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1. Introduction. In [2], Chow and Robbins developed an asymptotic theory
of fixed width sequential confidence intervals for the mean of a univariate popu-
lation. In [3], Gleser applied their stopping rule to the problem of constructing
fixed size confidence sets for linear regression parameters. Gleser’s confidence
regions are spheres, centered at the least squares estimate of the regression
parameter. In order that his. method be valid, a strong assumption must be
made concerning the large sample behavior of the least squares estimator’s
covariance matrix. Specifically, it is assumed in [3], that

(1.1) limp,wnZ, = 2

exists and is non-singular where =, is the covariance matrix of the l.s.e. The
stopping rule depends, in fact, upon the eigenvalues of Z. The confidence regions
proposed here are the more conventional ellipsoidal ones (whose kernels are
proportional to =,'), and while we are at it, we develop the theory to include
estimable functions of the regression vector. Having done so, it is a simple task
to adapt our results to the task of constructing sequential tests of the general
linear hypothesis.

Our methods require that the least squares estimator for the regression
parameter and its associated residual error be updated constantly as each datum
is taken. To facilitate the attendant computations, we supply algorithms which
allow these quantities to be computed iteratively “in real time” (as the data
are collected).

In the last section, we exhibit formulae for the exact coverage probabilities
in the case of normally distributed residuals.
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2. Sequential confidence ellipsoids. Let {2(n)} be a sequence of real valued
random variables of the form

(2.1a) 2(n) = k'X + v(n)

where the »(n) are independent identically distributed random variables having
a density with respect to Lebesgue measure with zero mean and common un-
known variance ¢°. The row vectors, h,’, are the transpose of the known vectors,
hrn , and X is an unknown m dimensional vector.

Let H, be the n X m matrix whose row vectorsare b;' (j = 1,2, - -+ ,n), let Z,
be the n dimensional column vector whose components are z(j) (j = 1,2, -+ ,n)
and let X, be the least squares estimator of X, based upon the observation
vector Z,, :

(21b) Xn = (Hn‘Hn)—lHnth (n g m)
(We tacitly assume that the vectors hy, hs, « -+ , hn , are linearly independent

so that H.'H, = 27—t hh,' is non-singular for n = m.) Finally, denote the
residual error associated with X, by E, :

(2.2) E, = |Z, — H.X.|"
We desire a 100a% confidence set of “fixed size”” for the parameter
(2.3) v =G6X

where G is a k X m matrix of rank k.
We accomplish this as follows:
(1) Choose a so that

(2.4) Prix; < a =«

where x;’ is a central chi-square rv with k degrees of freedom.
(2) Let \, be any sequence of positive real numbers such that for some integer
cz1,

(2.5) Ne(nt) — NemsD) = Notndd) — Aen
(2.6) Mt E N —> 0 and A/ N — L.

(3) Let a, be any positive sequence such that a, — a.
(4) Let N(d) be the rv defined by: N(d) is the first value of n = m + 1 such
that

(2.7) 2B, £ d\/n .

[The assumption that the »(n) are continuous rv’s can be dropped if E. is re-
placed by (E, + 1) in the stopping rule. (c.f. Chow & Robbins [2] eq. (7))].
(5) Let

(2.8)  Ru(d) = {£: (£t — GX.)'[G(H'H,) G (¢ — GX,) = d'\a).
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(GX, is the Gauss-Markov estimate of GX. R.(d) is an ellipsoid centered at
GX, , whose kernel is the inverse of GX,’s covariance matrix.)

Tue ProceEpURE. Take N(d) observations (i.e., sample until (2.7) obtains)
and use Ry (d) as the confidence region.

The “‘size” of Ry@(d) can be interpreted variously as the length of its longest
semi-axis or its volume. The size can be controlled by the choice of the sequence
{X\.} and by d. In the next section we will study the effect of various sequences
{A\.}. For the present, assume that {\,} satisfying (2.5) has been decided upon.
We study the properties of the procedure as d — 0. The theorems which follow
depend upon four lemmas which, for the sake of continuity of exposition, are
stated and proved at the end of this section.

TueoreM 2.1. If tr (H,'H,) ™" — 0 asn — «, then

(a) N(d) < « wp 1;
(2.9) (b) limg,o N(d) = « wp 1;
(e) limao Av@yd*/ax@o” = 1 wp 1;
(d) lima,o N(d)/g(ac’/d®) = 1 wp 1;

where g(t) = max {n: \, < t}.
Proor. Under the present assumptions,
E./n —d wp 1.

(c.f. Gleser’s correction note, [3].) There is therefore wp 1. a finite value of n such
that E./n < d*\./a, , which proves (a). (b) and (c¢) follow from Lemma 1 of
Chow and Robbins, [2], if we set

Yn = B/’ (n —m),  f(n) = na\./(n — m)aa

and ¢ = ao”/d’ for then, N(d) is the first value of n = m + 1 such that ya < f(n)/t.
Sincef(n) = 0,f(n) — » andf(n)/f(n + 1) — 1, their lemma obviously applies.

To establish (d), we build upon the argument of Chow and Robbins’ Lemma 1.
By definition of N(d), Ex_1/N — 1 > d*\y_1/ax-1 and Ey/N < d*\v/ax . Thus

(ax/d")(Ex/N) £\ £ (\v/Ly-)(awas/d") (Ex/N — 1).
Since ¢( - ) is non-decreasing,
g(axBy/d’N) £ gOw) = g(wawaBExa/(@Na)(N — 1)).

Since M* = A possesses non-negative second differences and approaches « as
n — «, there is a value of n, such that

Mcte — Ane = Mot — A" = Mgt — Anp > 0 if 7 = mo.

Thus, if n is suitably large (say greater than n1) Aayec > M . Since g(Ax) is the
largest value of n such that A, < Ay , it follows that g(Ax) = N if N = n;.On the
other hand, g(Aw)}< N + 2¢if N 2 ny (otherwise Ayy2. < Ay which cannot be if

N > m).
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Since N(d) — « wp lasd — 0,
limg.o [g(awEn/d’N) — 2¢]/g(ad’/d")
(2.10) < lima,o N(d)/g(ac’/d")
< lima.o [g(\wawoBrs/(N — 1) d'\y-1))/g(ad’/d")  wp 1.

Since (Ex/No"), (ax/a) and (Ax/M\y_1) all approach unity as d — 0, part (d) fol-
lows from (2.10) and Lemma 2.1 (c.f. 1609 the end of this section).

In what follows, we make use of the following abbreviations repeatedly:

If B is any matrix,

Amax(B) = the largest eigenvalue of B,
Amin(B) = the smallest eigenvalue of B,
tr (B) = the trace of B,
IBIl = Dsx(B'B)Y.
THEOREM 2.2. I'n addition to the hypotheses of Theorem 2.1, assume that

(2.11) maXigiga ||hi]|” tr (Ha'Ha) ™ — 0,
lim SUPnseo Nmax(Hn'Har) /Amin( Ha'H,)] < oo

and

(2.12) lime.o sups [{ 225217 |Bsl1*/ 25 (1Bl — 1] = 0.

(Here, [x] s the largest integer in x.) Then
limd_.o Pr [GX & RN(d)(d)] = .

CoMmMENT. Assumptions (2.11) and (2.12) are not as complicated as they
appear. The quantity Amax(Hn'Hyz)/Amin(Ha'H,) is called the conditioning num-
ber of H,'H, and is a measure of how “close” this matrix is to being singular. If
this number is large (but finite), H,'H, is non-singular, but the solution of the
equation H,'H,r = y poses numerical difficulties which increase as the condition-
ing number increases. The second part of (2.11) merely places an upper bound on
the sequence of conditioning numbers associated with the matrix sequence
{H,'H,}. The first part of (2.11) is equivalent to

max: <i<a [|hill*/ 271 [|hsl|* — 0

when the second part of (2.11) holds. This assumption places a limitation on the
rate of growth of the sequence {||%,||*}. Finally, (2.12) requires that

limgao 2252 gl 2o Ill” = 1

uniformly in n.
In his correction note, [3], Gleser relies on the assumptions that n"H,'H, con-
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verges to a positive definite matrix =, and that
lim, max; <i<x ||k:|*/n = 0.

It is not hard to see that these conditions imply conditions (2.11) and (2.12).
In fact, the positive definiteness of = implies that its conditioning number is
finite and it is clear that the conditioning numbers of H,'H, converge to =’s. To
prove the first part of (2.11), we notice that the second part of (2.11) implies
that

maxigiga ||hill” tr (Ha'Hy) ™ < K maxigiga [|hal®/ 251 (1]
Under Gleser’s assumptions,
lim sup, [max<i<a [|hil|*/ 2251 [|]|*]
= lim sup, [0~ maxigign [|Ball"/n7" 2251 [|Rs]*]
= 0.
To prove that Gleser’s assumption implies (2.12), it suffices to show that
li Z[ﬁ(l+c)] hs 2/27}_ s 2 - 1
(a) 1M;.»0 SUPR =1 ” 3” 7=1 “ 7” =
and

(b) limeoo infu 2252 [|Rs]*/ 205 1hs]* 2 1:
Given ¢ > 0, choose M so large that

(1—e)tr(2) a7 2ialhll” £ (1 + ¢ tr(2)
and
(I4+c¢) Sl +c)+1]/n=(1+e(l+c) forall |¢ =1
whenever n = M. Since

sup, R» = max {Sups<eu Bn , SUPn>ou Ra},

we have
limeao supa 2t ™ |[hgl|/ 2051 ||
< limg.o max {1, supmsax ([(1 + e)n]™ 2 EEF™ |[hy)12 /0 D0 a [hill®)

(L + on + D)}
< lime,o max {1, (1 4+ €)*(1 + ¢) tr (2)/(1 — €)(tr (2))}
= (14 &1 —e).

Since e is arbitrary, (a) follows and (b) is proved in the same way.

Proor or TueoreM 2.2. Y, = ¢ "U,'P,U, has an asymptotic x* distribu-
tion with & df (where U, = (H,.’H,,)%(X,, — X)) has an asymptotic normal dis-
tribution if P, is the projection onto the k& dimensional sub space spanned by
the columns of (H,'H,)*G":

(2.13) Py = (H.'Ha) " 'G(G(H, Hy) G G(H Ha) ™
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By virtue of Lemma 2.3 (Anscombe’s theorem) and Theorem 2.1, Yy, con-
verges in law to a x;’ rv as d — 0 if we can establish C2 of Lemma 2.3 for the
sequence {Y,}. Once this is done, Theorem 2.1c implies

Pr[GX ¢ Ry] = Pr [Ynw < d\v@/o]
—-Prix’=<al=a as d—0.

To establish (2, it suffices to show that for any positive ¢ and 5, there exist
values of » and ¢ such that

(2~14) SUPn >» Pr [Sup(l—c)ngn'§(1+c)n ”Un - Un’” ; 5] = 7.

For then, if n and e are given, we can, by virtue of U,’s asymptotic normality,
(1) choose » and K so large that

(2.15) Pr(|U.] > Ké]l < n/6 forall n = »,

and
(2) choose c so small that

(2.16) SUPa_gn<w satom |Par — Pa| < ¢*/3K° for allm  (c.f. Lemma 2.4),
and
(2.17)  SUPas, Pr [SUDG_gngn <oy || Un — Un|| = min (6*/12K, ¢/3)é'] < 1/6.
It is true that
Yo — Yo = ¢ [Us'PalUn — UnPnUs]
o {(Un — Un)(Pn — Po)(Un — Un)
— (Uw = Un)'Pu(Uw — Us) — Un'Pu(Un — Us)
— U (Pw — Po)(Uw — U,) — Ua(Pw — P,)U,
— (Un — Ua)'PulUs,}.

Since P, is a projection, |P,|| = 1, so that
SUP(—onzn <nte) | Yn — Yol
S 0 [SUPa-angw saron (3|Us — Unl® + 4|ULl|- U — Ul
+ [Pw — Pull | Ua|*}]-
Pr [Supa-on<n <nato |Yn — Yar| = €
< Pr [SUPa-cinen’ <nare 30 ||Un — Un|® 2 ¢/3]
+ Pr[supa—on<n <aron 40| Ul |Un — Un|| Z ¢/3]
+ Pr [SUPa-ongn <nasey 0 ||Par — Pall-||Ul” = ¢/3]
= 1° 4 2° 4 3°

1\
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By (2.17),
1°=<9/6 <9/3 if n=y,
20 é PI‘ [”U'n” = KG*] + PI‘ [sup(l—-c)ngn’_s_n(l+c) 4”Un - Un’

< /3 (by (2.15) and (2.17)) if nz=y,

| = o*¢/3K]

and finally, if n = »
3° < Pr [(*/3K))||Ua|* = /3] = Pr [|U.| = Ke¥| < /3.
Thus
SUPaz, Pr [Maxa ogngn satan [ Yo — Y| > ¢ <
where establishes C2 of Anscombe’s theorem. It remains to prove (2.14): Since
Pr [maxg-ongw caron [Un — Un| > ¢

(2.14a) < Pr [maxn<n <aton |[Un — Unl > €

+ Pr [maxa-gngn <n |[Un — Unl|| > ¢,

it suffices to show that for any positive e and 7, there exists a (large) value of
v and a (small) value of ¢ such that both terms on the right side of (2.14a) are
dominated by 5/2 for all n = ». We will show this in detail for the first term:

Un = Ba! 2 71 h(j)
where B, = (H,'H,)™ = (D% h;h;")™". Therefore, if n' > n
Uw — Un = B4 X Knaho(§) + Bh(B. — Ba)U,
which in turn implies that
Pr [maxa < caron [Un — Unl|l > ¢
(2.18) < Pr [maXagw saton [|Bwll' | X5 ho(9)]| 2 /2]
+ Pr [maxszwzason |[Bh- B — BR-IU = /2l

Since ||B,|| = ||Bw|| if n < 7/, the first term on the right side of (2.18) is dom-
inated by

Pr [MaXn <w <nitie) || 2jons V(5 || Z ¢/2]Ba]
which, in turn, is dominated by
(2.19) 45" B 200 Il

by virtue of the vector version of Kolmogorov’s inequality (Lemma 2.3b). In
turn,

1B2*]I> = Amax(Ba) < const X (tr B,™)™"
const X (D=1 ||Bi]") (by virtue of (2.11)),
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so that (2.19) and hence the first term on the right side of (2.18) is dominated by
const X [ 22525 hsl*/ 2= [kall* — 1).

By virtue of (2.12), if n and € are given, we can therefore choose ¢ so that the first
term on the right side of (2.18) is less than 5/4 for all n. Now for the second
term on the right side of (2.18):

IBAA 1B = BRI S IBall* (B! = (B~ + Zilea i)'l
= IMHT = (I 4 San)l 1M
< 1M 4 San)t = I
where
(2.20) Mo =(8B:™),  Sawr = Bl Liis hih' M,

and B, = ||Bal|. By (2.11), ||8.B.7"|| is uniformly bounded. Since Sy . is non-
negative definite and since we use the Apax-norm,

(T + Suw)? = Il = (1 + [[Sam])! = 1 = §[1Samll.
In turn,
1Samll < IMa7IBa 2o i nst hl* = B 2= [Ihl"
Since
B i mis |Ihsl|* = comst X [ 2521 [|hsll*/ 231 [1al* — 11,
it follows from (2.12) that
SUPa MAXn<w’ nate) | Bh/]-[|Ba* — B2} =0 as ¢—0.

Given n, choose K and » so large that supaz, Pr [||U.]| Z K] < 5/4. Choose ¢ so
small that

SUPa M8Xn <0 nave [ B[ [Bat — BRY|| < ¢/2K.
Then
SuPazy Pr [MaXegw nato [|Ball- (B — Ba)Uall 2 ¢/2]
< supas, Pr [|Ua]] 2 K] £ 9/4.
This shows that
SUPnzy PT [MaXn <nr <nate [Un — U]l > €] < /2.

The other term on the right side of (2.14a) is treated analogously. This completes
our proof.

The following lemmas were used to establish Theorems 2.1 and 2.2:

LevMa 2.1. Let {\,} be a sequence of posttive scalars such that for some integer
c=1,
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(a') A S Ny —> o,
(B) Nettmy — Moty = Nenin) — Nen
for all n.
Let g(A) = max {n: N\, < A}, (A = \1). Then

lima,o g(Ay(4))/9(A) =1 if limswy(4) = 1.

Proor. Let ¢(t) be the continuous, piecewise linear function taking the value
Aen Whent = n (n = 1, 2, ---). By virtue of assumptions (a) and (b), ¢(-) is
convex and approaches « as ¢ —> o so that ¢(-) is strictly increasing beyond
some integer #, . Let ¢ > 0 be given. Choose A, so large that

(1—¢ =2y(4) =(1+¢
and
(1 —e)d) >t if A > Ao,

Since ¢( - ) is convex, its graph lies above the line of support through (¢, ¢(%))
with slope ¢z(t)(¢z(t) is the value of ¢’s right hand derivative at ¢.) In par-
ticular, if

o(t) = A(1 —¢) and ¢(f) = A(1 +¢)
then
0 = (& — t)er(h) = (k) — o(h) = (2¢/(1 — €))o(t).
Hence,
0 = t/ti — 1 = (2¢/(1 —€))le(t)/(e(tr) — N)]l(tr — 1)/81]
[e(t) — (1))/(t — 1)) /r(tr)
= (2¢/(1 = €))le(t1)/(e(t) — N)][(8 — 1)/ (8],

since the slope of the secant line connecting the point (1, ¢(1)) with (&1, (%)) is
no greater than the slope of the tangent at (¢, ¢(4)).

But o(#1) = (1 — €)A4 s0 that o([t1]) = Aoty = (1 — €)4 = ¢(4). Hence
et — 1) = cfts] = g((1 — €)4). Similarly, (1 + )4 = (1) = o([t] + 1) =
Netz1+1 SO that cts + 1 = cft)] + 1 = g((1 + €)A). Thus, if A > 4,,

lg((1 + )4) — 1]/[g((1 — e)4) + ¢
Sh/h =1+ (2/(1 = €))le(t)/(e(t) — N)][(82 — 1)/t].
Since t1 , ¢(#1), 9((1 + €)A) and g((1 — e)A) all go to « as A — «, we see that
9((1 + e)A4)/g((1 — A)(1 + o(1)) = 1 + (2¢/(1 — €))(1 + o(1))
as A4 — oo,
which implies that
g((1 + €4)/9((1 — e)4) =1 4+ (2/(1 — ))(1 + o(1)) as A4 — =.
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Since g( - ) is non-decreasing,
[o((1 + €)4)/g((1 — ) A)]™
= 9(4y(4))/9(A) = g((1 + 9A)/g((1 — &A) if 4 > 4.
Therefore, for any ¢ > 0,
lim sup .. g(Ay(4))/g(4) = 1 + 2e
and
lim infs.. g(Ay(4))/9(4) Z (1 + 2¢)7.

The conclusion follows.

Lemua 2.2. If maxicica ||| tv (H.'Ha) ™" — 0, and if T, is any sequence of
m X m orthogonal matrices, then

(a) ToU. = ,,(H,.‘Hn)é(X’n — X)) converges in law to an m dimensional vector
random variable whose distribution is N(0, o’T).

(b) If P, is any sequence of projections with k dimensional ranges, then

Y, = ¢ °U,'P,U,

converges in law to a chi-square random variable with k degrees of freedom.

Proor. We prove (a) by a trivial extension of Corollary 3.2 in [3]: Let £ be
any m vector. Then

& exp £ T Un = & exp 4||&]| D iy bast(2)

where v(7) = 2(¢) — h'X is the residual associated with the ith observation
and

bai = [|E|7(T0') (Ha'Ha) ™ *hs .

Since

IEI(Tw') (HW Ha) ™4 2t hihs®) (Ho HL) TN T,%)
T/ 118 = 1

Dot bl

and
onel® = [[CHWH) T PRll® S [[7il Mo (Ho Hon) ™
< |lhd|l® tr (H'H,) 7,

the hypothesis of the lemma guarantees that maxi<;<. ba: — 0. Theorem 3,
p. 103 of [4] applies: ¢ >y byw(i) —1 N(0, 1), hence

exp ' T Uy = exp 4[] 21wt bai(4) — exp — (o*€]|*/2)

which in turn implies that T,U, — N(0, ¢°I).
(b) follows immediately from the fact that there is a sequence of orthogonal
matrices, T» , which reduce each P, to the same diagonal matrix, D, having k
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ones and m — k zeros on its diagonal: T,P,T,' = D;n = 1,2, -+ . Thus
Yo = ¢ Un'PalUn = ¢ (TuUn)'D(ToUsn).

Since ToU, —1 N (0, ¢’I), Y, must therefore converge in law to Xk

Lemma 2.3. (a) Let {N(t);t = 0} be an integer valued stochastic process and
suppose g(+) is a non-decreasing integer valued function which approaches + « as
t — «, having the further property that N(¢)/g(t) — 1 in probability. If {¥a ;
n = 1,2, ---} is a stochastic process satisfying condition C2 below, and if
limpse Pr[Y, = z] = F(z) at all continuity points of F, then

lime,e Pr[Yye < z] = F(x) at all continusty points of F.

C2: For any positive € and 7 there is a (large) value of v and a (small) value of
¢ such that

SUPn z» Pr {max(l—c)ngn’§(1+c)n IYn - Yn'l > 6} < 7.
(b) If {V(n);n = 1,2, - - -} s an independent vector process, then
Pr [maxegs || i Vill > ¢ = €72 58| Vill™

Proor. (a) This is a special case of Anscombe’s theorem 1 [1].

(b) This is an easy generalization of Kolmogorov’s inequality. The proof is
obtained by substituting norms and inner products for absolute values and
products in Logve’s proof, pg. 235 of [5].

LemMA 2.4. Let {hi, hy, - -} be a sequence of m dimensional column vectors
such that the matriz D_ 3% hih;' has rank m for some no . If

lim Supn Amax( 2=t hsh;") Mmin( D i=1 Bihi’) < oo

and
Timno [supn [ 22528 [|As]|*/ 2 [[Rs]*) — 1] = 0
then
limeoo [SUPn>ne MAX1—oyn<n’ <atorn |[Pn — Pal[] = 0
where

P. = B.}G'(GB.G")™'GB.},
Bn = (2 j=1hhi)™

and G is any k X m matriz of rank k.
Proor. Let C,, = B,}G* and E, = C.'C..
Then

P, — P = CoEJ'Ct — CuERiCh
(2.21) = (Cpn — Co)En (En — En)Ez)(Ca — Cw)’
+ CwE(Cn — Cw)' + CalEn (B — En)Ea71Cw
+ (Co — Cu)ER'C"
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Let b, = (2 71 [|hs]*)®. Then if n < n':
[Call* = 1GI"(1Ball = maba”,
(222) [[Ca — Cw| = [IG]-]B.} — B = [GI-IB'II
— (I + 8%a) B = G- 1Bl — (I + 8707,

where S¥ . = (B> Kan h;hi'Ba!) is nonnegative definite. Therefore, since
we use the Amax-norm,

1T =+ 850 =1— 1+ [SewlD)? = IS5l

But
8% wll S 1IBall 23204 1Bsl[* S mgba*(bre — ba")
so that
(2.23) [Ca — Cwll < mabs™*(bar — ba®).
(2.24) IEY = minBa) ™ £ ma(AminBa) " < Mohmax(Ba ")
< mgba’
and
|Bn — Ewl|| = |G(Ba — Ba)G'||
(2.25) < [|GI°|IBw|l- | Ba"Ba — I

< mebar(bar — ba)ba .
By assumption,
(2.26) lllnc_,o SUP, MAaX1—c)n <n’ <n(l+c) lb,.l/b,. - ].I = 0.

The conclusion of Lemma 2.4 follows when (2.21)-(2.26) are combined in the
obvious way.

3. Particular choices of the stopping sequence {\,}. The stopping rule de-
pends upon d, {\.} and {a.}. The “size” of the confidence ellipsoid depends upon
{\s}. The exact confidence level, o, depends upon d, {\.} and {a.}, whereas the
asymptotic level depends only on lim, @, . In this section, we will fix d > 0
and the sequence {a.}, and examine the effects on the size of the confidence
ellipsoid that are exerted by various choices of {\,}:

The volume of the ellipsoid R.(d) (c.f. (2.8)) is equal to a constant times
the product of the lengths of its semi-axis. We choose our units so that this con-
stant is unity. Then the volume of R.(d) is equal to the square root of the product
of the eigenvalues of d*\.G(H,'H,)™'G":

Volume of Ba(d) = (d®\a)**A.}
where A, is the determinant of G(H,'H.) 'G".
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Thus, if we choose
)\n — d—Z[v2/An]1/k’

the volume of R.(d) will be equal to V for every n.

On the other hand, the length of R.(d)’s longest semi-axis is equal to the
square root of the largest eigenvalue of d’\.[G(H.'H,)™'@"].

Thus, if we choose N\, = the smallest eigenvalue of [G(H,'H,) 'G']”", the
longest semi-axis of R,(d) will have length d.

From the computational point of view, neither of these choices of N\, are de-
desirable, since A, must be recomputed after every sample. If, however, we
allow ourselves to lose a bit of control over the size of R.(d) (say by only re-
quiring that the longest semi-axis of R,(d) be no longer than d) then

A = [tr G(H,'H,) '™

will do the trick. In the next section we exhibit a convenient algorithm which
relates Aoy1 to \.°.

It only remains to state the conditions under which A, T «© and Ap/Aay1 — 1.
For notational convenience we

DErFINE.

(3.1) Z. = G(H.'H,)'G".
TaeorEM 3.1. If
maxi<i<a ||hil|” tr (H.'Ha) ™ — 0
and
lim sups Amax(Ho'Ha) /Amin(Ha'Ha) < @
then \n T © and Au/Any1 — 1 for the following choices of \a :

(32) (a) A= (det =)~
(3.3) (b) M = Amin(Za ),
(3.4) (c) A= (trZ,)7

For choice (a), the volume of Ry 18 d*. For choice (b), the length of Rywy’s longest
semi-axis is d. For choice (c), the length of Ryw’s longest semi-axis is no greater
than d.

ComMENT. In order to apply Theorem 2.2 (i.e., to establish that Pr [GX & Ry @]
— @), it is also necessary that {\.} satisfy the ‘“convexity” condition of (2.5)
(that A..’s second differences are non-negative for some integer ¢). We will not
pursue this question but rather, carry it as an assumption where needed.

Proor oF TuEOREM 3.1. We begin by proving that all three choices of .
tend to «. To prove this, it suffices to show that

(3'5) )\max[G(HntHn)—th] g 0.
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The celebrated Courant-Fischer characterization of eigenvalues tells us that
for any unit vector u,

WG(HaHa) "G S Naax( Ha'Ha) |G
= Maox(Ha'Ha) Aoz (GG)
< tr (Ha'Ha) Mmax(GG).
By assumption, the right hand side approaches zero. Thus,
Mnax[G(H'Ha) "G = supjuy— w'G(Ha'Ha)'G'u — 0.

To show that A./Aay1 — 1, we will use the following notation repeatedly:

(3.6) B, = (H.J'H,)™, n Z m.
Since

(3.7) HipiHop = HS'Hy + hogihhs

it is easy to verify that

(3.8) But1 = Ba — (Buhat1)(Babag1)'/(1 + BnysBakingr).

(Multiply the right side of (3.8) by the right side of (3.7). The identity matrix
results after some algebra.) We also will make repeated use of the fact that

(3.9) “hn+1”2)‘maX(Bn) = 0.

To see this, we notice that Amin(Hn'Hn) = cAmax(Ha'H,) (by assumption) and
Mnax(Ha'Ha) = k7 tr (Ho'H,). Thus,

Mmex(Ba) = Nata(Ha'Ha)
< ¢/tr (Ha'Ha).
Since Ha'Hn = HpyiHut1 — hnpihng and since tr hnyihnis = ||haga]’, we have
1 Bnitl| Amax(Br) = €| Ansa]|*/[tr HosrH s — ||hua]
¢ Nnsal’/ DinBrir = [[na|’
&I hnsa]AmaxBrgz) ™ — 177
¢'[(|hnga])® tr Buya) ™ — 117

1A

IA

Since ||finsa||* tr Boy1 — 0 by assumption, (3.9) follows.
Pre- and postmultiplying (3.8) by G and G we find that
(3.10) GBou@ = (GB.GHN — (GB.G*) }(GBuhui1)(GBohnyr)’
H(GBAG) (L + haBahnin) 1 GBaG)Y.
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Letting M 41 = [det GB,1G| ™, we find that
(3.11)  (A/Mair)* = det [ — 2.7 (GBuhns1) (GBuhnsr) =
* ( 1 + h:u+anhn+1)~l]-

To show that \»/Auy1 — 1, it suffices to show that the trace of the second term
in the square brackets approaches zero:

tr (Zn}(GBuhni1) (GBakns1) T (1 + b y1Babnsa)™)
o 41BnG 20 GBobinga(1 + RlssBakings)™
é ”hn+1||2)\max(Bn2))\max(GtG))\max(zn—l .

(3.12)

But

Amax(Zn " 1/Amin(Zn)
= 1/ ain( GG )Nmin( Br)
£ 1/Amin( GG*)Amax(By).

Thus, the right side of (3.12) is less than or equal to a constant times
|71l Amax(Bn) (since GG is non-singular, its smallest eigenvalue is positive).
The conclusion follows by (3.9).

Let us now examine the case where

Ao = )\min(zn—l = l/kmaX(zn)o

If A and C are non-negative definite and ||z| = 1, then z'dx = z‘dz —
2'Cz 2 2'Ax — Mnax(C). Taking supremums over all such z’s,
(313) )\max(A) g )\max(A - 0) g kmax(A) - )\max(o)'
Since

(3.14)  Ma/Mart = Mhmax(Znp1)
= Mmax(Zn = (GBuhni1) (GBuhnia) /(1 + husaBahnir)
and since AAmax(Zn) = 1, it therefore suffices to show that
(3:15)  Madmax((GBnhnt1)(GBakni1)'/(1 + hn1Bahnss))
= Mhot1BnG'GBrhnsr/(1 + hoaBubayt) = o(1) as n—> w,

(We use the fact that Amax(2z") = 2'z if z is a vector.)
But

hn41BaG'GBuhnia(1 + has1Buohnsd) ™ S ([ hngs|"Nmax(Bn) 1 (Bn) Amax( G'G)
and
A = [)\max(zn)]—l é [)\min(zn)]_l é [)\min(GG‘)]—I[)\min(Bn)]—l-
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By assumption
[)\max(Bn)/)\min(Bn)]”hn+1”2 trB,—»0 as n— »

and this proves (3.15).
Next suppose A, = (tr =,)~". Then

)\;}H = {r GB,,,+1G‘
tr GB,,,G‘ — tr (GBnhn+1)(GBnhn+l)‘(l + h:;+1Bnhn+1)—l
)\"—1 "I' 0( ”hn+l”2)\max(Bn2))'

Since
At 2 Amax(Zn) = Main(GG ) Amin(Bn) 2 Amax(Ba),
it follows that
MMt = 1+ O(||hnsa]Amax(B))-

Again, apply (3.9).
To show that the three choices of A, are monotone: By (3.8),

det Znys = det GBrG' = det [GBG’ — (GBuhnsr) (GBahns1) (1 + hasaBahinsr) ']
= [det GB,GY] det [I — (GB.G") ']

where n = GBuhuis/(1 + hiy1Buhaya)l. The eigenvalues of I — (GB.G") 'nn’
are unity (with multiplicity ¥ — 1) and 1 — 7°(GB.G*) 'y (with multiplicity 1).
Thus

det =1 = [1 — 7(GB,G*) ] det =, < det =,

(since (GB.G*)™" is non-negative definite). This proves the monotonicity of (a).
Since Zny1 = GBniaG' = 2. — M, MuaxZns1 = AmexZn - The monotonicity of
(b) follows.
Since tr Zn41 = tr =, — 7'y < tr =, , the monotonicity of (c) follows.

4. Computational considerations. The stopping rule associated with the
sequential confidence set Ryw(d) requires that the least squares residual, E, ,
be computed after each datum is collected, and compared with the threshold

nd’\n/Cn ,

which itself must either be computed in “real time,” or else stored in memory for
every conceivable value of n.

When sampling terminates, the confidence ellipsoid, centered at GXy with
kernel [d\vG(Hy'Hy) G’ must be constructed.

In the next theorem, we exhibit convenient recursions which relate the n 4 1st
value of these quantities to the nth, for a particular choice of the norming se-
quence {A.}:
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TaEOREM 4.1. Let

(4.1) B. = (HJ'H.)7,

(4.2) Cn = [G(HH)T'GT,
(4.3) X, = B.H,'Z.,

(4.4) E. = ||Z. — H. X',
and

(4.5) A = {tr G(H,'H,)"'GY} .

We assume that the rows of G are linearly independent and that {hy , ha, -+ , hm}
are a linearly independent set. (We are maintaining the previously developed nota-
tion, so that H, isn X m, with rows hy', - - , h,' and Gis k X m.

Then the following recursions hold for n = m:

(4.6) By = Bn — (Buhnia)(Bahnsa)'/(1 + hnsaBahaga),
(47) Xupr = Xu + [Buhust/(1 + hoaBuhas)lle(n + 1) — hopnXal,
(48) En = En + [(n + 1) — hinX]Y/[1 + BhraBohail,
(49) Mok = M7 — BhaBaG'GBuhuit/(1 + hniBuhnir)
and
(410) Cnys = Cn + (CoGBuhins1)(CaGBulinir)’
(1 + his1Bahnys — Bhs1BnG'CoGBahinia) ™,

with tnitial conditions

Bm = (Hu'Hn)7,
(4.11) Xn = BuHn'Zn ,

En =0,

A L= tr G(H,'Hn)"'G",
and
Cm = (GB.GY)7.

Proor. The B, recursion has been derived in Section 3. Since X, = B.H.'Z,
for n = m and since

H:;+1Zn+1 = Hnth + 2(n + 1hat,
it follows that
Xn-H = Bn+1[Hnth + z(n + l)hn+l]
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and (4.7) follows after applying the B, recursion.
Boir = | Znyy — HopnXopa|
= 1Zn — HiXopal|" + lo(n + 1) — hopnXopal’
and (4.8) follows by applying (4.7), after a little algebra.
Akt = 8 GBpnG* = tr GB.G' — tr (gntrghsr)
where
(4.12) gnrt = GBuhny1/(1 + hiiBuhuir)t.

Since tr (g¢*) = g'g, (4.9) follows.

It is true in general that for non-singular symmetric matrices C, the matrix
C' — g¢' is non-singular if and only if ¢°Cg > 1.

In this case
(4.13) (€ —gg")™ = C + (Cg)(Cy)'/(1 — ¢Cy).

(To see the if and only if part, notice that (C™* — g¢*)x = 0 if and only if
x/||x|l = Cg/||Cqg|| and ¢g°Cg = 1. To verify (4.13), multiply the right side of
(4.13) by (C" — gg¢*). The identity matrix obtains.) Since C,, " = G(H,'H,)"'¢"
is non-singular for all n = m and since C731 = Cp™" — gnr1gss1 Where gnyq is
given by (4.12), (4.10) follows from (4.13).

5. Spherical confidence regions. There is something appealing about the
geometric simplicity of spherical confidence regions. If one is able to satisfy
stronger assumptions, the method described in Theorem 2.1 (which lead to an
ellipsoidal region) can be modified to this end. Besides requiring stronger as-
sumptions, spherical confidence regions are slightly less efficient (in an asymptotic
sense to be made precise shortly) than their ellipsoidal brothers.

In this section, the quantity

(5.1) a*(u, b2, <o, me)

is the upper 100a percentile of the random variable ) 51 u; Y, where the ¥;
are independent N (0, 1):

(5.2) PrD Y’ S a*(m, -, m)l = a

The following theorem generalizes Gleser’s main result [3], and compares the
“efficiency” of spherical and ellipsoidal confidence regions:

TaEOREM 5.1. Suppose there exists a sequence of real numbers, {\.}, satisfying
(2.5) such that

(5.3) MG(H.H,)'G* == (where = is non-singular with positive
eigenvalues M1, M2y 0y, p'k)
and suppose that the conditions of Theorem 2.2 are met. Let

(5.4) = a*(u, o, m)
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and let N(d) be the first value of n such that
(5.5) n By £ d\/an”,

where En vs the residual least squares error. Let Sn(d) be the sphere of radius d,
centered at GX,, :

(5.6) Su(d) = {£: ||t — GX.|" £ &),
and let Ra(d) be the elli'psoid:
(5.7) Ra(d) = {: (¢ — GX0) DWGHLSH,) G (E — GX,) £ aad’/an®)
where a, s any sequence such that
(5.8) ~ an—a*(1,1,--+,1).

The following conclusions hold:
(5.9) (a) a = limgs Pr[GX & Sy (d)] = limg.o Pr [GX & Ry@)(d)],
(5.10) (b) lima.o shortest semi-axis of Ry (d)/radius of Sxa(d) S 1 wp 1,
(5.11) (c) lima.o longest semi-axis of Ry (d)/radius of Sy (d) = 1 wpl,
(5.12) (d) limg.o Volume of Ry (d)/Volume of Sya(d) = 1 wp 1.

Inequalities (b), (¢) and (d) are all strict unless = is a multiple of the identity
matrix. (Gleser [3] proved the first half of part (a) for the special norming se-

quence A, = n.)
Proor. (a) By Theorem 2.1,

(5.13) lima.o d\vay/o’0na = 1 wp L.
By Lemma 2.2
(5.14) ¢ "U.'P.U.
= 7 N(GX — GX.)[G(H,H)'GTHGX — GX,) =1 D i Y7,
and
UL QuUn = (M/d*)(GX — GX,)(GX — GX,)

(5.15) =0 (GX — GX.)'= (226X — GX,)
=0 Y'Y = 2 hauYy

where

(5.16) P, = B,'GIGB.G'"GB.},
(5.17) Q. = \B.'G'GB,},
(5.18) Z. = G(H'H,)™'G"
(5.19) 2 = litnsw AnZn ,

g1, M2, -+ , s are the eigenvalues of =, and the Y; are independent, N(0, 1).
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By Theorem 2.2 and (5.13),
Pr[GX e Ry] = Proc *Ux'PyUy £ ayd\w/ax"s’] = Prix’ S a] = a

asd — 0.
Using arguments akin to those of Lemma (2.4), one can show that

(5.20) lim,..o SUP» MaXa—oyn<n’ <@t ||@n — @Qu|| = 0

under the present assumptions. The arguments of Theorem 2.2 can then be re-
peated verbatim for the rv’s U,’Q.U. . We conclude therefore, that

e U@y Uvay =1 D s pYi as d—0
so that
Pr(GX e Sx] = Pr(|GX — GXy|* = d7
(5.21) = Pr o Us'QuUx = v &*/6"]
—Pr[2 Y =a" = a

This proves part (a).
(b) Without loss of generality, suppose that

(5.22) = pe = e = > 0.
For notational conveneince, let @ = a*(1,1, --- ,1) and a* = o (pa, e, v o)
By (5.2)

(56.23) o = Pr(Xim ¥y < a] = Pr2 e (u/m)Y < 0™/l
= Pr X b (wi/m) Y7 = a™/ml.

Since uj/ue = 1 and pj/pm < 1, we have from (5.23)

(5.24) a £ Pr(2ia ¥} < a*/ml
and
(5.25) a2z Pri2ia Y = a%/ul
with strict inequalities holding unless p1 = py .

Thus,
(5.26) /oy £1 and o*/am = 1

with strict inequalities holding unless p1 = py .
Let the (random) eigenvalues of AvZxy be denoted by pi(d) = pe(d) = --- 2
we(d). Since \.Z, — Z, it follows that \yZy — Z wp 1, as d — 0 so that

(527) limg,,o Mj(d) = Uy wp 1.
The length of:RN(d)’s largest and smallest semi-axes are respectively

(5.28) [u1(d)an/ax™1 d
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and
(5.29) () ax/ax"] d.

The radius of Sy(d) is d, so parts (b) and (c) follow from (5.27) and (5.26)
(since ax/ax™ — a/a* wp 1), both inequalities being strict unless u1 = m (i.e.
unless T is a multiple of I).

(¢) We base our conclusion on the following lemma which we will prove later:

Lemma 5.1. Let {e(t); ¢ = 0}, {Y(¢);¢ = 0} and {=(¢); ¢t = 0} be stochastic
processes on the non-negative reals. For each t, e(t) is real valued, Y (t) is a k-vector
and Z(t) is a k X k positive definite matrix. We assume that there is a constant, e,
a non-negative function, o(t), a constant positive definite matriz =* and a spherically
symmetric k-dimensional normal vv, Y, such that

(1) lim,me(t) = ewp 1,

(i) Y(¢) = Y,

(iii) limyse 2(t)/0(t) = =¥ wp 1 and

(iv) Pr|=*'Y|" = 1] = Pr|Y|* < .
Then,

lime.o v{[E[* < o(OI/AZ7H0)E® < e(0)] 2 1

with strict imequality holding unless Z* 1s a multiple of I, where v[-] ts the k-di-
mensional Lebesgue measure of the set in the square brackets.
To apply the lemma to the case at hand, let

t=1/d, 2(t) = Zxa (2, = GHSH,)7'G"), Y(t) = 25 (GX — GXww),
e(t) = avaiva d’/axa , e=a(l,1,--- 1)
and o(t) = 1/£: By (5.14), (5.5) and (5.3),
lim e 2(4) /o(t) = limgso Ay Zxa/ Mva@d’
=3/’ wp 1,

so (iii) holds with =* = =/a*s".
To establish (iv),

Prz**Y|’ < 1] = Pr[|Y|* < ¢] = Pr[¢ "Y'2Y < 0] — Pr[¢*Y'Y < a] = 0.
(i) and (ii) follow from earlier results. Thus,
lima.o v[|E]* £ F/VEZN@wE S avd \w/ax™1 21 wpl

with strict inequality holding unless Z is a multiple of I.
Since Lebesgue measure is translation invariant,

lima.o v[Sn(d)]/¥[Bx(d)] = 1 wp 1

with strict inequality etc., ete.
Proor or LEmMma. It suffices to show that

(5.30) YE® S 1] 2 A[E=TTE S o
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with strict inequality holding unless =* is a multiple of I: For then,
YIE = e(O/AUIETHOE® < e(t)]

= (VlIEI° = o(D)/7[E(e()2")7E < ]}
{v[E(e()Z*) 7 = el/vEZT(1)E = e(D)])

= {(7lIE” = o(D]/7[E(e()2")TE = e}
AY[EZ*TE Z e/ (Z(0) /(1)) e (D]}

= {vlll&* = 1)/~[E2"7% = €]}
AY[EZTE S /Y (2(1) /(D)) T)E S e(D)])

The second factor tends to unity wp 1 and the first is greater than unity by (5.30)
unless =* is a multiple of I.
Therefore

lime.o YI[|E]* £ o(OI/AZ0E < e(t)] 2 1.

To prove (5.30), let Z = =**Y.

Then Z is normally distributed with a density whose surfaces of constant density
are the ellipsoidal surfaces £=* ¢ = c¢. Let R(e) be the ellipsoid [¢'Z* 7't < ¢
and let A be any Lebesgue measurable set whose volume is the same as R(e).

(5.31) Pr[ZeR(e)] —Pr[ZecA]=Pr[ZeR(e) — Al —Pr[ZeA — R(e)].

Since y(4) = y(4A — R) + v(AR) = v(R) = v(R — A) + v(RA), we see
that v(A — R) = y(R — A). Since the density function of Z is uniformly larger
over R(e) — A than over A — R(e), (5.31) is positive unless v(4 — R) +
v(R — A) = 0. Since the density of Z is everywhere positive, the last implies
thatif Pr[Z ¢ R(e)] = Pr [Z ¢ A], then y(A4) = v(R(e)) with equality holding if
and only if y(4 — R) + y(R — A4) = 0. (5.30) is the special case where
A = [||g* £ 1]. For, by (iv),

Pr{|Z|* £ 1] = Pr(Z'2*"'Z < ¢
or equivalently,
Pr(ZeA] = Pr[ZeR(e)].

Since y(A — R) + v(R — A) = 0 if and only if A = R(e), the conclusion
follows.

6. Application to hypothesis testing. The method of constructing fixed size
confidence sets can be immediately adapted to the problem of constructing
sequential tests of the general linear hypothesis. The essential idea is quite
simple and was pointed out to me by H. Robbins (private communication):

Suppose one wishes to test the hypothesis

HoZGX=£o
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against the alternative
H, : |GX — & > 2r.

Suppose that the fixed size confidence region Ry(d) is constructed according
to the methods of Sections 2 and 3 in such a way that Ry(d) is contained inside a
sphere of radius r. Consider the test which accepts H, if and only if Ry covers & .
The size of this test is equal to

Prreject Ho| GX = &) = Pr k2 Ry(d)| GX = &)]
(6.1) = Pr[Ry(d) failstocover GX |GX = &]
=1 — Pr[GX ¢ Ry(d)].

On the other hand, if ||& — &|| > 2r, Ry(d) cannot simultaneously cover £ and
% and so,

(6.2) Prreject Hy|GX = &
= Pr[Rx(d) covers &|GX = &] = Pr[GX ¢ Ry(d)].

Thus, whatever the exact confidence level of the set (call it a(d; X) =
Pr [GX e Ry(d)]), the aforementioned test has size equal to 1 — a(d; X) over the
null hypothesis and power of at least a(d; X) for all alternatives at a distance 2r
from the null hypothesis. If the distribution of the residuals, v(n), does not depend
upon X, then a(d; X) does not depend on X so a(d; X) — a uniformly in X as
d—0.

7. Exact confidence levels for the normal case. If the residuals are normally
distributed, it is possible to derive useful formulae for the exact coverage prob-
abilities associated with the regions Ry (d) which were described in Section 3.

The main result of this section is

THEOREM 7.1. Let 2(n) be a sequence of real valued random variables of the form

2(n) = ha'X + o(n) n=12--,

where the v(n) are independent, N (0, ¢°), the h, are known m-dimensional column
vectors and X is the unknown regression vector. Let X, be the least squares estimate of
X based upon the first n observations and let E, be the associated residual error.

Let G be any k X m matriz of rank k, let N, be any sequence of non-decreasing
positive numbers and let H, be the n X m matrix whose rows are B, Be', - e, Rat
We assume H, has rank m for all n = m.

Let N be the first integer greater than m such that

E. £ d\an/an
where a, is any sequence of positive numbers, and let
Ra(d) = {£: (¢ — GX.)'[G(H.'H)7GT
(F—GX)) =dN) (n=m+1,m4+2,---).
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Then the following conclusions hold:
(a) a = Pr[GX ¢ Rx(d)]
depends upon d and o through their ratio p = d*/d.
(b) a(p) = Pr[GX ¢ Rx(d)]

(7.1) = Prixd < Mol + Zaenti Prap S x° = Mat10l@n(p)

where xi is a chi-square rv with k df,

(7.2)  Quin(p) = Fa(0), n=1,2---,
Fi(t) = 1 — (2/m)} [ a7 ay, t<0,

(7.3)  Fan(t) = Fa(0) — (2/n)}
[lobns=O} (B (0) — Fo(u’ — pBar + 0l du, ¢ < 0;
B = (m + 1)\ny1/@mn
and
(74)  Ba= (m + W Ania/Gnin — (M + 1 = Dhntns/Gmpns, 7> L.
(¢) Let
(7.5) aulp) = Prixd = Amuo] + Litmta Prhp = xi” = Ni110lQi(p).-

For every M = 1,

(7.6) au(p) £ a(p) = aul(p) + 2 i-mrur1 Qi(p)-
(d) Suppose0 < v < §. Let K be any integer such that
(1)

(7.7) 8 = 8(v, p, K) = infjzep {1 — [(2/m)((1 — 2v)/7"0°8:%)1*
— o8y (og (1 — 2v) ™1} > 0

and
(ii) infjzx (Bitr — Bi) = 0.
Then for all M = K,

(7.8) au(p) = a(p) < au(p) + [A(v, p, K)/Bul exp — [vpb 2.5 B
where
A(y, 0, K)
(7.9) = (vo0) " exp —vp[ i Bi{(1 — &) — [(2/m)((1 — 2v)/7'0’8:)1
— [(vo8) ™ log (1 — 2v)7'I}1.

Parts (¢) and (d) furnish very useful approximations to the coverage prob-
ability a(p). Typically, the sequences, As , which we discussed in Section 3 go to
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o like n (or faster) so that 8, behaves like n and D=1 B; behaves like n’. For
moderately large values of p, @y (which in any event furnishes a lower bound for
a), is going to be close to @ when M is small, and (7.8) furnishes a useable esti-
mate for the M-term truncation error.

Computations are in progress for various choices of the A, and a, sequences and
will be reported upon in the near future.

We prove Theorem 7.1 via two lemmas:

Lemma 7.1. Assume normal residuals.

(a) If 7 £ n, the random variables

Knim — X1 and  [2(m + J) — hmgiXmiical

are independent.
(b) Forj = 1,2, .- the random variables

Yi = le(m + §) — hiriXmsioil/o(1 + hisiBumpithmsi)?

(where B, = (H,'H,)™") are independent, N(0, 1).
(¢) For every n = j,

—2 i 2
0 By = 2 4a Vi

is independent of Xpin .
Proor. (a) By (4.1), (4.7) and (2.1a),

8le(j) — h'X;allX; — X1' = 8l(j) + h'(X — X,00)]
(7.10) (I = Bjuahihi'/(1 + hy'Bjahi) ) (X — X)
+ Bjah(5)/(1 + hi'Bji_ihy)]*
provided j = m + 1. A .
Since 8(X — X, )(X — X;_0)! = Cov X;.1 = o’ (H!_1H,; 1) = ¢’B,_1, the
right side of (7.10) vanishes.
Since

A

X — X = [I = Bohnyshlhy1/(1 + BoiiBoba)( X — X)
+ Bnhn+lv(n + 1)/(1 + h:L+IBnhn+1)

when n = m (cf. (2.1a) and (4.7)) and since v»(n + 1) is independent of
2(j) — hi'X;_1 when n = 7, the independence of (2(j) — h;'X;_1) and (X, — X)
implies the independence of (2(j) — h;'X;_1) and (X.41 — X). Part (a) is thus
proved by induction.

(b) The mean of Y; is clearly zero and its variance is one. By part (a) Xmin1
is independent of Y;if n > j.

(¢) By part (a), Xmin is independent of Y1, Yy, -+, ¥; and hence, is inde-
pendent of »_i_; Y. By (4.8) the last is equal to 0 By -

LemMMA 7.2. Let {B.} be a sequence of positive numbers and suppose

infngK 6n+1 - 61; g 0 Then
(7.01)  Ymepprexp —(2i=1B;) = Bu exp —(2_ia'B;) o M =z K.
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Proor. Let f(t) be the continuous piecewise linear function defined over
(0’ °°) such tha'tf(O) = 07f(n) = Bn (n = 1’ 27 "') and f,(t) = B0 — :B'n—l
(n — 1 <t < n). Then f is non-negative so that

F(t) = [of(u) du

is non-negative and non-decreasing. When ¢ = K, the graph of f( -) lies below the
graph of the staircase function which takes on the value(s) 8,41 in the interval(s)
[n, n + 1]. Thus,

F(n) - F(K) = Z;=x+1ﬁj if »n> K.

On the other hand, if ¢ = K, the graph of f( - ) lies entirely below the graph of the
staircase function taking the value(s) 8, in the interval(s) [n, n + 1). Thus,

F(n+1) — F(K) 2 27x8; if nzK.
Thus for alln > K,
(7.12)  F(n) — F(K) £ 2 j-xnBi < F(n + 1) — F(K) — Bk,
so that
(7.13) 2 n-myrexp — D7 B;
< lexp (F(K) — 2518))] 2Zn-unexp —F(n) if M 2z K.

For all positive values of ¢, the graph of exp —F( - ) lies above the graph of the
staircase function taking the value(s) exp —F(n 4+ 1) in the interval(s)
[n, n + 1) so that

(7.14) 2n_wnexp —F(n) = X a_wexp —F(n + 1) < [% [exp —F()] dt
Lettingu = F(t),du = f(t) dt = f(M) dtif ¢t = M = K so that
(7.15) [ lexp —F(®)]dt < [f(M)]™ [fon € “du = ¢ /y
The right side of (7.12) implies
(7.16) € "™ /By = Bu"exp —(F(K) + 275 8;) if Mz K.
Combining (7.13)—(7.16),
Dm-msrexp —( 27 B;) < Bu texp— (X516 if M2 K.
Proor or THEOREM 7.1.
a = Pr{GX ¢ Ry]
=D aemPr[GX eRy|N = n]Pr[N = n].

Since the event [N = n] is in the Borel Field induced by therv’s By, B, - -+ , Ea
and since the event [GX ¢ B,(d)] isin the Borel Field induced by GX, , which by
Lemma 7.1¢, is independent of the first Borel Field, we have

(7.18) o= 2 mmp Pr[GX ¢ Ry(d)] Pr [N = n].

(7.17)
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But
(7.19) Pr[GX ¢ Ro(d)] = Prx £ Mop).
The event [N = m + n] occurs if and only if

i1 <j<min [B; — N d'/aj] > 0
and
Em+1l - (m + 'n))\m+n dz/am-l-n é 0.

Since 0 Emy; = D i1 Y (by Lemma 7.1¢) we see that I[N = n + m] occurs if
and only if

mins gjcn { 231 ¥i¥ — [(m + §)Nniip/ (@mas) ]} = ming gjen [ 23— (V.2 — pB8)] > 0
and

(7.20) 8p= 20 [¥YP— o8]0

where {Y;;j = 1, 2,---} is a sequence of independent N(0, 1) rv’s. Thus,
Pr[N = m + n] is strictly a function of p = d*/c”. Combining this result with

(7.18) and (7.19), we obtain (a) of Theorem 7.1.
To prove part (b), we notice that

(7.21) Pr[N=n]=Pr[N >n —1] — Pr[N > n].
Combining (7.21) and (7.18), then summing by parts we see that
(7.22)  a(p) = Prxs’ £ Mut16] + 2 memts Pr Aap £ xi” < May10]Qn(p)

where @.(p) = Pr [N > n]. This establishes (7.1).
The event [N > n 4+ m] occurs if and only if

minigjga { 23 (Y — pB:)} > 0
or equivalently, if and only if
maXi<;<n {21;1 (0Bi — Yiz} <0.

Let us now define a random variable T, , which is equal to S, until S, makes its
first zero upcrossing. Thereafter, this rv will stay ‘“frozen” at the S process’ first

non-negative value:
DEFINE. Ty = pfy — Y7

(7.23) Topr=Ts if T.=0
=T+ (pBasr — Yaur) if Ta <O.
{T, ;n = 1} is a Markov process. The transition probabilities are
Pr(Towpm St|To = s
(7.24) = if 0<s=t
if 0<s and ¢t <s

= Pr [p,B,.+1 - Y3.+1 é t — S] lf s < 0.

p—t

[=]
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We study the T, process because
(7.25) Pr[N >n + m] = Pr[T. < 0]

If we denote the distribution of T, by F.(t)(=Pr[T. £ {]) we see that for
t =0,

(7.26)  Fa(t) = Fu(0) — [2Prlofays — Yo > t — sl dFu(s)
where Fi(¢) = Pr[Vy > pB:1 — t]. Since
Pr[pass — Yias > £ — o] = (2/m)? [{nininim oot 12 gy
we see that for ¢t £ 0,
Pi(t) = 1 — (2/m)} [P e ay,
Pra(t) = Fa(0) = [Lgpnyin (2/7) F [P0 4  dy dF (s).

Make the change of variable: 4 = (pBnt1 — t + ) ¥ after integrating by parts
(F ., is absolutely continuous as can be proven by induction), and equation (7.2)
results. By (7.25)

Qn+m(P) = Fn(o);

thereby establishing (7.3). To prove (c), we use (7.1): The M-term truncation,
au(p) defined by (7.5), must be smaller than a(p). Since the coefficient of @x(p)
is no greater than unity, the remainder term is bounded by > a1 Qu(p),
thereby establishing (7.6).

To prove part (d), we point out that one can prove by induction that for
n=1,t<0and0 < v < %, Fa(t) £ A, exp vt, where

(7.27)  An = exp —yp[ 2L j=1 B5{1 — [(2/7)((1 — 29)/7"s’8)]
— [(v08;) " log (1 — 2v)™ '}}1.
In fact, by (7.2),
Fy(t) = 1 — (2/m)* [P ay

= (2/m)} [opme ™ du/2u’

< (2/m) 120080 7] [ €7 du < [(2/7) (0Br) ]V
if0 < v < %andt = 0. Therefore,

Fi(t) < {1(2/m)(oB) 7] + (1 — 29)7 e "
= {1+ 1(2/m)((1 — 2v)/eB)] (1 — 2v) """,

Since 1 + z < ¢, we conclude that Fi(t) < A:”’. Continuing by induction,

suppose that F,(t) < A.e fort < 0. By (7.2),
Fon(t) < All — (2/7r)%f(()pﬂn+1—t)i e—1/2y2 dy
+ (2/m) ! [ exp (—1/20" + vy" — ¥oBass + ¥t) dY]
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< (Anexp —vpBasr) /(1 — 29)H1 + [(2/7)((1 — 2v)/pBns1)]"} exp 4t
< Aulexp { —vpBat1 + log (1 — 2y)~*
+ [(2/m)((1 = 27)/pBas1)] *}] exp vt
= Ap4exp vt.
In particular,
(7.28) Quin(p) = Fa(0) = A,
If K is chosen so large that
8 = 8(v, 0, K)
infizrn {1 = [(2/7)((1 = 2v)/7""8;)]* — [(v6B,) ™ log (1 — 2v)™ ')} >0,
and if n = K + 1, we have, by (7.27),
An < [exp —vp 25 Bi{(1 — 8) — [(2/m)((1 — 2v)/¥%°8;)]*
(7.29) — [(ve8;) ™ log (1 — 2v)™ "} ][exp —vpd D71 8]
= A%y, p, K) exp —vpd 271 8; .

I

Thus, if M = K is chosen so large that
infjon (Bja — B5) 2 0,
we have by Lemma 7.2, (7.28) and (7.29) that
2oiemiwir Qi(p) £ 2w A;
< A%y, 0, K) 201 [exp —vpd 22j= B3]
< (A™/xpdBu) exp —vpd D75 B;
= (A(%, p, K)/Bu) exp —vpd 23" Bi
where A (v, p, K) is defined by (7.9).
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