ROBUST PROCEDURES FOR SOME LINEAR MODELS WITH ONE
OBSERVATION PER CELL!
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1. Introduction and summary. For block designs with one observation per cell,
the model often used is the linear model in which the observations
Xie(t=1,---,r; =1, ---,n) can be written

(L.1) Xio=v+ &t pat YD ti= D pa=0)

where the £’s are the parameters of interest (treatment effect) the p’s are nuisance
parameters (block effect), and the Y’s are independent with common continuous
distribution F. '

The purpose of this note is to discuss some new robust test statistics (e.g. 2.14
and 2.16) of the null-hypothesis Hy : & = & = -+- = &, and to discuss a new
robust estimate (3.3) of the contrast 6 = 2 c&; .

2. Testing for absence of main effect. The tests of Ho: & = & = -+ = &,
will be based on the quantities U;; defined by
(2.1) (3)U;; = number of pairs (a,8) with a <p

and (Xi — Xjo + X — Xj5) > 0.

Let )\(F) = P( Y11 < Y12 + Y13 —_ Y14 and Yu < Y15 + Ym - Y17) and let
{a; :1=1,---,r;7=1,--+,r} be a set of constants, then the results of Hoeff-
ding (1948) on U-statistics yields.

LemMA 2.1. Suppose &; — & = aii/nt, then {n%[Ui,- — E(U4)]):1 < j} has asymp-
totically the 2(r — 1)r variate normal distribution with zero mean and covariance
matrix T = (oj,51) given by

Gijii = % oipr = 0 if 4,7,k 1 are distinct;
(2.2) oip = [ANF) — 1] if 1=k or j=1 and
o = [1 — 4AN(F)] if 1=1 or j=F.
A(F) has been shown by Lehmann (1964) to satisfy
(2.3) T=MF) =45

and to have the values .2902, .2909 and .2879 for the normal, uniform and Cauchy
distributions, respectively.

The asymptotic mean of Uj; is given by the following result in which G denotes
_Phe distribution of Y33 — Yie.
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ROBUST PROCEDURES FOR SOME LINEAR MODELS 879
LemMA 2.2. Let the density g of G exist and satisfy the regularity condition of
Lemma 3(a) of [4], and let &; — &5 = a:;/n}, then
(2.3) WE(U;) — 3] — 2a; f_wg ($)dt as n— o.
ProoF. Set A = £ — £ = ai/n}, then
E(Uy) = P(Xia — Xju+ Xig— Xj3> 0)
= P(Yi— Y+ Yy — Yip+24>0)
G(t + 2A) dG(1).

It follows that w’[B(Us) — 3l = [ (aa/A)G(t + 28) — G(9]dG()
205 [ 2w g*(2) dt as A — O(n — oo)

Next the quantities
(2.4) Ti=U.—-U;= ! ZI:-I Up — 71" Z)rc=1 Uje

will be considered. It is clear that the mean of T';; under H, is zero while the
variance under H, can be computed to be

(2.5) Vo(Ty) = {20 — 1+ (r — 2)[24(n — 2)N(F) + 13 — 6n]}/3rn(n — 1).
Similarly, the covariances under H, are
Co(Tij, Tw) = 0, if 4,7,k I are distinct,
(2.6) Co(Tsj, Tra) = Vo(T4)/2, if ¢=k or j=10
Co(Tsi, Ti) = —Vo(Ty)/2, if i=1 or j=kF

It is seen from (2.5) that T's; is not distribution-free. However, the next result
shows that it can be made asymptotically distribution-free by dividing it by a
consistent estimate of Vo!(T';;). In order to obtain such an estimate; it is enough
to replace N(F) in (2.5) with a consistent estimate of N(F ). Lehmann (1964)
proposed the following unbiased consistent estimate:

¢\ = number of sixtuples (3, 7, k, «, B, ¥)
(2.7)  with <,j, k distinct; a, B,y distinet;

Xie — Xja < Xig — Xjg; and Xie — Xpe < Xy — Xy
where
(2.8) c=mn(n—1)(n— 2)r(r — 1)(r — 2).

See also Hollander (1966).

Joint asymptotic normality of the 1”s follows from the fact that the T';; are
linear functions of the U; . From the preceding covariance results, it can thus be
concluded that:

LemMA 2.3. Suppose &; — & = aii/nl, then {n}[Ts; — E(T:;)]:4 < j} has asymp-
totically the (r — 1)r variate normal distribution with zero mean and covariance
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matriz 2% = (oijw) given by
olfiii = (2 + 6(r — 2)[4N(F) — 1]}/3r,

(2.9) ol =0, if 4y, k, 1 are distinct,
olim = 0ii.i/2, if 1= k or ji=1,
oiim = —0ii.i/2, if 1=1 or j==kF.

From Lemma 2.2, one gets
LemmA 2.4. If the conditions of Lemma 2.2 hold, then

(2.10) WE(Ty) — 20i [20g’ () dt as n— .

The preceding results can now be used to construct asymptotically distribu-
tion-free statistics of Hy by replacing X;. — X;. in the classical procedures by T';;
or U;; . Note that the asymptotic theory of T';; and U;; under H, is given by the
above lemmas (set a; = 0).

Let Pitman asymptotic efﬁmency be as defined in [4], and suppose that @ has
a variance ¢°(@) and satisfies the regularity condition of Lemma 3(a) of [4],
then the above results and the arguments of Hodges and Lehmann (1961) shows
that the Pitman asymptotic efficiency (in testing &; — &, = 0) of U to X:. — X,
is

.....

(2.11) e = 1284(Q)[[ 2 ¢°(t) diT*
while the Pitman asymptotic efficiency of T';; to X;. — X;. is
(2.12) e = e[r/{2 + 6(r — 2)[AN(F) — 1]}].

Lehmann (1964) has shown that ¢’ = e. However, the table in Section 5 of
Hollander (1966) shows that the difference ¢’ — e is very small for normal, uni-
form and exponential distributions.

Suppose that H, is to be tested against the ordered alternatlve H,:
H < & < -+ <& . Classical normal theory statistics for this problem have been
considered by Bartholomew (1961), Niiesch (1966), Hogg (1965) and others.
These statistics are based on {X;. — X;. : ¢ < j}. Since the covariance matrix of
{Ts :© < j} is proportional to that of {X. — X;. : 7 < j} (see (2.6)), it follows
from Lemma 2.3 that if X;. — X;. is replaced by T';; in each of these statistics,
then the new statistics will have the same asymptotic null-distributions as the
original statistics.

For instance, the statistic

(2.13) | Dici (Xo — X)) /6%,

where éx is the appropriate estimate of the standard deviation of
ZK]- (X — X;.), has been considered in [1], [13] and [7]. The statistic based on
{T 4 11 < j} corresponding to (2.13) would reject H, for large values-of

(2.14) 2i<i Tiifér
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where éris the cons1stent estimate of the standard deviation o7 of EK] Tz, ob-
tained from .

(215) - or = [r(r* — 1)Vo(Ts)/6]"

by replacing N(F) by its consistent estimate (2.7). Under Ho, (2.14) has an
asymptotic standard normal distribution, and the asymptotic efficiency of (2.14)
to (2.13) is ¢". Lehmann (1964) has shown the efficiency e’ to be an increasing
function of r, while it is known [3] to satisfy .864 < ¢’ < o forr = 2. Thus (2.14)
is robust. An other test statistic based on the U’s has been considered for H;
by Hollander (1966). This statistic is slightly less efficient than- (2 14) See
[7], Section 5.

Suppose next that Hy is to be tested against an “unordered” alterna.tlve which
only specifies that the £’s are not all equal. The test based on the T’s then re.]ects
for large values of the statistic -

(216) © Tl =mn i Th/é* =n 2 ia Ui — (r — 1)/27‘]2/&2
where é° is the consistent estimate of the variance
(2.17) n(r — 1)Vo(Ts)/2r

of n*T;. obtained by replacing A(F) in (2.5) by (2.7). T1® has a limiting chi-square
distribution with (r — 1) degrees of freedom, and 1ts Pitman asymptotic effi-
ciency to the usual [5], p. 278, F-ratio statistics is ¢. It follows from the above
results and those of Lehmann (1964) that 7" has the same Pitman asymptotic
efficiency as the statistics proposed by him in equations (4.1) and (4.2) of [8].
However, Ty’ seems to have an advantage over these statistics for the problem
considered here in that it is easier to.compute.

3. Estimation of a contrast. Hodges and Lehmann (1963), and Lehmann
(1963a), (1963b), (1964 ) have derived robust estimates from the Wilcoxon statis-
tic. In this section, their approach will be used to arrive at a robust estimate of the
contrast 6 = Y 51 ¢ 2 ¢; = 0) that is derived from the Friedman (1937)
statistic.

It is easy to show that the Friedman statistic can be written in the form

(31) > i bii(Ss — 8;:)T

where the b’s are constants and S;; = number of ’s such that (X, — Xja) > 0.
By the reasoning in the reference given above, this suggests writing 6 in the form

(3.2) 0= 2. 2 dij(ti — &)

and estimating it by

(3.3) b= 2 2 di(Si — S3.)

where S:; is the median of the n quantities { X — Xje:a =1, -+, n}.

The following lemma is well known.
LemMa 3.1. Suppose & — £ = ag/n' where the a’s are canstants, then
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{8y — E(8i)]: ¢ < j} has asymptotically the ir(r — 1) variate normal distribu-
teon with zero mean and covariance matriz (74 11) given by
Tijii = 13 50 =0, of 4,7,k U aredistinct,
(3.4) Tiikl = T4, if i=k or j=1,
Tijel = —15, if ¢=1 or j=kF.

Lemma 3.2. If the density f of F exists and satisfies the regularity conditions of
Lemma 3(a) of [4], then the joint limiting distribution of {n*[Si; — (£ — £)]:4 < 7}
18 the 3r(r — 1) variate normal distribution with zero mean and covariance matriz
(¥.m) given by

i = Y[ A=) dz)’; Thau =0, “if 4,4,k 1 aredistinct,

(35)  ihim = ([ f(z) dz)’, i i=k o j=1,

mhim = —&([ /() dz)?, if i=1 o j=F.
Proor.

lim, P{n}[Si; — (& — £)] < @i :5 < j)

= lim, P{n'[S;; — 4] < 0:¢ < j}

= lim, Po{n'[Sy; — B(84)] < o'} — E(84)]: 4 < j)
where P, indicates that the probability is computed for & — & = ay;/n' = Ay,
The first equality follows from the results of Hodges and Lehmann (1963).
Moreover, n'[} — E(S:)] = a; [ (1/As)[F(t) — F(t — Ay)] dF(2) —
aij f f(t)dtas Ay — 0 (n — o ) and the result follows from Lemma 3.1.

Lemuma 3.3. Under the condition of Lemma 3.2, the joint limsting distribution of

{n}[(S;. — S;.) — (& — &)]: 7 < j} 7s the 3r(r — 1) variate normal distribution
with zero mean and covariance matrix (C;j,kl) given by

Cisis = (r + 1)/6r(f f'(2) dz)%;  Cijwm = 0,

(3.6) if 4,7,k 1 are distinct,
Cii = (r + 1)/12r([ f(z) dz)?, if i=k or j=1,
C;j,kl = —(r+ 1)/127*(ff2(x) dz)?, if 1=1 or j=F.

Proor. Asymptotic normality follows since S;. — ;. is a finite sum of asymp-
totically normal variables. The covariances are easily computed from (3.5).

From Lemma 3.3, it is seen that the asymptotic efficiency (in the sense of
ratios of reciprocals of variances) of S;. — 8. to X; — X;. is

(3.7) 12ra /([ A(z) dz)*/(r + 1)

where ¢y° is the variance of Y; .
Since the covariance matrix of {S;. — 8. : 4 < j} is proportional to that of
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{X; — Xj :1 < j}, it follows that § has the asymptotic efficiency (3.7) to
2 ¢iXi = 2 dy(X: — X;.). The formula (3.7) is the efficiency of the Fried-
man (1937) statistic, and its robustness properties are well known.

The estimate given by Lehmann (1964) is more efficient than 6 when F is
normal. However, the “Friedman estimate” 4 introduced here is simpler to com-
pute and is more efficient than the Lehmann estimate for some distributions ¥
(e.g. when F is the double exponential distribution).
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