DENUMERABLE STATE MARKOVIAN DECISION PROCESSES—
AVERAGE COST CRITERION'

By Cyrus DERMAN

Columbia University and Stanford University

1. Introduction. We are concerned with the optimal control of certain types of
dynamic systems. We assume such a system is observed periodically at times
t=20,1, 2 ---. After each observation the system is classified into one of a
possible number of states. Let I denote the space of possible states. We assume I
to be denumerable. After each classification one of a possible number of decisions
is made. Let K; denote the number of possible decisions when the system is in
state ¢, ¢ € I. The decisions interact with the chance environment in the evolution
of the system.

Let {Y} and {As}, ¢ = 0,1, - - -, denote the sequences of states and decisions.
A basic assumption concerning the type of systems under consideration is that

P{Yu1=7|Y0,h0, -+, Y =14 A =k} = qis(k),

for every 7, j, k and ¢; i.e., the transition probabilities from one state to another
are functions only of the last observed state and the subsequently made decision.
It is assumed that the ¢;;(k)’s are known.

A rule or policy R for controlling the system is a set of functions
{Di(Yo, Ao, -+, Y,)} satisfying 0 < Dy(Yo, Ao, -+, ¥s) = 1, for every k,
and D> &5 Dy(Yo, Do, -+, Y, = 4) = 1, for every history Yo, Ao, ---,
Y. (t=0,1,---). As part of a controlling rule, Di(Y,, Ao, ---, Y,) is the in-
struction at time ¢ to make decision k& with probability Dy( Yo, Ao, - -+, ¥;) if the
particular history Yo, Ao, - -+, Y, has occurred. We remark that although we
have assumed a kind of Markovian property regarding the behavior of the
system, the process {Y}, or even the joint process {Y;, A}, is not necessarily a
Markov process; for a rule may or may not depend upon the complete history
of the system.

We further assume that there is a known cost (or expected cost) wy incurred
each time the system is in state ¢ and decision % is made. Thus, we can define a
sequence of random variables {W,}, ¢ = 0,1, 2, --- by W, = wy if ¥, = 1,
Ay =k, t=0,1, ... Foragiven Yy = 7 and rule R we can talk about ExW,
provided it exists. Let

Qrz(id) = (T + 1) 2 ExW,, when Y, =3
thus, Qr z(7) is the expected average cost per unit time up to time period
T. Let Qg(2) = limr,, Qrz(7), if the limit exists; otherwise, let
Qr(7) = lim supr.« @r,z(7).
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In this paper we are concerned with the problem of finding an optimal rule B;
explicitly, a rule R, for a given ¢, which minimizes Q(%) over all possible rules.

It is convenient to consider sub-classes of the class of all possible rules. Let C
denote the entire class of rules. Let C’ denote the sub-class of stationary
Markovian rules; i.e., a rule R is a member of ¢ if Di( Yo, Ao, - -+, Y, =14) = D,
independent of Yo, A, --+, A,1 and . A rule R ¢ €’ is completely defined by
the set of numbers {Dy}, k=1, --- | K;,7¢1;1.e., a fixed randomized decision-
making procedure is associated with each state. Let C” denote the sub-class of C’
for which Dy = 0 or 1. The rules in C” are stationary Markovian, but non-
randomized.

We point out that if R & C’, the resulting stochastic process {Yi,t=0,1,---,
is a Markov chain with transtion probabilities

pii = 21 Dagi(k),  (4,5¢I).

If the state space I is finite it is known (see Gillette [8] and Derman [5]) that
Qz(7) can be minimized over C by a rule R ¢ C”. Computing methods using
dynamic programming (Blackwell [1], Howard [9]) or linear programming
(Manne [12]) exist for obtaining solutions.

For I infinite, and specifically denumerable, little has been published regarding
existence and the nature of optimal rules. Iglehart [10] and Taylor [14] have con-
sidered the average cost criterion for the special cases of inventory and replace-
ment systems allowing for an infinite state space. Blackwell [2], [3], Derman [6],
Maitra [11], Strauch [13] have considered infinite state spaces in dealing with a
discounted cost criterion (Blackwell and Strauch also consider a total expected
cost criterion).

Of some related interest is the result (Blackwell [3] and Derman [6]) that for a
discounted cost criterion (discount factor strictly less than one) and K; < o,
1 e I, and {wg} bounded, an optimal rule always exists and is a member of C”. If
either condition is violated, an optimal rule may not exist. A specific question
then arises: Under the same conditions, does an optimal rule always exist for the
average cost criterion, and, if it does, is there always an optimal rule in C”? In
Section 2 we present counterexamples showing that this is not the case. One ex-
ample shows that no optimal solution exists; another, that an optimal solution
exists but is not a member of C”—it is a member of ¢’ — C”. In the remaining
sections we are concerned with obtaining conditions under which a rule in C” is
optimal and for the convergence of an infinite state version of the policy improve-
ment (Howard [9]) computational procedure to the optimal rule.

2. Counterexamples. The first example, due to Maitra [11], shows that under
the assumptions

(A) K; < o,t¢el,
and

(B) {wu} is a bounded set of numbers,
an optimal rule need not exist.
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Let I consist of the states 0,0’,1,1", --- . Suppose K; = 2,7 =0,1,2, - - - and
Ki=14:=0,1,2, .- where ¢;31(1) = 1, ¢;,#(2) = 1, and gor»s(1) = 1 for
¢ =0,1,-- . Assume wy = 1fori = 0,1, ---and k = 1, 2; wyn = wy for
i =0',1, - where {w} is a decreasing sequence of positive real numbers con-
verging to zero. In words, the system, when in state ¢, either proceeds to state
i 4 1 or ¢’ depending on the decision made; the cost is one unit. When the system
is in state ¢/, it remains there at a cost of w; units per time period.

Assume Y, = 0. Without entering into the details it is clear that we can choose
an R such that @z(0) is as close to zero as desired. However, any rule R for which
there is some positive probability that decision 2 will be made at some state ¢
yields a positive expected average cost. On the other hand, the rule R prescribing
decision 1 at all states has @z(0) = 1. Thus, no rule can achieve a zero expected
average cost and, consequently, no optimal rule exists.

The second counterexample shows that, even under conditions (A) and (B),
an optimal rule need not be a member of C”. By resorting to a randomized
stationary Markovian rule one can do better than remaining in the class of deter-
ministic stationary Markovian rules.

Let I be the state space consisting of the non-negative integers. Suppose
Ki=1,K;=2,72=1,2 --- ,withge(l) =0,¢il) = ¢, >0,2=1,2,---;
q”(l) = 17 qw(z) = 177' = 17 27 trt

Let wgp = ws, 2 = 0,1, ---, where {w;} is a decreasing sequence of positive
real numbers converging to zero. Thus, the system, when in state 0, progresses to
state 7 with probability g; > 0; when in state ¢ 5 0, it either remains in state
(if decision 1 is made) or it reverts to state 0 (if decision 2 is made). The further
the system is away from state 0 (i.e., the larger the value of ¢) the less the cost.

Assume Yy = 0. Let R be any rule in C”; let Sy be the set of states for which
Dy = 1.If5¢8:,then ¥, = 4 implies Vv = s forallt’ > ¢;528z, then ¥, = ¢
implies Y1 = 0. Suppose Sz is non-empty; then it can be shown that

QR(O) = {ZieSR gzwi/ZiesR gz} > 0.

’

If Sk is empty, then
Qr(0) = (wo + 2T1gaws)/2 > 0.

In either case Qz(0) > 0. Thus, for every R £ C”, Qz(0) > 0. Let R ¢ C’ be such
that 0 < Dy < 1,4¢ I, and D= gs/Dsx = . State 0 is a recurrent state of the
resulting Markov chain {Y,} since P{Y, = 0 for some ¢ > 0| ¥, = 0} is equal to
one. However, the mean recurrence time of state 0 is 1 4+ D i=1gs/Da = o}
hence, 0 is a null recurrent state. From Markov chain theory (see Chung [4]) it
follows that all states are null recurrent states. Then, for any state 7,

Qr(0) = limzpe (T + 1)7" 2070 2 iy wP{Y, = | Yo = 0}
limzae (T + 1) D00 D iy wiP{Y, =] Yo = 0}
+ Dimion 2t wP{Y, = 4| Y, = 0}}

I
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< wo D itolimpn, (T + 1)7 20 P{Y, = 4| Yo = 0}
+ Wiy iz D imis (T + 1) DI P{Y e = 4| Yo = 0}
= Wy, liMgae (T + 1) 210 P{Y, > 4| Yo = 0}
= w;,,
since ¢, being null recurrent implies
limgae (T + 1) X7y P{Y, = | Yy = 0} = 0.

However, 4, is arbitrary and {w,} decreases to zero; hence, @z(0) = 0.

The question as to whether, under assumptions (A) and (B), there may exist
a rule R*¢C — €' such that Qg«(¢) < Qz(¢) for all R & C’ remains to be
answered.

3. Sufficient conditions. In this section we arrive at sufficient conditions for the
existence of an optimal rule and for it to be a member of C”. Our conditions are
motivated by the policy improvement procedure and part of our proof follows
that of Iglehart [10]. An alternative proof of the same (slightly stronger) result
appears, as well as an application of the results of this paper, in Derman and
Lieberman [7]. The conditions are summarized in

TaEOREM 1. If Conditions (A) and (B) hold and if there exists a bounded set of

numbers {g, v;}, 7 € I, satisfying
(1) g + vi = min, {wa + 2jer qui(k)oi},  del,
then there exists an R™ & C” such that for any © and every R € C

g = Qr(2) = Qr(2).

R™ s the rule which, for each i, prescribes the decision that minimazes the right side

of (1).

Proor. Let k;, 7 ¢ I, denote the decision that minimizes the right side of (1)
(or, if there are several minimizing decisions, let k; be any one of them). Let R*
denote the rule which prescribes decision k; when in state ¢, 7 ¢ I. Let pi; = ¢:;(k:)
for every %, j ¢ I. Then (1) becomes

(2) g+ v = wa, + 2 pip;, iel.

On multiplying (2) by pi‘), the ¢-step transition probability from 7’ to 4 calcu-
lated from {p.;}, and summing over ¢, we get

(t) (t) (¢)
(3) g+ D DW= D Di’iWik; + D ier Pt Dger Piki
(t) (t+1) !
= Zm Di'iWik; + Ziel Pirj V5, vel.

The latter equality involves an interchange of the order of summation justified
by virtue of the assumption that the sequence {v;} is bounded. On averaging

Il
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over t in (3) and canceling in the limit, we get
(4) g = limpo (T + 1) D270 D i péfiwik.-
= Qu(d'), el

Thus, ¢ is the expected average cost per unit time under R*. We now show that
R* is optimal. Let ga(2),n = 0, 1, - - - , satisfy

(5) go(l) = mink Wik 1:81,
gni1(2) = ming {wa + D jer ¢ii(k)ga(d)},  iel;

that is, g.(7) denotes the total expected cost incurred over the periods 0,1, --- ,n
operating optimally. Because of assumption (A), g.(%) is well defined. We shall
show that there exists an M satisfying

(6) ng+vi— M = gu(d) Eng + 0.+ M, tel,

forn =0,1,2,--- .Forn = 0 and 1 (6) holds since {v;} and {ws} are bounded
sequences. Assume (6) for n < N. Then by (5), (6), and (1) we have

gria(d) S ming {wa + Dser gis(k)(Ng + v; + M)}
min {wa + 2 jer qii(k)v;} + Ng + M
(N+Dg+vi+ M, del,

the right inequality of (6). The left follows in the same way. Thus (6) holds.

Let R be any R ¢ C and let h.(7) be the total expected cost incurred over the
periods 0, 1, - -+ | under R. Since g,(¢) is the result of an optimal rule for those
periods, we have, using (6), that

lim inf,.e [Aa(2) /0] = lima.e [ga(2) /7]
=g, rel.

I

This proves the theorem since Qz(¢) = lim inf,.. [h.(2)/n].
We point out the following:
CoroLLARY. Under the conditions of Theorem 1, |g.(7) — ng| < 2M for every n,

4. Improvement and convergence. This section is devoted to seeking conditions
under which a policy improvement procedure can be effectively used. A condition
that we shall need to assume is

(C) For every R ¢ C” the resulting Markov chain is positive recurrent; i.e.,
all states belong to one communicating class and are positive recurrent states
(see Chung [4]).

Let R (make decision k; at state ©) be any rule in C”. Suppose

(D) There exists a bounded set of numbers {g, v;}, j € I, satisfying (2).

Let R’ (make decision k;" at state ¢) be defined as follows: Set k;' = k; for each
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¢ such that
(7) Wik, + Dser qi(ki)v; = ming {wa 4+ 2 jer qii(k)vs}
holds. Assume the set of states such that (7) does not hold is non-empty (other-

wise the conditions of Theorem 1 would be satisfied). For at least one state 7 not
satisfying (7) let k.’ be such that

(8) Wiegr + Doger Qi )0 < wae, + 2ger qii(ki)v; -
Denote by I’ the set of states where (7) does not hold and for which &, is chosen
to satisfy (8). For all states ¢ 2I’, let k' = k;. (Here, we allow that k' = k;

even though (7) does not hold. Later we shall not allow this.) We can assert
Lemma 1. If (A), (B), (C) and (D) hold, then for any initial state 7,

Qrr(1) < Qr(7).
Proor. Let ps; = qi;(ks) (4,7 €I). Let e;, i & I, be the difference between the

right side and left side of (8); thus, e; > 0if i e I' and e; = 0if 421 . For any
l eI and ¢ we get, using (2), that

DirDsei = Doier DG A+ vi — (Wi + D jer Piits)}
=g+ Zz’ez pg?”z’ - Ziel pgfi)wz’k,-’ - Zm p§;~+l)v,- .

On averaging over { = 0, -+, T' and letting 7 — <« we get (since the ¢’s are
also bounded)

> ier € limpae (T 4+ 1) D1 pi?
(9) =g — Mo (T 4+ 1) 270 D ier DS wir,e

=g — Qu (D).
S \T (t)

However, under assumption (C), limzre (7 + 1)™ > fopi? > 0 for every
¢ ¢ I. Therefore, the left side of (9) is strictly positive since at least one e; is
positive. Thus @Q#/(I) < g = Qr(1), l ¢ I, and the lemma is proved.

We remark that the amount of improvement obtained in changing from R to
R is precisely D _i.r mie; where {m.}, ¢ € I, are the steady state probabilities of the
Markov chain with transition probabilities {pi;}.

We have directly

TaroreM 2. Under the conditions of Lemma 1, if B € C” is optimal over C”, then
it 1s optimal over C.

Proor. If R is optimal over C”, then I’ must be empty by Lemma, 1. Therefore
(1) holds and Theorem 1 applies.

We shall make use of a further condition.

(E) For every R & C” there exists a set of real numbers {g%, v,°}, j & I satis-
fying condition (D). The numbers {¢g*, v;%}, are bounded uniformly over j ¢ I,
ReC”.

We then have the following existence:

TarorEM 3. Suppose (A), (B), (C), (D) and (E) hold, then there exists a rule
R* & C” which is optimal over C.
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Proor. For any R & C” let w.r and ¢;;(R) denote the values wg and g.;(k)
under R for each 7 ¢ I. Then with this notation (2) becomes

(10) 9% + v = wir + D jer qii( RV, tel.

Let g* be the greatest lower bound of all g%, R € C”. Let {Ru},n=1,---,bea
sequence of rules in C” such that lim,,., g** = g*. Because of the uniform bound-
edness condition on {»;°} and because C” is compact (Tychonov’s theorem) there
exists a convergent subsequence {R,,},» = 1,2, - - - , such that lim, ., »,*" = v,%,
j eI, where {v;*} is a bounded sequence. Let R* = lim,.., R, . (Note: Since
ki < o, {R,,} converges to R* means that ¢;j(R.,) = ¢i(R*) for sufficiently

large v.) On letting » — <, from (10) we get
g + v.* = lim,,, {g"™ + v}
(11) = limysw{win,, + Ljer gii( R, )™}
= wips + Xjer g (R®)0;™, el

(The fact that lim,.. Dot Qii(Ra )0 = D jer qii(R®)v;* is easily shown.)
Thus {g* v;*}, j eI, is a bounded set of numbers satisfying (2) (or (10)) for
R = R*e(C”. Thatis, g* = ¢, v;* = v;"*, j ¢ I. Now suppose (1) does not hold
when R* is the rule. Then from Lemma 1 an improvement is possible, contra-
dicting the fact that g* is the greatest lower bound of all g%, R ¢ C”. Thus (1)
must hold and by Theorem 1, R* is optimal over C.

Since the policy improvement procedure [9] involves solutions to (1) and (2)
and converges to an optimal rule in the finite state case, it is of interest to pro-
vide a procedure and conditions for convergence in the denumerable state case.
Let R (make decision k; at state ¢, < € I') be any rule in C”. We define an iteration
of the policy improvement procedure for denumerable states as the transformation
from R to R’ where the decisions {k;/} of R’ are decisions for which
{wir + D jer 9i;(k)v;"} are minimized. The term “improvement” is justified by
Lemma 1. Note, that in our definition we now insist upon all possible improve-
ments to be made in each iteration. The policy improvement procedure is a
sequence of policy improvement iterations starting from any initial rule R & C”.
Before stating conditions under which a sequence of policy improvement iter-
ations converges to an optimal rule we prove another lemma.

Let mii(R) = limp,e (T + 1) 2 P{Y: = j| Yo = 4}, 4, j e I, for each
R ¢ C”. We shall utilize the following condition:

(F) For every j eI, infreon ser mi(R) > 0.

For any R € C”, let

e = (wi; + Djer qis(ka)oi®) — (Wi + Dger qis(k)oi")
= ¢" + 0" — (way + 22 qi(B)0®),  del,

where {k:}, i € I, are the decisions of R and {k.'}, 7 I, are the decisions obtained

from R by a policy improvement iteration.
LemMmA 2. Assume conditions (A), (B), (C), (D), (E), and (F). Let
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By = R £ C” be arbitrary, and {Ra.} be a sequence of policy improvement iterations;
then, for each i € I, limp,e e = 0.

Proor. Under assumption (C), for each n = 1, 2, -+ | m;j(R,) = m;(R.),
the steady-state probability of state j under rule R, . From the remark following
Lemma 1 we can write, for each n,

g% — g% = D mi(Rapa)e™

Since the left side tends to zero as n — o (lima.. g™ exists since {g*} is a de-
creasing sequence), so must the right side. However, since ¢;"* = 0, it follows
from condition (F) that lim,.. e, = 0, ¢ ¢ I.

We can now state

TaEoREM 4. If conditions (A), (B), (C), (D), (E) and (F) hold, then given
any Ry = R eC”, the policy improvement procedure converges to a rule R* ¢ C

which vs optimal over C.

Proor. Let {R,} be a sequence of rules obtained under the policy improvement
procedure with B, ¢ C” arbitrary. From compactness considerations it is possible
to choose a subsequence of rules {R,,},» = 1,2, - - - , such that lim,,,, "™ = g%,
lim,o " = v;* ({ e I), lim,ae & = 0 (4 £ I), and lim,,., R, = R*. For any
R., , equation (10) holds. On letting » — « we get

(12) g* + vi* = Wig* + limy—»oo Z]'z[ qij(Rny)ij"”, rel.
For a given 7, for » large enough, ¢;j(R.,) = ¢i;(R*); thus, from (12) we get that

g% = ¢® and v, = 0,7, 7 e I. Clearly,

(13) g% + v.* = lim sup,.. ming, {wy, + D gis(k)o"™},  iel.
However, by definition of ¢;", we have, for each »,
(14) g™ + v < ming {wa + 2 gii(k)o™) + &, del
Therefore, from (13) and (14), it follows, using Lemma, 2, that
(15) g% + v.* = lim,.o ming {war + D jer gij(k)o>), el
However, for each 7¢I and &
limyae ming {wa + 2jer ¢ii(B)o;™} S liMyww {wa + Djer gas(k)v;™™},
so that from (15)
g* + 0" = ming lim,e, {wa + 2 jer ii(k)v™)
= ming {wa + 2 ser qis(k)o;™}.

But, for k chosen in accordance with rule R*, equality holds; hence, (1) must
hold and Theorem 1 applies. This proves the theorem.

5. Remarks. Conditions (D) and (E) require solutions to the equations (2). In
a forthcoming paper by Derman and Veinott conditions for the existence and the
form of the solutions will be given.
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The conditions given in this paper are too strong to apply to special cases,
such as certain inventory and replacement problems. It is not clear that they
can be weakened sufficiently to cover these cases. It will probably be necessary
to exploit the special structure of the processes under consideration, as was done
in [10] and [14], in order to obtain comparable results.
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