A MEAN-SQUARE-ERROR CHARACTERIZATION OF
BINOMIAL-TYPE DISTRIBUTIONS

By M. C. K. TWEEDIE

University of Liverpool

1. Hodges and Lehmann (1950), with an acknowledgement of priority to
Rubin, have shown that, if §* is an estimator of the parameter 6 based on a
single observation on the binomial distribution

(1) prob {X = z} = (2)6°(1 — )", forz = 0,1, ---, N,

with N fixed and known and a loss function W (8, 6*) = (8 — 6*)®, the minimax
estimator is

(2) 0" = (X + 3N /(N + NY).

This is also the Bayesian estimator when 6 has a Bayesian prior probability
element of the form

(3) dN(8) = (8(1 — 6))™' " dg/B(3N?, 3NP).

This distribution of 6 is therefore a least favourable one for the estimator 6".
The proofs are simplified by the facts that

(i) 6" is linear in the random variable X,

(ii) the mean square error (mse) or risk function of 6 is independent of 6.

2. Since the binomial family of distributions is one in which the sample mean
of a constant number of independent observations is both a sufficient statistic
and a minimum variance unbiased estimator (mvue) of their common expec-
tation, it is of interest to investigate whether the two properties, (i) and (ii),
apply to any other families of distributions which possess minimum variance
unbiased estimators.

One may, therefore, seek to replace the binomial by other “exponential-type”
distributions. In the notation of Lehmann’s book (1959), page 50, (1) might be
replaced by the probability element

(4) C(0)e* @ h(x) du(z),

in which u is a measure function; for then the sample mean of T(X) is the
mvue of ET(X). It is clear, however, that little is gained in the present problem
by using (4) instead of the simpler formulation,

(5) "D du(x).

This formulation, or, rather, a closely related one, was found convenient in a
paper (1947) in which I called it a Laplacian distribution, and it has also (cf.
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Lehmann (1959), page 115) been shown to be a Pélya-type case of the general
exponential form (4). A set of probability distributions which share a common
function F may be called a family of distributions in the Laplacian class.

3. Using (5), the cumulant-generating function (cgf) of X can be written
(cf. Fisher (1934)) as

(6) cgf. = In E(e”™) = F(a +t) — F(a).
Then
(7) EX = =F(a), VX =ux=F'(a) = da/da.

If X’ has the binomial distribution (1), and if we redefine X = z, + X'Az,
where z, and Az are constants, independent of X and 6, so that the possible
values of X are o, o + Az, - -+, 2o + NAz, then

(8) cgf of X = In Ee™ = zot + NIn (1 — 0 + 6¢'%).

The distribution of X may be said to be of the binomial type. Conversely, if a
cgf is of the form (8), then the distribution of X is of the binomial type.

4. Minimization of the average mse of a linear estimator of an expectation.

Let X be the mean of a fixed number (7) of independent observations on (5).
If x:(8), i.e., EX, which = EX, is estimated by a + bX, in which a and b are
constants, and if 8 has a prior distribution A, then

(9) mse = E{(a + bX — x(0))*]6} = be/n + (a + (b — k)’
average mse = E(mse) = b’Exe/n + (b — 1)’V + (a + (b — 1)Ex)>.
Write
v = Exo/Viy.
Then the average mse is minimized by
a = vEx/(v + n), b=n/(v+ n).
The estimator is then
(vEx + nX)/(v + n),

which is, incidentally, a weighted mean of the sample mean X and the prior
mean Ex . It has

(10) mse = {(x1 — Ex)%" + nxa} /(v + n)%,
of which the average value is
min,.,bE(mse) = EKz/(V + n) = 1/(1/VK1 -+ I/Elcz).

5. We now prove the following preliminary theorem:
TaEOREM 1. The normal and the binomial type are the only mon-degenerate
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families of univariate Laplacian distributions for which there exists a linear func-
tion of the sample mean X which has a constant mse as an estimator of EX.
Proor. Inserting (7) in (9), we require

(11) VF”(a)/n + (a 4+ (b — 1)F'(a))® = ¢, a constant.
One solution of (11) is to take b = 1 and F”(a) to be constant. This leads to a
general univariate normal distribution of X, with a degenerate solution in which,

for any one value of a, X takes only one value, with unit probability.
The regular solution of (11) hasb = 1 and gives

aa+ (b —1)F(a) = {b°/(n(b — 1))} In (k" + ¢ *) + constant,
in which 2 = (b — 1)en/b® and k is a constant of integration. Thus, the cgf
(6) of X is
(12) F(a+t) — F(a)

=n7(b/(b — 1)) In ((e™* + ke™) /(™ + k) — (a+ c)t/(b— 1).

By taking limits, under suitable conditions, one gets the special solutions already
mentioned. The regular integral has b # 1 and is seen to have an imaginary
period 7i/h in ¢ and thus, subject to further conditions, to be the cgf of a lattice
distribution with step equal to 2h. The origin is arbitrary and is adjusted by the
value of a. The coefficient b”/(b — 1) of the logarithm appears to be the secondary
parameter, in the terminology of my 1947 paper. In fact, (12) is of the binomial
type (8), with

Azx = 2h, z=—(a+c)/(db—-1),
N =0/((b—1)'n), 0=Fk/(" +Fk).
One could take & = 1 without loss of generality by simultaneously changing the

origin of a.
Then

h=1Az, b= (Nn)Y/((Nn)} £ 1), ¢ = FiNaz/((Nn)? = 1),
+ (20 + $NAZ)/((Nn)! £ 1),
k= e *%/(1 — 9).
Thus there are two solutions:
a + bX = (X(Nn)* £ (20 + $NAz))/(Nn)} £ 1)
zo + 3NAz + (X — z0 — INAZ)(Nn)/((Nn)t = 1),

which ranges from zo = 1NAz/((Nn)? £ 1) to zo + NAz FiNAz/((Nn)t £ 1),
and has mse = (1NAz)®/((Nn)* & 1)z

The solution with the upper sign includes the minimax estimator of N8 which
is obtainable from (2). It dominates the solution which has the lower sign, but

a
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the latter is not completely worthless; for its mse is less than the maximum
mse of the constant ‘estimator’ xy + 3NAz, namely (iNAz)?, when Nn > 4.

6. Hodges and Lehmann (1950) show that the appropriate special case of
the solution in Section 5 with the upper sign is the minimax solution for the
binomial (which has b = } and @ = —c¢) by showing that it is equal to the con-
ditional expectation of x(8) over the posterior distribution which results from
combining (1) and (3), in accordance with their Theorem 2.1. In the present
note, however, in which the orientation is different, a characterization of dis-
tributions of the binomial type is obtained by combining Theorem 1 with some
of the results given in Section 4.

TrEOREM 2. If

(i) the real random variable X has a non-degenerate distribution in a family of
the Laplacian class, with parameter 0;

(ii) attention is confined to estimators of EX which are linear in X;

(iii) 6 has a prior distribution \ in which EX has bounded positive variance;
then there exists an estimator which both minimizes the average mse and has a
constant mse, iff

(iv) the family of distributions of X s of the binomial type;

(v) X\ is such that E9 = % and VO = 1/(4(Nn)? + 1)), i.e., (E§ — E(6%))/V6
is the square root of a positive integer (namely, Nn).

Proor. From Theorem 1, only the normal and binomial-type families need be
considered. Condition (iii), in conjunction with (10), excludes the normal.

In the binomial type, x; = zp + N8Ax and k, = N(Az)’6(1 — 6). When these
expressions are substituted in (10), the constancy of the resulting mse requires
the coefficients of 6° and 6 to vanish. This leads to » = (n/N)* and E6 = };
and (v) is equivalent to these two conditions.

As a matter of interest, if £ 0 = 1 but n = N’,

max, (mse) = max (n, Nv*)-N(3Az)*/(v + n)%

This method of proving Theorem 2 was suggested by a referee’s comments.
An alternative method involves combining (10) with (7) and solving the
resulting differential equation for F.
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