RATES OF CONVERGENCE OF ESTIMATES AND TEST
STATISTICS!

By R. R. Banapur
University of Chicago®

0. Introduction. This paper contains brief descriptions of certain large sample
theories of estimation and testing null hypotheses. The classical asymptotic
variance theory of estimation is considered in Section 1; a parallel and closely
related development based on probabilities of large deviations in Section 2; and
a relatively unexplored viewpoint involving the rate at which the estimate itself
approaches the true value in Section 3. Sections 4-7 describe a version of testing
in which any given test statistic is evaluated in terms of the rate at which it
makes the null hypothesis more and more incredible as the sample size increases
when a non-null distribution obtains.

The statistical framework considered throughout the paper is the following:
X is an abstract sample space of points z. The probability distribution of x is
determined by an abstract parameter 6 which takes values in a set ©.

s = (21,2, ---,ad inf) is a sequence of independent observations on x. For
eachn=1,2 --- T, = T.(s) is a real valued statistic which depends on s
only through (21, - - -, %.). Most of the propositions stated formally are versions

of propositions in [5], [7], [9], and [10]. Sufficient conditions for the validity of the
propositions are discussed in an appendix, and all proofs are deferred to the
appendix.

PART I. POINT ESTIMATES

g(0) is a real valued parametric function defined on . It is required to estimate
the value of g.

1. Asymptotic variance. Suppose that 7', is a consistent and asymptotically
normal estimate of g with asymptotic variance v/n, i.e., there exists v(9),
0 < v < o, such that for each 6

(1) 2 (Ta(s) — g(6))/(v(8))* — 9(0,1) in distribution
as m — o when 6 obtains. For any ¢ > 0 and any 6 let
(2) an(e, 0) = Py(|TH(s) — g(0)] = ¢).
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Given 8, 0 < 8§ <1, let M = M(¢, s, 6) be the sample size required to make
a, < 8, i.e., M is the smallest integer m such that

(3) an(e, 0) <& forall n = m.

We then have
ProposrrioN 1. For each & and 6,

(4) M(e5,0) ~v(0)-[2(8)/ef as e—0,

where z = 2(8) 1s giwen by P(931(0,1) = 2) = §/2.

It follows that if {T.”} satisfies (1) with v =0,(6), and if M® is
the sample size required by {7."”} to make o, less than & (i = 1,2),
then lim..o M® (¢, 8, 0)/MP (¢, 5, 6) = vs(6)/v:1(8) for each § and 6. Conse-
quently, v(8)/v1(68) serves as the asymptotic efficiency of T, relative to T,
when 6 obtains.

There is a fully developed theory concerning the existence and construction of
estimates which are optimal according to the asymptotic-variance criterion.
Cf., e.g., [20], [21], [31], [32], [34]. Some aspects of this theory are outlined in the
remaining paragraphs of this section, mainly to facilitate comparisons with
subsequent sections.

Suppose that © is an open set in the k& dimensional Euclidean space of points
6= (6, - -,0:). Let I(9) = {I,;(8)} be the information matrix when the
sample consists of a single observation on z. Suppose that ¢ is a sufficiently
smooth function of 6, let h,(8) = dg(6)/36;, and let

(5) 9(8) = 2% hi(8)-17(8) -h;(6).

Let T, be an estimate such that, for some », (1) holds for all 6.
ProposrtioN 2. The set of all 0 for which

(6) v(8) = 9(6)

does not hold is of Lebesque measure zero.

This proposition is due to LeCam [31], [33]. A simple method of proof is given
in [9]. It is now well known but worth recalling here that (in the absence of
regularity conditions on T, itself) the set of points 6§ where T, is superefficient
(i.e., where (6) does not hold) can be non-empty. The existence of superefficient
estimates was discovered by J. L. Hodges [31].

Now let T, be the maximum likelihood estimate of g, i.e., T, = g(6,) where
6, is the maximum likelihood estimate of 8 based on (21, -+ , Z,).

ProposITioN 3. For each 6, T, is asymptotically normally distributed with mean
g(8) and variance 9(0)/n.

It has been emphasized by LeCam that rigorous proofs of this classical proposi-
tion consist of two very different parts. It is first shown, under regularity condi-
tions of a global sort (cf. the appendix), that 6, exists and is a consistent estimate
of 6. Consequently, 6, is a consistent root of the likelihood equations. The desired
conclusion is now deducible from familiar regularity conditions of a local sort.
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It is argued in some recent studies [36], [42] that one should require of an
estimate T, for which (1) holds that (1) hold uniformly in 6. The need for uni-
formity may be illustrated as follows. Suppose that for given ¢ and § we wish to
determine a sample size 7 such that, no matter what § may be, a, given by (2)
is less than 8. The minimum sample size required is essentially sup {M (¢, 8, 8):
6 in B}, and in the absence of uniformity this may be infinite.

It is shown in [9], [36], [39], [42] that uniformity in 6 in (1) implies that (6)
holds for all 6. An underlying reason for this is that uniformity in 6 in (1) implies
that v is continuous in . If » and § are both continuous in 6, the set where (6)
does not hold is an open set of measure zero and therefore empty.

The question of how to compare two different estimates 7, and T, if they
both have asymptotic variance 9/n has been considered recently by Rao [36].
It is shown in [36] by examples that such comparisons may often be feasible and
worthwhile.

2. Asymptotic effective variance. Suppose now that {T',} is a consistent (but
not necessarily asymptotically normal) estimate of g, i.e., with a, defined by (2),

(7 on(e,0) >0 as n— o

for each 6 and € > 0. It is suggested in [5], [14] that the rate at which (7) occurs
for a given e provides criteria for the performance of {7T,}. When applied to
asymptotically normal estimates such criteria are not always in accordance with
the criterion of Section 1.

In typical cases, (7) occurs exponentially fast. Suppose for the present that
this is the case, i.e., for each 6 and e there exists y(¢, 8), 0 < v < o, such that

(8) n " log aa(e, 0) — — 3v(e, 0).
It then follows that
(9) M(e,8,0) ~2log (1/8)/v(e,0) as &—0.

If (8) holds with v =4v; for a sequence {T,"}, (:=1,2), then
M® (e, 8,0)/MP (e 8, 0) —vi(e, 0)/v2(e, ) as d — 0. Consequently, vi/v, serves
as the asymptotic efficiency of T relative to T,” when 6 obtains. This effi-
ciency depends in general on e. Unless there is special interest in some particular
¢, and this interest persists even with large samples and estimates of great pre-
cision on hand, it seems reasonable to take lim..ovi(e, 0)/v2(¢, 6) to be the
relative efficiency. In case T, is asymptotically normal with asymptotic
variance v;/n (z = 1,2) this last limit is usually (but not always) equal to
Uz/ V1.

The following is an amusing reformulation of the above. Given a sequence
{T,}, for any n, 0, and ¢ > 0 define 7, = 7,(¢, ) by means of the equation

(10) Po(IT" _gl 2 E) = P(lm(orl)l é G/Tn), 0 é Tn é o,

Since the right-hand side of (10) may be computed exactly by entering a standard
normal table with ¢/7,, 7, might be called the effective standard deviation of T',
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when T, is regarded as a point estimate of g, 6 obtains, and it is required, for
some theoretical or practical reason, to compute the left-hand side of (10). In
case T, is exactly normally distributed with mean g then r,’ equals the actual
variance of T', .

It follows from (2) and (10) (cf. [19], p. 166) that, for fixed e and 6,

(11) log an ~ —€/27,) as n—> o
and hence from (8) that
(12) nra'(e, 0) = €/7(e, 0) = w(e, 6) say.

In view of (12), w/n may be called the asymptotic effective variance of T, . In
terms of effective variances, (9) is the following analogue of Proposition 1.
ProposiTioN 4. For each € and 6,

(13) M(e,5,0) ~w(e, 0)-[2(8)/ef as 6—0.

If T, is asymptotically normal with asymptotic variance v/n then, in typical
cases,

(14) w(e 0) —>v(0) as e—0.

This implies, as noted already, that in typical cases the relative effective-variance
efficiency of two asymptotically normal sequences tends to the relative variance
efficiency as e — 0.

It is shown in [5], under certain general conditions, that the maximum likeli-
hood estimate of ¢ is an optimal estimate according to the criterion of asymptotic
effective variance. This conclusion may be stated as follows. Suppose that ©
is an open set in the k dimensional Euclidean space of points § = (61, - -+, 6k),
and let 9 be defined by (5). Let {T,} be any consistent estimate of g, and for
each n, ¢, and 6 let 7, be given by (10).

ProposITioN 5. For each 0,

(15) 1m0 limpw {n7a (e, 0)} = 8(6).

Now let T, = g(6,) be the maximum likelihood estimate of g, and let 7, be
determined as above by 7', .
ProrosiTioN 6. For each 0,

(16) limeo liMpaw {nfa (€, 6)} = (6).

In other words, n#,’ (e, ) — a limit, W(e, 0) say, as n— « (at least if e is
sufficiently small), and (e, 6) — 9(0) as e — 0.

It is easily seen that (11) is valid provided only that a, > 0 for all sufficiently
large n and (7) holds. In view of (11), Propositions 5 and 6 may be stated as
follows. If T, is a consistent estimate then (for given 6 and all suffi-
ciently small ¢) a,(e, 6) cannot tend to zero at an exponential rate faster
than exp (—ne’/20(0)) and én.(e, ) does tend to zero nearly at this optimal
exponential rate.
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According to the present criterion there are no superefficient estimates, i.e.,
(15) must hold at every 6. It follows, in particular, that if T, is a superefficient
estimate according to the criterion of Section 1 then {T,} does not satisfy (14)
at parameter points § where superefficiency holds. In view of (4) and (13), (14)
is equivalent to the statement that the limits of {€M (e, 8, 6)/2°(8)} as e — 0 and
8 — 0 in this order or the reverse order are the same. The uniformity required
here seems unrelated to the uniformity in 6 discussed in [9], [36], [39], [42],
although either uniformity excludes superefficiency in the sense of asymptotic
variance.

It is presumably the case that certain estimates other than 7T, which are
efficient according to the criterion of asymptotic variance are also efficient in the
present sense, but general theorems to this effect are not yet available. To con-
sider an example, suppose that z takes only three values a, b, and ¢ with respective
probabilities 6, 6, and 1 — 26, where 0 < 6 < }. Let g(6) = 6 and let T, be the
minimum chi-square estimate based on (x;, ---,,). Then, for e sufficiently
small, T, and T, both have asymptotic effective variance w(e, §)/n when 6
obtains. A formula for  is given in the appendix.

The main tools available at present for finding asymptotic effective variances
are Chernoff’s theorem [15], [8] and its generalizations [40]. Sanov’s theorem
[38], [26], [27] is very useful in the multinomial case.

3. Strong convergence. Suppose now that {7,} is a strongly consistent
estimate of g, i.e., for each 9,

(17) T.— g(8) with probability one

when 6 obtains. For any 6, ¢ > 0, and s = (21, 2, --- adinf) let N = N(e, 6, s)
be the sample size required to make |T, — g| < ¢, i.e., N is the smallest integer
m such that

(18) [T.(s) —g(8)| < e forall n=m

and N = « if no such m exists. According to (17), Ps(N(¢, 0,5) < o) =1
for all € and 8. What else can be said about N, especially for very small e?

Suppose that T, is asymptotically normal and satisfies the following structural
condition. For each 6, there exists a function h(z, 8) such that

(19) Ey(h(z,0)) =0,  Eo(h'(z,0)) = v(6)
where 0 < v < «, and such that
(20) To(s) = g(6) +n7 21 h(zi, 8) + Ra(s, 0)

where R, is asymptotically negligible in the sense that 'R, — 0 in probability
and

(21) (nt/(log log n)")R, — 0 with probability one

when 6 obtains. This condition is satisfied by the maximum likelihood estimate
and related estimates, by estimates which are functions of the sample moments
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of one or more real valued characteristics y = y(x), and by certain others [11],
of course under appropriate regularity assumptions.
ProrosiTion 7. For each 0

(22) [ime.o N (e, 5, 8)/0(0)-[(2/€) loglog (1/€)] = 1

with probability one when 6 obtains.

It would be interesting to know whether lim can be replaced by lim in (22).}
If so, the present viewpoint would lead to exactly the same numerical relative
efficiencies as the viewpoint of Section 1. It is already clear, however, that
asymptotic variances play a dominant role here.

It can be shown by examples that asymptotic normality is not enough and
that the asymptotic structure assumed here for T, (cf. (19), (20), (21)) is
essential to (22) These examples suggest that if ® is Euclidean and if (1) holds
for all 6 then (22) holds with = replaced by = for almost all 6, but the author
does not know whether this is indeed the case in general.

PART II. TEST STATISTICS

®, is a given subset of @. It is required to test the null hypothesis that some
6 in ®, obtains.

4. The level attained. Exact slope. For each n let T, be a test statistic such
that large values of T, are significant. For any 6 and ¢ let

(23) Fn(t’ 0) = Pﬂ(Tn(s) < t)

and

(24) G.(t) = inf{F,(¢t,6):0 in Op.

For given s, the level attained by T, is defined to be

(25) 1 — Gu(To(s)) = L,(s) say.

In other words, the dataz; , - - - , z, being given, L,(z;, - - - , ©,) is the maximum
probability, consistent with the hypothesis, of obtaining a value of T, as large
or larger than T,(z:1, - -+, 2,).

In many examples, T, has an exact null distribution, i.e., F,(Z, 6) is the same
for each 6 in ®,, and the notion of level attained is sometimes restricted to
statistics which satisfy this similarity condition. However, in many problems
some important statistics do not satisfy the similarity condition, and the present
definition of L, is intended to permit the inclusion of such statistics in the dis-

cussion.

3 Professor V. Strassen has pointed out to the author that the answer is no; the inferior
limit is zero with probability one.

4 If small values of T, are significant, consider —7), or any other strictly decreasing
function of T, instead. If both large and small values of 7, are significant it may be that
T, is being used in a manner equivalent e.g. to using |T, — an| where ay is a constant. If
no such reformulation is applicable the present viewpoint is not available.
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L, is of course a random variable; indeed it is a statistic. In typical cases L,
is asymptotically uniformly distributed over (0, 1) in the null case, and

(26) L,—»0 as n—>w»

with probability one in the non-null case. Some authors have argued [3], [5],
[6], [7] and continue to argue [10] that the rate at which (26) occurs when a given
non-null 6 obtains is an indication of the asymptotic efficiency of T, against
that 6.°

Given 8, 0 < & < 1, let N(9, s) = the least integer m such that

(27) L,(s) <& forall nz=zm

and let N = « if no such m exists. Then, for given s, N is the sample size re-
quired in order that T, becomes (and remains) significant at the level 5. What
can be said about the random integer N? In particular, what happens to N as
6 —0?

In typical cases, (26) occurs exponentially fast. Suppose then that there exists
a parametric function c(6) defined over the non-null set ® — ©, such that
0 < ¢ < » and such that

(28) n " log L, — —%c(8) as n—

with probability one when 6 obtains. In accordance with the terminology of [7]
let us call ¢ the exact slope of the sequence {7T',}.
ProrositioN 8. If a non-null 0 obtains then

(29) N(3,8) ~2log (1/8)/c(8) as 6—0

with probability one.

It follows that if {7,”} is a test sequence with exact slope ¢; (4 = 1,2) then
N®/N® — ¢;/c, so that ¢;(8)/c:(0) serves as the asymptotic efficiency of 7,%
relative to T,” when 6 obtains.

It is in general a non-trivial problem to determine whether a given sequence
{T,} has an exact slope and to evaluate it. It is often convenient to attack the
problem in two parts, as follows. Suppose that

(30) T,/nt —b(8)

with probability one when a non-null 6 obtains, where b is a parametric function
defined on ® — B with 0 < b < . Suppose also that

(31) n 7 log [l — Gu(n't)] — —f(t) as n— »

for each £ > 0 in an open interval which includes each value of b, where f is a
continuous function on the interval, with 0 < f < . It is readily seen that in

this case the exact slope exists for each non-null § and equals 2f(b(8)).
If the given {T,} does not satisfy the two conditions of the preceding para-

5 It is suggested in [17] that even for fixed n the expected value of L, is an index of
the performance of T}, .
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graph, it may well be that {T,’} does, where T,’ = ¢,(T,), with each ¢a(t) a
strictly increasing function of ¢. In this case, the levels attained by T. and T,
are the same for every n and s, so the above prescription applied to T, yields
the common exact slope of both sequences {7’} and {T.,}.

The difficulty of the problem lies almost entirely in the need to verify (31)
and to find f. Methods given in [15], [18], [27], [38], [40] are sometimes applicable.
Examples of these and other methods are given (occasionally in the terminology
of Section 5 below) in [1], [2], [6], [10], [24], [30].

It is shown in [10], under certain general conditions, that (contrary to the
first paragraph on p. 240 of [5]) the likelihood ratio statistic of Neyman and
Pearson is an optimal statistic in the sense of exact slopes. This conclusion may
be stated as follows: Suppose that for each 6 the distribution of the single ob-
servation x admits a density function f(z, 8) with respect to a fixed measure .
For any 6 and 6, in © let the Kullback-Liebler information number K be defined
by

(32) K (8, 60) = Eo(log [f(z, 6)/f(, 6)]).
Then 0 £ K £ «, and K = 0 if and only if P, = Ps, . For each 6 in 0, let
(33) J(0) = 1nf{K(0, 30)! 0o in @o}.

Then J is well-defined over ®, with 0 < J < «; J =0 on 0 ; and in typical
cases0 < J < o on ® — Q.

ProrosITiON 9. If ¢ is the exact slope of a sequence {T,} then c(6) = 2J(8) for
each non-null 6.

Now let A, be the likelihood ratio statistic based on (1, --- , z.), i.e.,

(34) M(s) = sup {[I#=1f(z:,0):6 in Of/sup {I[*1f(2:,0):60 in 6},
and let T, be any strictly decreasing function of )\, , e.g.,
(35) Ton= —2log\,.

ProposiTION 10. The exact slope of {T,} exists and equals 2J () for each non-
null 6.

It is noteworthy that the exact slopes of certain statistics generally believed to
be asymptotically equivalent to likelihood ratio statistics (e.g. chi-square tests
of the multinomial) are actually less than 2J(8) for most non-null values of
6(cf. [1]). An indication that the class of statistics which are optimal in the sense
of exact slopes is not very large first appeared in [26]. Certain optimal statistics
other than T, are given in [12].

6. Some power function considerations. As might be expected, there are
several connections between the rate at which (26) occurs and the power func-
tions of the family of critical regions based on T, (cf. [5], [6], [7]; cf. also [17]).
The main connection between exact slopes and power is perhaps the following:
Let {T,} be a sequence with exact slope ¢(8). Consider a particular non-null 6.
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Let p be given, 0 < p < 1, and let {k,} be a sequence of constants such that,
with W, = {T, = k.},

(36) Py(W,) —>p as n—> .
For each n, let
(37) a, = sup {Pe,(W,): 0, in .

Then a, is the size of W, in testing @, against @ — O, and Pe(W,) is the power
of W, against the given 6. Note that here k, depends on the given 8; hence a,
does also. It is clear that a, — 0; it can be shown that the rate is exactly the
rate at which L, — 0.

To be more precise let M = M (5, 8) be the least integer m such that

(38) a,(0) <& forall n=m.

We then have
ProrosiTioN 11. 77" log a,(8) — —1c(8) as n— «. Hence

(39) M(5,8) ~2log (1/8)/c(6) as &§—0.

It was suggested by Cochran [16] that alternative test statistics might be
compared by fixing the power against a specified alternative and looking at the
resulting sizes as n increases. It is plain from Proposition 11 that for statistics
which have exact slopes this suggestion is immediately feasible, and that the
Cochran viewpoint will always lead to precisely the same conclusions as the
considerations of Section 4.

The Cochran viewpoint is located at one extreme of the field of interest. The
Neyman-Pearson viewpoint, i.e., fixing the size and looking at the power (or
rather, in the present asymptotic context, at 1 — power) is located at the
diametrically opposite extreme. [25] is an example of successful use of the Ney-
man-Pearson viewpoint in asymptotics. In general it is much more difficult to
use the Neyman-Pearson viewpoint than the Cochran viewpoint.

The middle ground between the two extremes, in which middle ground «, and
1 — P4(W,) both tend to zero, has been explored in some recent studies. [37]
treats the case when a, goes to zero as fast as some negative power of n, and [26]
the case when a, goes to zero faster than any negative power of n but not ex-
ponentially fast.

6. An approximation. The preceding two sections do not depend in any way
on the asymptotic properties, if any, of T, in the null case. Suppose now that
T, has an asymptotic null distribution, i.e., there exist a probability distribution
function F such that, for each 6, in ©,,

(40) Fu(t, 60) > F(t) as n—> o
for each ¢. In this case, it is of interest to consider the approximate level

(41) L.(s) =1 — F(T,(s)).
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In typical cases, L,'” — 0 exponentially fast, i.e., for each non-null 8 there
exists a ¢ (0), 0 < ¢ < o, such that

(42) nlog L, — —1c“(6) as n—

with probability one when 6 obtains. We suppose that this is the case, and call
¢ the approximate slope of {7} .

If ¢, is the approximate slope of a sequence {T,”} (¢ =1,2) then the
arguments of Section 4 applied to approximate levels yield ¢ (8)/c;” (8) as
the approximate asymptotic efficiency of T, relative to T,* when 6 obtains.

A prescription for verifying (42) and finding ¢ is the following: Suppose that
T, satisfies (30) for some b, and that for some a, 0 < a < «, the limiting null

distribution F satisfies
(43) log[l — F(t)] ~ —%af’ as t— +oo.

Then (42) holds with ¢*(8) = a[b(8)]>. There are many examples of this
calculation [1], [7], [23], [28].

The distinction between ¢® and c¢ is important. Indeed there is some question
whether it is useful to compute ¢” unless it is known in advance that ¢® is close
to ¢ for the # under consideration; this advance knowledge is almost never avail-
able. (A happy exception is T, given by (34) and (35); for this statistic
¢® = ¢ = 2J for all 6, under general conditions.) Even for large n, (41) is a
reasonable definition of the approximate level attained by 7', only under certain
conditions. One is that (40) hold uniformly in 6y, or at least that G, — F.¢
Another is that T, be not so highly significant that the level attained, if com-
puted at all, will certainly not be computed by an approximation such as (41)
since such approximations typically involve relative errors of unknown magni-
tude and direction when L, is very small. If a non-null 6 obtains this last proviso
for the reasonableness of L, starts disappearing as n increases and is gone
entirely by the time ¢ appears in the limit. Examples mentioned in the following
section show that the indicated potential unreliability of ¢ is often realized.
Conclusions based entirely on approximate slopes must therefore be regarded
as tentative.

It is just possible that in certain circumstances ¢ has more relevance than c
does to large samples in which the level attained happens not to be nearly zero.
D. L. Wallace and the author have recently asked an electronic computer some
questions bearing on this. The first few responses of that oracle have been quite
intriguing.

It is argued in [7] that it is worthwhile to compute ¢, on a tentative basis,
for the following reason. Suppose for simplicity that ® is an open set in & dimen-
sional Euclidean space of points 6 = (6, - -- , 6;). In case a non-null 6 far from
any point of ©, obtains, and T, is a respectable statistic, the chances are that
the computation of L, or L, for that matter will soon be abandoned as n

(a)

¢ This uniformity is akin to the uniformity in estimation advocated in [36], [42].
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increases. Since slopes appear only in the limit as n — «, it may be that such
interest or application as slopes may have to large samples stems from the values
of the slopes in the neighborhood of some null parameter 6, . In many cases,
¢”(8) is a good approximation to ¢(8) for 6 in such a neighborhood. More pre-

cisely, for given 6y = (61, - - - , fx0) in Oy, there exists a positive definite matrix
M(Oo) = {m,;j(ﬂo)} such that

(44) ¢ () ~ 2% =1(0, — 0:0)m.;(80) (6, — 050)

and

(45) () ~ D% ima (8: — Bi0)mas(80)(8; — 650)

as § — 6, in any manner. Consequently, if {T%"} and {T’} are two typical se-
quences, ¢i”/cs” ~ ¢1/cy as 8 — 6 in any manner, so that the approximate local
relative efficiency is the same as the exact local relative efficiency. It thus seems
that approximate slopes afford, or at least promise, a very short cut to the main
conclusions from exact slopes; cf., e.g., [1], [2], [7]; cf., however, part C of Sec-
tion 7 also.

It is of some interest that in many cases the main conclusions available from
slopes coincide with main conclusions (i.e., local relative efficiencies) afforded by
power function considerations; cf., e.g., Appendix 2 of [7].

It is worth noting that ¢i”/cs” will in general tend to a limit as § — 6, only
if 9 approaches 6, from a fixed direction, and that the limit will depend on the
direction. This dependence on direction is closely related to the dependence
which appears in comparing asymptotically normal estimates of the vector
parameter 6.

Let ¢ be the exact slope of a sequence {T,}. Let us say that {T,} is locally
optimal if, for each 6 in Oy, c(8) ~ 2J(0) as § — 6, . It seems likely that the
class of locally optimal sequences is much wider than the class of sequences
which have the exact slope 2J(8) for each non-null 6, especially if @, consists of
a single point 6. In the latter case, {7’} is locally optimal if and only if M is
the information matrix in (44) or (45).

7. Some perils of approximation.

A. Let {T,"} and {T,*} be sequences with approximate slopes ' and ¢
respectively. It can easily be the case that T, and T, are equivalent for each
n in the sense that T,® = ¢.(T.") where ¢, is a strictly increasing function,
but ¢;”(8) # ¢ (6), with wide discrepancy for 8 far from any point of @ .
Cf. examples in [7], [22].

Needless to say the exact slopes of equivalent statistics are always the same.

B. Let ¢® and ¢ be the approximate and exact slopes of a sequence {T,}. In
general, ¢® # ¢, and the discrepancy can be wide for 6 far from any point of
0, . Suppose, for example, that z is real valued and normally distributed with
mean p and variance 02, and that it is required to test u = 0. Let
T, = |Students ¢/ . Then ¢ = A%, ¢ = log (1 + A%), where A = |u|/o.
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C. In the example just considered, and many others, ¢® is a good local ap-
proximation to ¢, but this is not so in general. Suppose that it is required to test
independence in a 2 X 2 table, with all marginal frequencies except the total
sample size free. Let T, be the chi-square statistic based on a sample of size n.
Then, in the non-null case, L, — 0 exponentially fast, but L, cannot go to
zero at a rate faster than 1/n. Thus ¢® > 0, but in effect ¢ = 0, for every non-
null . This example is due to Hoeffding [26].

In the example under consideration, the limit in (40) is not uniform in 6, over
the entire null set ©®,. However, as is well known, in referring T, to the chi-
square 1 d.f. table one is not necessarily using the approximation (40)—(41); one
may be approximating the exact level attained by the two-sided conditional test
of Figher. It can be shown that this last is an asymptotically optimal test, i.e.,
with L,* the exact conditional level attained by T, given all the marginals,
n'log L,* — —J with probability one, and that ¢ is a good local approxima-
tion to 2J.

This example and many others suggest that there is good local approximation
whenever each T, has an exact null distribution (cf. para 2 of Section 4), but
it is not known at present whether this last is the case.

D. In the same 2 X 2 table example as above let T, be the chi-square sta-
tistic as before and let T\, = —2log \,, with A, the likelihood ratio statistic.
Suppose that we were to proceed as follows in any 2 X 2 table problem: given
the data we see which of the two statistics T, and T, is larger, declare it to be
the statistic in use, and refer it to the 1 d.f. chi-square table to obtain the level
attained by it in the given case. It is plain that we would then be engaged in
actual cheating. However, if accused of cheating we could offer approximation
as a defense, i.e., we are invariably using the statistic V, = max {T,, T,} and
referring V, to its asymptotic null distribution.

Proof that the approximation defense is untenable (whatever the status of
such approximations in current theory and practice) is afforded, perhaps, by the
following asymptotic considerations: Let ¢, be the approximate slope of T,
and ¢ = 2J that of T, . Let ¢, ¢ be the exact and approximate slopes of
V.. Then ¢ = max {¢,'”, &} but ¢ = 0 for all non-null 4. The exact slope
of T, is, as usual, 2J. The conditional exact slope (given the marginals) of each
of the three statistics T, T, and V, is 2J.

It thus seems that there is no substitute for exact analysis, whatever the
sample size.

APPENDIX. Notes on Propositions 1-11.

Proposition 11 is stated and proved in Appendix 1 of [7] under certain restric-
tions on T, and for approximate sizes a, ; a statement and proof which is simi-
larly inadequate is given in [5]. Proposition 11 as stated does involve a restriction
on T, , namely the existence of k, such that (36) holds, but no other conditions
are required. To see this, suppose that lim,.. {# " log a,} > —%c. It then follows
from (28) that there exists a sequence m; < m, < --- of positive integers m,
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such that, with probability one, am, > L, for all sufficiently large r. We
observe next from (23) and (24) that, for each n, @, = 1 — G,(k,). Since
L, =1 — G,(T,), and since G, is non-decreasing, it follows that, with proba-
bility one, T'm, > km, for all sufficiently large r. Hence Po(Tm, > km,) — 1 as
r —> o, contradicting (36). Thus limp.. {n " log a,} < —ic. A similar argument
shows that lim,.. {n~" log a,} = —%c. This establishes the first part; the second
part is immediate from the first.

Proposilion 10 is established in [10] under regularity conditions of a global
sort; local regularity conditions associated with the classical null distribution
theory of T, are not required. The following is an outline of the proof:

First consider the case where O is a finite set, say ©® = {6y, - -+, 0, Oj+1, -+,
6:} with 1 = j < k, and suppose @y = {6, - -+, 6,}. Let
(1) U,= —n'log\,.

This statistic is of course equivalent to T, given by (34) and (35). Let L, be
the level attained by U, . We must show that, for each non-null 8

(i) n " log L, — —J(0)

when 6 obtains.
Let U,(g, p) be the statistic U, when the entire parameter space is {6, , 8,
and the null hypothesis is {6,}, i.e.,

(iii) 0.(g, p) = max (0, ' 2 =1 10g [f(x, 6,)/f(x:, 6,)]).

Suppose that a non-null 6, obtains (i.e., ¢ > 7). It is plain from (iii) and K = 0
that then U.(q, p) — K(8,, 6,) with probability one. It follows from the con-
sistency of the maximum likelihood estimate that, with probability one,

max;<i<k {0.(4, p)} = U.(g, p) for all sufficiently large n. Hence
max; <i<k { (4, p)} = Va(p) (say) — K(8,, 6,) with probability one for each
p. Since

(iv) 0, = min1§p§j{17,,(p)}

it follows that

(v) U, — J(6,)

with probability one when 6, obtains.
Now let 8, be a null parameter point (i.e., 1 < p =< j), and let ¢ > 0. Then,
from (iv) and the definition of V,,
<

(Vl) Pﬂp(Un g t) Pop(vn(p) g t)
< 2w Po(Ua(i, p) 2 0).
Writing £ (+) = [Ir<17(z,, 6

0:),
(vii) Py, (0.3, p) Z t)

Po,(fp™ = € ™f7)

é e—mPOi( ) ) = e—-nt.
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It follows from (vi) and (vii) that 1 — F.(t, 0,) = ke ™. Since 6, is arbitrary,
we have 1 — G,(¢) < ke ™. Hence L, =1 — G,(U,) =< kexp (—nU,). Hence

(viii) im0 {n " log L) < —J(6)

with probability one when 8 obtains, by (v).

The general case can be reduced to the case just considered (i.e., finite ®) by
the compactification device of Wald; for details see [10]. Assume henceforth that,
in the general case under consideration, (viii) holds. The desired conclusion is
immediate from (viii) and Proposition 9 4f {U,} has an exact slope.

It seems difficult to show directly (even in special cases) that {U,} has an
exact slope; it seems much easier to show that, for any {T.},

(ix) i, {7 log L) = —J(6)

with probability one when 8 obtains; this inequality applied to L, , together with
(viii), establishes Proposition 10.

A proof of (ix) is given in [10]; a better proof, under a weaker assump#ian, is
given in [13]. The assumption required in [13] is that if 6 is a non-null point with
J(8) < « then there exists a sequence {8} of null points such that K(6, 6,) —
J(6) and such that not only K(6, ;) < « but Es(log [f(z, 8)/f(z, 6:)])° < «
for each 7. It is not known at present whether this last assumption is essential
to (ix).

Proposition 9. A version of this proposition appears in [5] but this version in-
volves unnecessary conditions on the framework and on 7', . In fact, no condi-
tions whatsoever are required. It is known [10], [13] that for any sequence {7}
and any 6 in O,

(x) im0 {n " log Ly} = —J(6)

with probability one when 6 obtains. Proposition 9 is immediate from (x) and
the present hypothesis that (28) holds.

The following is an alternative direct proof of Proposition 9; this proof parallels
the proof of Proposition 10 and may therefore be of interest. Let 6 and 6, be
points in ©. Consider the (possibly randomized) likelihood ratio test of 6,
against 6 based on (1, ---, x,) such that the power of this test is p, where
0 < p < 1is given. Let &, be the size of this test. Let K be defined by (32),
and assume 0 = K < .

LEMMA. n " logé, - —K asn — o.

This lemma is due to C. Stein (unpublished). The lemma is stated and proved
independently in [5] but in a complicated way involving unnecessary regularity
assumptions. It may be noted, in view of Proposition 10, that, except for certain
technical details, the lemma provides an illustration of Proposition 11 with
{6, 8o} as the parameter space, T, = T, , and ¢(8) = 2J(6) = 2K(8, 6).

To establish the lemma, note first that the present hypothesis that K < o
implies that P, << Py, on the sample space of a single observation z, say dPs/dPy,
= g(z), and that K = Ey(logg). Since the lemma holds trivially if K = 0,
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suppose that K > 0. Let h, = g(x1) --- g(x.). The (possibly randomized)
likelihood ratio test of power p is of the form: Reject 6, with probability ¢, ,

where )
on=1 if h,>k,

=0, if hy=Fn
=0 if hy<Fkn
where k, and 8, are constants, 0 < 8, < 1. Then
(xi) Py(hn > kn) < Eo(en) = p S Po(ha 2 k)

for each n. Since n™" log h, — K in probability when 6 obtains, and since 0 <
p < 1, it follows from (xi) that

(xii) n " log k, — K.
We observe next that
&n = Eoy(¢n) < Poy(hn Z ka) = [1,21, dP6Y
< [hst (B 7'ha) dP§Y = Fo ' Po(hy = ) < k™
for each n. Hence by (xii),
(xiii) lim,.. {n " log &} < —K.
Choose and fix e > 0 and let a, = exp (ne). Then, for each n,
Gn = [x0 0 AP§Y Z [hnghnon on APSY
2 (Fa@n)™ [hnshaan @n b P8 = (kn@n)™ [1, shnon 00 APo™
= (Fnn) [ xm @0 AP™ — [15tsan on APs™)]
2 (kn@a) '[P = [hwtaan AP ™) = (Raan) Ip — Po(hn > kuan)].
Since Py(hs, >ra,) — 0 by (xii), and since p > 0, it follows that
(xiv) lim,,. {7 log 4.} = —K — e

Since e is arbitrary, the lemma is established.

To establish Proposition 9, let {T',} be a sequence with exact slope ¢. Choose
and fix a non-null 6. If J(6) = o there is nothing to prove. Suppose then that
J(8) < . Let {6;} be a null sequence such that K(6, 6y;) < « for each j and
K(6, 6;) — J(0). ’

Consider a particular 6y; and call it 6, for simplicity. Let {k,} be a sequence
such that Po(T, = k,) — p + 6, where 0 < 6§ < 1 — p. Let ¢, be the likelihood
ratio test of 6 against 6 of power p. Then Ey(¢,) < Po(T. = k,) for all suffi-
ciently large n. Hence Ey,(¢,) < Poy(T» = k.) for all sufficiently large n. Hence,
Eo,(¢n) = an for all sufficiently large n, with a, given by (37). Hence, by Propo-
sition 11 (with p replaced by p + 8) and Stein’s lemma, ¢(8) = 2K(6, 6,), i.e.,
c(0) = 2K (9, 6y;). Since j is arbitrary, ¢(8) < 2J(6).
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Proposition 8 is an immediate consequence of (28).

Proposition 7 is a straightforward consequence of the Hartman-Wintner ver-
sion of the law of the iterated logarithm.

Proposition 6 requires all the global and local conditions required by Proposi-
tion 3 and in addition the existence of various moment generation functions. This
is to be expected, since Proposition 6 asserts that 7, is consistent and that
é. — 0 at an exponential rate related to the asymptotic variance of T, .

Proposition 6 as stated here is a sharper version of a proposition obtained (in
detail for ¥ = 1 and in outline for £ > 1) in [5]. What is shown in [5] is that

(xv) limeo [imp,e (77,7} = lim.o lim, ., {n#,} = 9.

The writer thinks that the gap between (xv) and (16) can be closed but at
present has proofs of (16) only in certain cases, e.g., k = 1, and k arbitrary but
X finite.

Suppose first that 6 is real valued, and that g(8) = 6. Let u(z,0) =
(8/96) log f(x, 8), and let ¢(¢: 61, 8) denote the moment generating function of
u(z, 6;) when 6 obtains. Let ¢ > 0 and

(xvi) p(e, 0) = inf{o(t: 0 + ¢, 0): ¢ = 0},
p2(e, 0) = inf{p(t: 0 — ¢, 0): ¢t = 0}.

Then, under general conditions, 0 < p; < 1 for all sufficiently small ¢ and p; — 1
ase—>0 (7 =1, 2). Let

(xvii) 9(e, 6) = 2 min {log (1/p(e, 0)), log (1/p(e, 6))}.
Then, for all sufficiently small ¢, lim,.. {n#, (¢, 8)} = @(e, 8) where
(xviii) (e, 0) = €/9(¢, 0).

To establish this, choose and fix 6 in ®. For any n and s, let La(-, 8) denote
the log-likelihood function based on (z, - - -, &,). It is first shown, as in [5], by
several applications of the Bernstein-Chernoff bound, that the following holds
for each sufficiently small 2 > 0. There exists a 8, 0 < 8 < 1, and for each n
a measurable event A, depending only on (z;, - - -, z,), such that

(xix) Py(4.) > 1 ="

for all sufficiently large n, and such that, for each n, 4, implies all the following:
the supremum of L, over © is attained, and attained at exactly one point in O,
say 0, ; |6, — 6| < h; and L, is a strictly concave function over (§ — h, 6 + h).
Choose and fix a sufficiently small A > 0. Let ¢ > 0 be so small that ¢ < h, and
p1 and py are both >B. It follows from (xix) that |Pe(6, = 6 + ¢) —
Po(L, (6 + ¢ 8) = 0)| < 8", where L, is the derivative of L, with respect to 6.
It now follows by an application of Chernoff’s theorem that n ' log Ps(f, =
6 + ¢) — log py . A similar argument shows that n™" log Ps(6, < 6 — ¢) —>logp. .
Hence n " log &, — —14, where 4 is given by (xvi) and (xvii). Now (11) ap-
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plies to show that, with @ given by (xviii), /n serves as the asymptotic effective
variance of T, = 6, . That @ — 9 as ¢ — 0 may be shown directly, or by appeal-
ing to (xv). Suppose now that g is an arbitrary (but sufficiently smooth) function
and ¢’ 5 0 at 6. Then g is strictly monotone over (6§ — h, 6 + k) provided
h > 0 is sufficiently small. Consequently, with v = g¢(08), |d(e, 6) —
Py(|4» — 9| = €)| < B" for all € and all sufficiently large n; hence etc.

Suppose now that ¥ > 1, ¢ is sufficiently smooth with #(6) > 0, and X is
finite. It is first shown, as in the case considered above, that for each sufficiently
small ~ > 0 there exist 8 and A, such that (xix) holds for all sufficiently large =,
and such that 4, implies the following: L, is maximized at exactly one point in
0, say 6, = (bin, -+, bkn), and d(6, , 6) < h. Now Sanov’s theorem applies to
show that @ exists for each sufficiently small e. The formula for @ obtained thus
is rather impenetrable, but (xv) is always available to complete the proof.

Suppose finally that £ > 1 and X is arbitrary. In case I(6) is independent of
6 a refinement of the local arguments of [5] yields (16), but the case when 7(8)
varies with 6 remains open.

Proposition 5. The proof in [5] of this proposition requires certain unnecessary
integrability assumptions on the framework. The proposition is valid provided
only that ¢ is continuously differentiable over ®, and that for any 6, in ® there
exists a k X k positive definite matrix 7(8,) = {I;,(6,)} such that, with K given
by (32), 2K (6, 6,) ~ (6 — 6,)I(6 — 6,)" as 6 — 6o . Under additional assump-
tions this [ is necessarily the information matrix but even if it is not (15) holds
with § defined by (5).

The improvements just described are immediately available from the argument
in [5] because (as noted above) Stein’s lemma is valid without the integrability
assumptions invoked in [5] for this lemma. The argument in [5] proceeds as fol-
lows: Choose and fix a 6y in ©. If #(6,) = O there is nothing to prove. Suppose
then that 9(6,) > 0, i.e., at least one of the partial derivatives of ¢ at 6, is 5= 0.
Then, with I = I(6,) and b = (hy(60), -+, h(6)), @ = hI" is a non-zero
vector. Let ¢ > 0, and let 6; = 6, + e-a. Let X be a constant, 0 < X < 1, and
let W, be the critical region {|T, — g(8y)| = A8} for testing 6, against 6, , where
8 = e-ak’. Since T, is a consistent estimate of g, and since lg(6:) — g(60)| =
e-ah’ + o(e) = & + 0(8) as e — 0, it follows that, for each sufficiently small ¢,
Py, (W,) — 1 as n — . Consequently, if € is sufficiently small, Py,(W,) > the
size of the likelihood ratio test of power % (say) for all sufficiently large n. It
now follows from Stein’s lemma that, with «, defined by (2),

(xx) lim,., {7 log a, (N6, 6)} = —K(6:, 6o).

By dividing both sides of (xx) by \’6’, and observing that A6 decreases continu-
ously to zero as e decreases to zero, it follows that

(XXi) l_ig_le-»() l_ix___nn-»eo {(n€2)~1 log a,,(é, 00)} ; —)‘—2 li——mt-»o {K(ol ’ 00)/62(0’,1‘,)2}'

Since 2K (61, 60) ~ (61 — 60)I(6; — 65)" as 6, — 6, , it follows from the defini-
tions of 6, a, and 9 that
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(xxii) lime,o K (61, 60)/€(ah’)* = 1/20(6,).
Since A is arbitrary, we conclude from (xxi) and (xxii) that
(xxiii) limeo lim, .. { (ne®) " log an(e, 60)] = —1/20(6,).

In view of (11), (xxiii) is equivalent to the validity of (15) at § = 6.

Proposition 4 is immediate from (9), (12), and (cf. [19], p. 166) 2° ~ 2 log(1/5)
as 6 — 0.

Proposition 3. Cf. the paragraph immediately following the statement of this
proposition. General assumptions which guarantee the consistency of maximum
likelihood estimates were first formulated by Wald [41]. The following version of
Wald’s theorem is based mainly on [29], [41] and partly on [10], [35].

Let there be given the abstract sample space X, and abstract parameter space
0, and the family {f(x, 6)} of probability densities relative to fixed a o-finite
measure u, and let Po(A) = [4 f(x, 0) du for A C X. Let us then say, as in [10],
that a compact metric space © of points 6§, with distance function d, is a suitable
compactification of © if the following conditions (i)-(iii) are satisfied. (i) @ is
an everywhere dense subset of ©. (ii) For each 6 in ©, g(z, 6;, €) :
sup {f(z, 8): 6 in O, d(6;, 8) < ¢ is measurable in z for all sufficiently small
e > 0. (iii) With g(x, 61, 0) = lim.,g(x, 61, €), fxg(x, 6:,0) du = 1 for all
6, in ©. In the following, for any set @, C © and any extended real valued func-
tion A(6), we write h(®y) = sup {h(0): 0 in Op}. If there exists a suitable com-
pactification of @ it follows, in particular, that f(x, ®) is measurable in x.

Now assume that

(a) there exists a suitable compactification of O, say ©;

(b) Eyllog (f(z, ©)/f(x, 6))] < « for each 6 in O;

(¢) if 6 and 6; are points in ® and O respectively, with 6 = 6,

then wp{z: f(z, 6) = g(z, 6:, 0)} > 0

(d) © is open in O;

(e) for 6 in O, f(x, 8) = g(x, 6, 0) for all x.

For any n, 6 in ©, and s let 1,(6, s) = [[r1f(z,, 6). Let ©,(s) = {6: 6in O,
1.(0, s) = 1,(0, s)}. Then, for given s, 0, is the (possibly empty) set of all
maximum likelihood estimates of 6 based on (z;, - - -, x,). It can be shown that,
with probability one, ®, is non-empty for all sufficiently large n and that the
entire set O, converges to 6.

To establish this, choose and fix a § in © and suppose henceforth that 6 ob-
tains. For each n and s let ©,%(s) = {6 : 6; in O, (6, s) = 1,(0, s)}.Tt
follows from (b) that ©,* is non-empty with probability one. Note that 0, c
0, for every n and s. We proceed to show that, with probability one,

(xxiv) sup {d(6, 6:): 6, in ©,"} — 0

For any 6;in © let S(6;, ¢) = {6: 6in ©, d(6;, 8) < €. Suppose that 6, = 6.
It then follows from (b) and (¢) by condition (iii) of (a) that there exist ¢, > 0
and ¢; > 0 such that

(xxv) —w = B(loglg(z, 61, &)/f(z, 0)]) < —cr.
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In the following, for any set A C © let A° = An ©. Since ,(8°(6;, «), s) =
) § i g(z,, 61, &), it follows from (xxv) that, with probability one,

(xxvi) (1/n) log (1.(S°(01, &), 8)/la(6, 8)] < —c

for all sufficiently large n.

Now choose and fix € > 0 so small that with A = ® — S(6, ¢), A" is non-
empty. The preceding argument applies to each 6; in A. Since A is compact, there
exist points 6y, - - -, 6, (and corresponding ¢, - -, ez and ¢, - - -, ¢, of the above
paragraph) such that A ¢ U%_; S(6;, «). Hence A° < U,* 8°(6;, «), and so
LA s) = 1,(U 8%, &), s) = max {I,(8°(6;, ¢), s): 1 < 1 < k) for every
n and s. It now follows from (xxvi) that, with probability one,

(xxvii) (1/n) log [l.(A°, s)/1.(0, 8)] < —c¢

for all sufficiently large n, where ¢ = min{ci, ---, ¢}, 0 < ¢ < . It follows
from (xxvii) and the definition of ®,* that, with probability one,

(xxviii) 0," < 8(6, €)

for all sufficiently large n. Since € in (xxviii) is arbitrarily small, (xxiv) holds with
probability one. It remains to show that ©, is non-empty for all sufficiently
large n.

For any set A C © let A denote its closure in ©. Let ¢ > 0 be so small that
S(8, ¢) C O; such an e exists, by (d). Choose and fix an s and 7 such that
(xxviii) holds. Then

(xxix) 0, < 8%, ).

By the definition of ©,% it contains a sequence {6, , 6, - - -} such that 1,(6,) —
1,(®) asj — . By passing to a subsequence, if necessary, we may suppose that
0; — 6 say, where 6 is in @,*; hence 6, is in ©, by (xxix). It is clear that for
any e > 0, [[/=19(z,, 6, &) = 1.(6;, s) for all sufficiently large j; hence
11" g(z,, 60, &) = 1.(©®). Since ¢ is arbitrary, it follows from (e) that ,(6) =
1.(®); ie., 6 is a point in O, .

The preceding formulation and proof depend heavily on the particular versions
of the density functions f(z, #) under consideration; this is appropriate, since the
existence and properties of maximum likelihood estimates also depend on the
versions in use.

It is plain that conditions (d) and (e) can be dispensed with if we presume
the existence of maximum likelihood estimates. It can be shown by simple ex-
amples (in which (a), (b), (¢) hold) that if (d) or (e) does not hold then 0,
can be empty for every n and s. Conditions (d) and (e) are, however, rather
peripheral in the sense that in typical cases they are satisfied if (a) holds. It is
interesting that the identifiability condition (¢) is automatically satisfied if 6
denotes the unknown probability distribution, i.e., if © is a set of probability
measures on X. This last is a natural parametrization since maximum likelihood
always estimates the entire distribution from given data.

It thus seems that (a) and (b) are the main assumptions. It is known [4], [29]
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that conditions such as (a) and (b) are at once quite restrictive, often hard to
verify, and indispensable to any general proof of consistency.

Suppose now that © is an open set in k dimensional Euclidean space, that
f(z, 0) (and therefore each 1,(8, s)) is positive and differentiable in 6. It then
follows immediately from the conclusion just established that, with probability
one, for all sufficiently large n, each point in ®, is a solution of dL.(6,5)/86; = 0
(¢=1, -, k) where L, = logl, . It can be shown that there exists, for each n,
a measurable function 6, of (z;, - - -, z,) with values in © such that 6, is in ©,
whenever the latter set is non-empty. Assume that g is a continuously differen-
tiable function of . Then Tn(s) = g(b.(s)) is measurable, and (with proba-
bility one when 6 obtains) T, is a maximum likelihood estimate of ¢ for all
sufficiently large n and T, — 6. The measurability of 7', is essential to the state-
ment of Proposition 3.

The additional local regularity conditions required (for the present purpose of
completing the proof of Proposition 3, and for other purposes) have been formu-
lated by Cramér, LeCam, Rao, and many others. In particular, the conditions
stated at the outset of Section 3 of [9] suffice for the second part of the proof of
Proposmon 3. These conditions imply, incidentally, that with probability one
0, consists of a single point for all sufficiently large n.

Proposition 2 can be established easily by a slight modification of the argument
in Section 3 of [9] as follows. Assume that the framework satisfies the local regu-
larity conditions stated at the outset of Section 3 on p. 1550 of [9], and that g is
continuously differentiable over ©. Let 6° be a point in O, let (a1, ---, ax) be a
fixed non-zero vector, and let 6,° = 6" 4+ n *a. By taking D, to be {T,, g 9(6.))}
in the argument on p. 1551 of [9] it follows that if

(xxx) liMpae P(Tr = g(6.°) | 6,°) = %

then

(xxxi) (v(6")} = ah'/(ald)}

wh%re B = (hi, -+, l) is the vector of partial derivatives of g at ¢°, and I =
I(glzlce limn. P(T» = g(0) | 6) = % for each 6, it follows (cf. Section 2 of [9])
that, for given a, there exists a null set N and a sequence my < me < --- of

positive integers such that, for all 8’ in ® — N, P(T, = ¢(6.") | 6.') — % as
n — o through the sequence {m, , m, - - -}. Hence, for almost all 6° in O, (xxx)
holds for all non-zero a with rational co-ordinates. Hence, for almost all ¢’
(xxxi) holds for all non-zero rational ¢ and consequently for all non-zero a. If
(xxxi) holds for all non-zero a then #(6°) cannot be less than #(¢").

The conclusion stated and proved in Section 3 of [9] is a consequence of Propo-
sition 2. For, if ¢, is an asymptotically normal estimate of 6, then for any b =
(b, -+, b), Tn = t,b’ is an asymptotically normal estimate of g(8) = 6b’.
Hence, with V the asymptotic covariance of n, , bVb" = b'I*b for almost all
0, by Proposition 2. Since b is arbitrary, it follows that V — I is positive
semi-definite for almost all 6.



RATES OF CONVERGENCE OF ESTIMATES AND TEST STATISTICS 323

Proposition 1 is perhaps an unfamiliar formulation but the proof is more or
less immediate.
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