tion the RRS test needs two samples. The results of Lemma 1 or its corollary
can be applied with £ = 2 and m; = my = n.
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The claim (b) of the Theorem 1 can be easily checked. The assumption of «
being larger than the minimum natural level implies that there exists a point in
the critical region where no randomization is needed. For example, in the case of
the two sample problem R; < S;jfor< =1, - ,mandj = 1, --- ,n, will be
in the critical region. As the shift parameter increases the probability of the
realization of this point approaches unity. For other problems a similar argument
validates (b) of the Theorem 1. This concludes the proof.

In the following we consider confidence sets based on the RRS procedure. Let
X be the sample space of a random observable X, usually vector valued and z
be a typical member of . Let the subsets {B(6,): 6o & Q} represent a class of
acceptance regions for level a tests of the hypotheses H(6o): 6 = 6o. It is well
known that (see Lehmann (1959), Theorem 4, Chapter 3)

(1.17) CS(z) ={0:xeB(6),0 e

constitutes a confidence set with confidence coefficient 1 — a.

The usual technique to generate a class of acceptance regions can be formally
stated by using the folowing definition.

DeriniTION 2. A class of acceptance regions {Bs : 6 € @} is said to be ‘“‘gene-
rated by B(6,) and U if there exists a transformation U: @ X & — & such that
for every 6 ¢ @ fixed, U is measurable and

(1.18) zeB(0)  U(6,z) € B(6).

JuLusTRATIONS. For testing A = Ay, —© < Ay < =, in the two sample
problem, the acceptance regions based on the Student’s ¢-test are generated by
the one corresponding to A = 0. The transformation used is that of shift, operated
on the Y observations. The same holds for Wilcoxon acceptance regions, a fact
that has been used by Lehmann (1963) to set up confidence intervals.

In the above discussion if T(X) is a real valued test statistic then the accept-
ance regions {A(0), 8 €2} could be expressed as subsets of the real line while

(1.19) CS(t) = {0:te A(6)}

would be the confidence set whenever T(X) = ¢.

TueoreM 2. With the same notation as in Lemma 1, assume that (1.14) <s
satisfied for w = {60}, A = A(8o) and that the family {A(6), 6 € Q} is generated by
the RRS acceptance region A(8o). Then, there exists a set of Z observations with
positive probability on which the confidence set

(1.20) CS(t) =,

no matter what X has been observed.
Proor. Recall that the random variable X is assumed to take values in the

finite set S. Consider
(1.21) I ={2:Nas[T(2(x)) e A(60)]},
so that
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(1.22) zel=T(z(z)) ¢ A(6), for every z ¢ S.

Suppose U:©@ X S— 8 is the transformation used for generating
{A(0):60eQ}. Then irrespective of what X is observed, since for every 6
U(6, X) ¢ 8 the relation (1.22) gives

(1.23) zel= T(z(u)) e A(6)
= T(2(x)) e A(6), foreveryfcQandzeS.

Consequently,
(1.24) zel=C8(t) ={0:T(z(x)) e A(8)}

=Q foreverz ¢ S,

and (1.14) further states that P(I) > 0. This completes the proof of the theorem.

Examprr. If the inequalities (1.15) hold, no matter what A, is added to or
subtracted from Y observations the hypothesis A = 0 is always accepted and
the confidence interval based on RRS procedure becomes the whole real line
disregarding what X or Y observations are.

2. Some remarks.

RemARK I. Theorems 1 and 2 reveal certain unpleasant properties of the RRS
tests. Of course, this unpleasantness may arise with very small probability.

The nonresolving nature of the RRS test can be used for guessing how the
power function behaves for the alternatives not very close to the hypothesis, as
much as Pitman efficiency is viewed as a guide to power function for large values
of the sample sizes and nearby alternatives.

Remarxk II. While applying the RRS tests two statisticians may arrive at dif-
ferent conclusions with the same experimental data. One may argue that this
happens with the usual tests, however, such an occurrence takes place only at
the boundary of the critical region and can be considered as a genuine indif-
ference regarding two decisions and unlike the RRS procedure it is not a com-
monplace.

As is customary with many applied statisticians, reporting the probability of
the first kind of error is of some importance. This is useful for a scientist who is
planning a similar experiment. However, such a reporting with a new test is
meaningless since so much noise has been superimposed by the second sample.

Remark ITI. The only advantage of the new test that has been pointed out
in [1] is that of being able to carry out the test with known tables. However, the
recent upsurge in the study of nonparametric methods is yielding more tables for
various tests which are accessible to many users. Thus it is not all that convine-
ing that taking a random sample from the standard normal population is really
time and labor saving Further the suggested device is not useful if the samples
are taken from uniform or logistic distribution since the tables for the distribu-
tion of the corresponding sample means are not readily available.
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