NOTES

A SOLUTION TO A COUNTABLE SYSTEM OF EQUATIONS ARISING IN MARKOVIAN DECISION PROCESSES¹

BY CYRUS DERMAN AND ARTHUR F. VEINOTT, JR.

Columbia University and Stanford University

Let $\{X_n\}$, $n=0,1,\cdots$, be a Markov chain having a state space consisting of the non-negative integers and having stationary transition probabilities $\{p_{ij}\}$. Let $\{w_1\}$, $i=0,1,\cdots$, be a sequence of real numbers. Consider the system of equations

(1)
$$g + v_i = w_i + \sum_{j=0}^{\infty} p_{ij} v_j, \qquad i = 0, 1, \dots,$$

in the unknown variables $\{g, v_0, v_1, \cdots\}$. In [2], the system (1) arises in connection with conditions for the existence and construction of optimal rules for controlling a Markovian decision process. For a finite state space, existence of solutions to (1) is guaranteed by the condition that the Markov chain have at most one ergodic class of states. (See [3].) In this note we give conditions ensuring the existence (Theorem 1) and uniqueness (Theorem 2) of solutions to (1).

For
$$i, j, n = 0, 1, \cdots$$
, let

$$Z_n(j) = 1$$
, if $X_n = j$ and if $X_m \neq 0$ for $0 < m \le n$
= 0, otherwise,
$${}_0p_{ij}^* = E(\sum_{n=0}^{\infty} Z_n(j) | X_0 = i), \text{ and } m_{i0} = \sum_{j=0}^{\infty} p_{ij}^*.$$

If the last series converges absolutely, then m_{i0} is the mean first passage time from i to 0 and we say m_{i0} is finite. If the m_{i0} are all finite, as we assume throughout, the state 0 is positive recurrent and there is only one recurrent class.

Let $Y_n = \sum_{j=0}^{\infty} w_j Z_n(j)$ and $c_{i0} = E(\sum_{n=0}^{\infty} Y_n \mid X_0 = i)$. By an obvious generalization of Theorem 5 in [1], p. 81, we get $c_{i0} = \sum_{j=0}^{\infty} p_{ij}^* w_j$ provided the series is absolutely convergent. If the series is absolutely convergent we say c_{i0} is finite. In applications w_i is often the cost incurred when in state i so c_{i0} is then the expected cost during a first passage from i to 0.

THEOREM 1. (Existence.) If the numbers m_{i0} and c_{i0} , $i=0,1,\cdots$, are finite, then the numbers

(2)
$$g = c_{00}/m_{00}$$
 and $v_i = c_{i0} - gm_{i0}$, $i = 0, 1, \cdots$,

satisfy (1) and $\sum_{j=0}^{\infty} p_{ij}v_j$ converges absolutely, $i=0,1,\cdots$.

www.jstor.org

Received 14 July 1966.

¹ Work supported by the Army, Navy, Air Force and NASA under contract Nonr-225(53) (NR-042-002) and by the Office of Naval Research under Contract Nonr-225(77) (NR-347-010). Reproduction in whole or in part is permitted for any purpose of the United States Government.

PROOF. Let
$$w_i^* = w_i - g$$
 and $Y_n^* = \sum_{j=0}^{\infty} w_j^* Z_n(j)$. Then for $i = 0, 1, \dots, v_i = E(\sum_{n=0}^{\infty} Y_n^* \mid X_0 = i)$

$$= w_i^* + \sum_{n=1}^{\infty} \sum_{j=0}^{\infty} E(Y_n^* \mid X_0 = i, X_1 = j) p_{ij}$$

$$= w_i^* + \sum_{j=0}^{\infty} \sum_{n=1}^{\infty} E(Y_n^* \mid X_0 = i, X_1 = j) p_{ij}$$

$$= w_i^* + \sum_{j=0}^{\infty} p_{ij} v_j$$

so (1) holds. The interchange of expectation and summation is justified since the finiteness of the m_{i0} and c_{i0} imply that $\sum_{n=0}^{\infty} E(|Y_n^*| | X_0 = i) < \infty$. This in turn implies that the series above are absolutely convergent so the interchange of summations is also justified.

THEOREM 2. (Uniqueness.) If the numbers m_{i0} and c_{i0} , $i = 0, 1, \dots$, are finite, if $\sum_{j=0}^{\infty} {}_{0}p_{ij}^{*}(c_{j0} - (c_{00}/m_{00})m_{j0})$, $i = 0, 1, \dots$, converges absolutely, and if $\{g, v_0, v_1, \dots\}$ is a sequence with $\sum_{j=0}^{\infty} {}_{0}p_{ij}^{*}v_j$, $i = 0, 1, \dots$, converging absolutely, then $\{g, v_0, v_1, \dots\}$ satisfies (1) if and only if there is a real number r such that

(3)
$$g = c_{00}/m_{00}$$
 and $v_i = c_{i0} - gm_{i0} + r$, $i = 0, 1, \cdots$

PROOF. It is immediate from the hypotheses and Theorem 1 that $\{g, v_0, v_1, \cdots\}$ defined in (3) satisfies (1) and $\sum_{j=0}^{\infty} {}_{0}p_{ij}^*v_j$ converges absolutely as well as $\sum_{j=0}^{\infty} p_{ij}v_j$. Let $\{g', v_0', v_1', \cdots\}$ be any other solution to (1) with $\sum_{j=0}^{\infty} {}_{0}p_{ij}^*v_j'$ converging absolutely for $i=0,1,\cdots$. Hence $\sum_{k=0}^{\infty} p_{ik}v_k'$ is absolutely convergent. Now premultiplying both sides of (1) by $\pi_i \equiv {}_{0}p_{0i}^*/m_{00}$, summing over $i=0,1,\cdots$, using the relations $\sum_{i=0}^{\infty} \pi_i = 1$ and $\pi_j = \sum_{k=0}^{\infty} p_{kj}\pi_k$, $j=0,1,\cdots$, and the fact that the interchange of summations is justified, we get $g'=\sum_{i=0}^{\infty} \pi_i w_i$ which is independent of $\{v_0', v_1', \cdots\}$. Thus since $\{g, v_0, v_1, \cdots\}$ satisfies (1) we must have g=g'.

Letting $\Delta_i = v_i' - v_i$, $i = 0, 1, \dots$, we get from (1) subtracting one system from the other that

(4)
$$\Delta_i = \sum_{j=0}^{\infty} p_{ij} \Delta_j, \qquad i = 0, 1, \cdots.$$
 Let $p_{ij}^n = \Pr(X_n = j \mid X_0 = i)$. Evidently for $N = 1, 2, \cdots$,

$$\sum_{n=1}^{N} p_{ij}^{n} \leq {}_{0}p_{ij}^{*} + (N-1){}_{0}p_{0j}^{*}, \qquad j=0,1,\cdots,$$

so that

(5)
$$N^{-1} \sum_{n=1}^{N} p_{ij}^{n} |\Delta_{j}| \leq [{}_{0}p_{ij}^{*} + {}_{0}p_{0j}^{*}] |\Delta_{j}|, \qquad j = 0, 1, \cdots.$$

Since the series on the right side of (5) converges absolutely by hypothesis, and $\lim_{N\to\infty} N^{-1} \sum_{n=1}^{\infty} p_{ij}^n = \pi_j$, we get from the dominated convergence theorem that

(6)
$$\lim_{N\to\infty} \sum_{j=0}^{\infty} N^{-1} \sum_{n=1}^{\infty} p_{ij}^n \Delta_j = \sum_{j=0}^{\infty} \pi_j \Delta_j.$$

Since from (5), $\sum_{j=0}^{\infty} p_{ij}^n \Delta_j$ converges absolutely we can iterate (4), yielding

(7)
$$\Delta_{i} = \sum_{j=0}^{\infty} p_{ij}^{n} \Delta_{j}, \quad i = 0, 1, \dots; n = 1, 2, \dots$$

Hence on substituting (7) into (6) $\Delta_i = \sum_{j=0}^{\infty} \pi_j \Delta_j$, $i = 0, 1, \dots$. Thus Δ_i is independent of i, which completes the proof.

EXAMPLE. If the sequences $\{m_{i0}\}$ and $\{w_i\}$, $i = 0, 1, \dots$, are bounded, then so is the sequence $\{c_{i0}\}$, $i = 0, 1, \dots$, since $|c_{i0}| \leq \sup_{k,j} m_{k0} |w_j|$. Thus Theorem 1 applies and, in addition, the solution to (1) given in (2) is bounded. This result is used in [2].

We remark that since

$$\sum_{j=0}^{\infty} {}_{0}p_{0j}^{*} |u| \ge {}_{0}f_{0k} \sum_{j=0}^{\infty} {}_{0}p_{kj}^{*} |u_{j}|$$

where

$$_{0}f_{0k} = \Pr\left(\sum_{n=0}^{\infty} Z_{n}(k) > 0 \mid X_{0} = 0\right) > 0,$$

 $\sum_{j=0}^{\infty} {}_{0}p_{kj}^{*} |u_{j}|$ is absolutely convergent for every recurrent state k provided that $\sum_{j=0}^{\infty} {}_{0}p_{0j}^{*} |u_{j}|$ is absolutely convergent. Thus under the assumption of one recurrent class the hypotheses of Theorems 1 and 2 could have been stated only for state 0 and the transient states.

REFERENCES

- CHUNG, K. L. (1960). Markov Chains with Stationary Transition Probabilities. Springer, Berlin.
- [2] DERMAN, CYRUS (1966). Denumerable state Markovian decisio processes—average cost criterion. Ann. Math. Statist.) 37 1545-1554
- [3] HOWARD, RONALD (1960). Dynamic Programming and Markov Processes. Wiley, New York.