RANK TESTS FOR RANDOMIZED BLOCKS WHEN THE ALTERNATIVES
HAVE AN A PRIORI ORDERING'

By Mryres HOLLANDER
The Florida State University

0. Summary. Let X;;,¢ =1, ---,n,5 = 1, ---, k, be independent with
X; having the continuous distribution function P(X;; £ z) = Fij(x — b;)
where b; is the nuisance parameter corresponding to block 7. (These assumptions
shall be called the H, assumptions.) This paper is concerned with procedures

for testing the null hypothesis

(0.1) H,:F; = F (unknown), j=1,--- K
which are sensitive to the ordered alternatives

(0.2) H,:FLz2Fy, =z --- = Fy,

where at least one of the inequalities is strict.

In particular, we introduce a test statistic (Y) based on a sum of Wilcoxon
signed-rank statistics. In Section 2 we develop the asymptotic distribution of
Y and find that, under Hy, Y is neither distribution-free for finite n, nor asymp-
totically distribution-free. However, a consistent estimate of the null variance
of Y is used to define a procedure which is asymptotically distribution-free.

In Section 3 we derive, under the H, assumptions, necessary and sufficient
conditions for the consistency of ¥ and two of its nonparametric competitors,
viz., (1) Jonckheere’s 7 test [11] based on Kendall’s rank correlation coefficient
between observed order and postulated order in each block; (2) Page’s p test
[17] based on Spearman’s rank correlation coefficient between observed order
and postulated order in each block. We find that (i) Y is consistent if and only
if e | HydH,/k(k — 1) > % where H, = F,*F, ,u = 1, - -+, k, (ii)Jonck-
heere’s test is consistent if and only if D <, | Fu dFo/k(k — 1) > %, and
(iii) Page’s test is consistent if and only if D uco (v — u) [ FudF, > k(k — 1)-
(k + 1)/12.

Section 4 is devoted to efficiency comparisons of the rank tests with respect
to a normal theory ¢-test defined in Section 1. For a class of shift alternatives
we show that the Pitman efficiency of Y with respect to ¢ (E(Y, t)) is greater
than .864 for every F and every k. When F is normal, E(Y, ¢) = .963 for k = 3
and —.989 as k — . These values compare favorably with the corresponding
ones of Page’s test (.716, .955) and Jonckheere’s procedure (.694, .955). For
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868 MYLES HOLLANDER

these shift alternatives we also show that .576 =< E(p, t) = » and .576=
E(r,t) £ .

1. Introduction and definitions. To test (0.1) versus (0.2), the following
statistics, among others, have been proposed:

(i) (Jonckheere [11]) Let 7; denote Kendall’s rank correlation coefficient
between postulated order and observation order in the 7th block. Jonckheere’s
procedure is to reject H, for large values of

(L1) r= Y
(ii) (Page [17]) This test is similar to Jonckheere’s as Page suggests a rejec-

tion region consisting of large values of

(12) b= Tt

where p; is Spearman’s rank correlation coefficient between postulated order
and observation order in block <.

(iii) Let Xy = b: + (7 — 1)8 4+ e; where the e;; are independent and iden-
tically distributed according to N(0, ¢°). The likelihood ratio statistic for test-
ing = 0is

(1.3) t = /65

where 0 is the least squares estimate of § and é4 is the appropriate estimate of the
standard deviation of 8. Specifically,

=627 (2% —k — 1)Xuy/nk(k — 1)(k+ 1) and
68 = 126" /k(k — 1)(k + 1)n

S=2r 0k (X5 -0 — (G — DOk — 1) — 1 and
b = (25 Xu/k) — (k — 1)b/2.

The analogue of (1.3) for the one-way layout has been considered by Hogg [8].
We do not list standard tests of Hy such as Friedman’s rank test [5] and the
usual normal theory F test as they guard against more general alternatives
and do not take the prior ordering into account.
Now we proceed to define the ¥ statistic. Let Y = |X;, — X,| and RS =
rank of Y$) in the ranking from least to greatest of [V, . Furthermore, let

(1.4) C Tw = RN

where

(1.5) =1 i X< Xn
2 =0 otherwise.

The statistic
(16) Y = def Eu<v Tuv
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is proposed as one which will be sensitive to the ordered alternatives H, . Here,
Tu» is a measure of the difference between the uth and vth treatments, and the
particular summation Y _,<, takes into account the prior ordering of the treat-
ments. It should be mentioned that in this respect, =, p, and ¢ are similar in
character to Y. In fact, if we let Z, = D u<y Nuo where Ny, = D2 ¢$3 and
Z, = > u<o (Ry — R.) where R, = > 7w and 74 is the rank of X, in the
joint ranking of [Xa|e—s , then it is easily seen that r = (4Z,/k(k — 1)) — n
and p = 6Z,/(k* — k). Hence, the tests 7, p, ¢ and Y all employ the summation
D u<o With Ny , (R, — R.), (X., — X.), and T, , respectively, being plausible
measures of the difference between the uth and vth treatments.

2. The asymptotic distribution of Y.

Levma 2.1. Assume P(Xy; < 2) = Fi(z — b)) and 0 < [ F,dF, < 1 for
each (u,v) pair. Then the [Tw,], 1 = u < v £ k have an asymptotic joint k(k — 1) /2-
variate normal distribution.

Proor. Consider the n vectors Xo = (Xu,Xaz, *++ , Xat), @ = 1, 1,
and write T, in the form of (3.3). (This representation 1s due to Tukey [19] )
Then

(Do = () kit X, X)) 4+ (3) 7 2t (X, X)),

The joint asymptotic normality of the [(5)™ D &j ¢uo(X:, X)), 1 £ u <
v £ k, is a consequence of Hoeffding’s U-statistic theorem [7]. The vectors
[X.']%_1 are not identically distributed as in Hoeffding’s theorem but the block
parameters [b.] do not affect the result due to the nature of the y., functions.
The proof is completed by noting that p-lim 2}(3) ™ 2 iy Yu (X, XJ) = 0.

Since Y is a linear combination of the [T'.,] we may state

Tueorem 2.1. If 0 < [ F, dF, < 1 for at least one (u, v) pasr, then Y, suitably
normed, has an asymptotic normal distribution.

Unlike the rank statistics 7 and p, Y is not distribution-free under H, despite
the fact that each T, enjoys this property. This can be seen by verifying that
the null correlation coefficient po"(F) between Ty, and Tuw (u # v, U # w,
v #% w) depends on F(except for n = 1), and hence so does the null variance of
Y. In [9] it is shown that

(2.1) p"(F) = [(24N(F) — 6)n® + (48u(F) — 72N (F) + T)n +
(48N\(F) — 48u(F) + D)]l(n + 1)(2n + D]

and

(2.1) p*(F) = lim, po"(F) = 12M(F) — 3

where w(F) = P(X; < Xy ; X1 < X5 + Xo — Xy) and NMF) =
P(X1< X2+X3 '—X4;X1 <X5+X5 —X7) WhenXl,Xz, "',X7

are independent and identically distributed according to F.
+ The well known expressions Eo( Twy) = n(n + 1)/4 and 60’ ( Twy) = n(n + 1)-
(2n + 1)/24 are readily obtained from (1.4), and it follows that

(2.2) Bo(Y) = k(k — )n(n + 1)/8
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and
(2.3) a(Y) =n(n+ 1)(2n + Dk(k — 1)(3 + 2(k — 2)p"(F))/144.
Equation (2.3) may be derived by writing
(24) 00(Y) = D uco 00 (Tun) + 2D u<vcr CoVo (T , Ts)
+ 22 u<o<w CoVo (Tuv s Tow) + 2 2 ucoc CoVo (T 5 Tow)-

Terms of the form Covo(T.,, Tws) where all subscripts are different do not
appear in (2.4) since they are equal to zero due to the independence of T.,
and Ty, . Equation (2.3) is then obtained from (2.4) by employing the obvious
symmetries and noting that Cove (T , Tuw) = —Covo (Tuw , Tow).

In view of (2.1") and (2.3), in order that the test based on Y be asymptotically
distribution-free, we require a consistent estimate of p*(F), or equivalently
NF). Lehmann [14] proposed estimating N(F) by the proportion (over all
sextuples («, 8, v; %, v, w)) of cases in which the event (Xeay < Xay + Xpu — Xpo ;
Xow < Xoaw + Xyu — Xyw) occurs. As Lehmann mentions, this estimate is
computationally tedious and in practice an estimate based on a small subset
of the original number of sextuples should be used. In our situation we can
utilize the prior ordering in deciding what subset of inequalities should be
checked to estimate N(F'). Specifically, consider an estimate of a slightly dif-
ferent form, namely let A; denote the relative frequency of the event (Xu < Xu
+ Xo — X ; Xotw < Xaz + Xy — X41) over a subset of the total number of
(@, B, v) 3-tuples. Under H,, the above system of inequalities would tend to be
satisfied less frequently than a set which is symmetric in the column subscript,
and hence we would be increasing the power of the Y test against H, . We can
also increase the power of the Y test by using an estimate of the form
p» = min [p,"; p] where p is a consistent estimate of p*(F) and p,” is an upper
bound for po"(F). Upper bounds for po"(F) can be obtained by replacing u(F)
and M(F') in (2.1) with corresponding upper bounds. Lehmann proved N\(F) = &
and we now establish

Lemma 2.2. For all F, u(F) < ((2! + 6)/24) = .3089.

Proor. Let X;, Xz, :--, X, be a random sample with distribution # and
let Y1,7Y,, .-+, Y, also be a random sample with distribution F. Let U; denote
the Mann-Whitney-Wilcoxon statistic, Uy = 2 mqD r¢(X:, Y;) where
¢(a,b) = 1if a < b, 0 otherwise, and let U, denote Wilcoxon’s signed rank sta-
tistic applied to a random pairing of the X’s with the Y’s. Again using Tukey’s
representation (3.3), we write U, = Moo X: + X5, Yo+ Y5 +

i=1¢(X:, Y;). A direct calculation then shows that the correlation between

U1 and U, is given by

(2.5) 1"(F) = [n*(24u(F) — 6) + n(23 — 7T2u(F)) + (48u(F) — 14)]

, {(2n + Din(n + 1)/21}7
‘and

(2.6) r*(F) = lim, 7™(F) = (24u(F) — 6)/(2)%.
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The result follows since r*(F) < 1.

Table 2.1 contains values of p," for various values of n.

A comparison of these values with those of po"(F) when F is rectangular
(given in [9]) indicates that the upper bounds are quite good.

Thus, the proposed test is to reject Ho at the a-level if ¥ > Eo(Y) + 2" 6o(Y)
where 6,°(Y) is obtained by replacing p"(F) by pn = min [p.,*; 12 — 3] in
(2.3), and 2™ is the 1 — « percentile point of a standardized normal random
variable. If n > 15, defining #, = min [4; 12\, — 3] will suffice; if , < 0,redefine
it equal to 0.

3. Consistency of the rank tests. In this section we derive necessary and suf-
ficient conditions for the consistency of the rank tests under the H 4 assumptions.
We note that the asymptotic normality of p and = under H 4 is a consequence of
the central limit theorem. (The case where f F, dF, equals zero or one for every
(u, v) pair is excluded, for in this case both = and p (and Y) are constants with

probability one.)
TaeorEM 3.1. A necessary and sufficient condition for the consistency of the

test based on T 18 D <o | FudFy/k(k — 1) > 1.
Proor. Using the representation Z, = D u<o Nu», we have

(3.1) Eui(Z,) = n) u<o | FudF,

and, in particular, Eo(Z,) = nk(k — 1)/4. It is obvious that ¢.*(Z,) = O(n)
and hence it follows from Chebychev’s inequality that under H,,

(8.1) p-lim Z,/nk(k — 1) = %
while under H 4 ,
(8.1") p-lim Z,/nk(k — 1) = 2ucy [ FudF,/k(k — 1).

The sufficiency is a consequence of (3.1") and (3.1”) and the asymptotic nor-
mality of r under H, and H 4 insures that the condition is also necessary.
TueoreEM 3.2. A necessary and sufficient condition for the consistency of the
test based on p is D iy (2 — k — 1)-(D ks [ FudF;) > 0, or equivalendly,
Dou<o (v — u) [ FudF, > k(k — 1)(k + 1)/12.
Proor. Using the representation Z, = Y u<» (R, — R.), we have,

EZ,) = 221254 (2 — k — D)Ea(ry).

TABLE 2.1

n 1 2 3 4 5 6 7 8 9 10

P .333 .389 .416 .433 444 .452 .458 .463 .467 .470

n 11 12 13 14 15 20 25 40 50 ©

pu" 472 .474 476 .478 479 .484 .487 .492 .493 .500
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We easily find,

Ea(ri) = (k+1)/2 4+ 25 (2 [ FadF; — 1)/2
from which it follows that,
(3.2) Ba(Z,) = 02k (2 — k — 1)-( Xk [ FudF).

In particular, Eo(Z,) = 0. It is also easy to verify that 04 (Z,) = O(n). Hence,
by Chebychev’s inequality, under H,

(3.2") p-lim Z,/n = 0
while under H, ,
(32") plim Z,/n = 350 (2 — & — 1)-(2Zha [ FadF;).

Sufficiency is implied by (3.2") and (3.2”) and necessity follows from the asymp-
totic normality of p under H, and H, .

We should mention that there exist alternatives in H, such that 7 is con-
sistent and p is not consistent and other alternatives in H 4 where p is consistent
and 7 is not consistent. To illustrate this we need only exhibit orderings of the
integers 1, --- , k, for which Kendall’s and Spearman’s correlation coefficients
(with respect to the natural ordering) have opposite signs. Then, if we choose
the distribution functions [F,] so that the corresponding random variables
achieve these orderings with sufficiently high probability, we will have produced
alternatives where p(7) is consistent and 7(p) is not. As a simple example, con-
sider the ordering (6 3124 5). The 7 correlation between (6 3124 5) and
(123456) is % while the corresponding p measure is —g%. If we then set
(with § > 0) Fs = N(0,0"), Fs = N(26, ¢°), F1 = N(39, o°), F; = N(46, o),
F, = N(56,¢°), Fs = N(60, "), and choose ¢ sufficiently small, the test based on
7 will be consistent but the test based on p will not. If instead, we considered the
ordering (3265 14) for which 7 = —+% and p = 4% we could, in the same
manner, construct examples where the opposite consistency conclusion holds.

We now turn to the consistency condition for the Y test.

TurEoREM 3.3. A necessary and sufficient condition for the consistency of the test
based on Y is D uco | Hu dH,/k(k — 1) > % where H, = F,  F,, and * denotes
convolution.

Proor. Write T, as

(3.3) Ty = D P<idue( X, Xi)
where
Yo X, X)) =1 if Xow— Xip+ Xju — X3 <0
‘ =0 otherwise.
We then obtain
(84) E4(Tuw)
= (n(n — 1)/2)Ps( X1y + Xow < X1o + Xo0) + NP 4( X1 < X10)
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where the [X1, , X.]5—1 are independent and identically distributed according to
F, . Hence,

]jmn EA( Y)/n(n - 1) = Zu<v PA(Xlu + X2u < Xl‘v + X2v)/2'

From (3.3) it is easily seen thé,t“crf( Tw) = O(n’) and hence ¢*(Y) = O(n®).
Thus, by Chebychev’s inequality, we have under H,

(3.4") p-lim 2Y/n(n — 1) = k(k — 1)/4
whereas under H, ,
(34") p-lim 2Y/n(n — 1) = D ue, [ HudH, .

The sufficiency now follows from (3.4") and (3.4”) and the necessity is a conse-
quence of the asymptotic normality of ¥ under Hy and H, .

Theorems 3.1 and 3.3 show that the consistency parameters of the 7 and Y
tests are quite similar. Again, it is easy to produce examples that show that there
are alternatives against which one of ¥ and = is consistent and the other is not.

For instance, take k = 2 and let fy(z) = 1if 4 < x = 5, and 0 otherwise, and
fo(z) = 6if1 < 2 <2, 4if 10 < 2 < 11, and 0 otherwise. Then [ F; dF, = .4
but f H, dH, = .64, and Y will be consistent but = will not. Of course, reversing
the roles of f; and f, we get the opposite conclusion.

Theorems 3.1 and 3.2 show that the tests = and p are consistent against large
classes of alternatives which include the intersection of H, and H 4 while Theorem
3.3 shows that Y’s consistency class includes H,» n H, where H, is defined as
H, with F;  F; replacing F; . (The consistency of 7 and p against those alterna-
tives in H, n H 4 is a consequence of the fact that Fy > F, implies [ Fy dF;, > 3.)
Perhaps the most important conclusion to be drawn from the consistency con-
ditions is the following: Although each statistic depends on the postulated order,
we do not destroy the desired consistency of the tests if we postulate an order
which is “close” to the correct one.

4. Asymptotic efficiencies. Let us begin by defining the S alternatives as
S:Fij(x) = F(x —b;— (j — 1)0), i=1,---,mj=1,---,k and 6>0.

From [15] it follows that if Ti¢y and Ty are two test sequences (from the group
of 7wy , Pty , by a0d Y(ny), the Pitman efficiency of Ty with respect to Tam)
(hereafter called E(T,, T:)) is equal to

(4.1) lim, {(d/d8)Eo( T1cm) lo—ol(d/d8) Bo( Taim) ool )"+ 00’ ( Tatmy) /o6’ ( Trcm)]
Specifically, we are computing the efficiency for the alternatives
S™:FP(z) = F(z — b; — (j — Den™?)
but we simply say ‘6 — 0.
TueoreEM 4.1. For the S alternatives (6 — 0),
" (42) Bp,t) = k(k + D02 fP),
where ¢ = Var (F) and f is the density (assumed to exist) corresponding to F..
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Proor. Using (3.2) we find that® -
(d/d0)Eo(Z,) oo = (nk*(k — 1)(k + 1) [ f)/6.

Also, (d/d8)Es(t)|s—o ~ (126" /nk(k-— 1)(k + 1))~ and oe*(¢) ~ 1. Since (see
e.g. [12])o0’(p:) = 1/(k — 1), (4.2) follows from (4.1).
TarorEM 4.2. For the S alternatives (§ — 0),
(4.3) E(r,t) = 24(k + 1)(2k + 5) [ /T,
where & = Var (F) and f is the density corresponding to F.
Proor. From (3.1) we see that
(d/d0)Eo(Z,)|omo = (nk(k — 1)(k + 1) [ f*)/6.

Since (see e.g. [12]) oo’(s) = 2(2k + 5)/9%k(k — 1), the expression for E(r, t)
follows.
Hodges and Lehmann [6] have shown that .864 < 124°[[ /] < « withthe

lower bound achieved for
(4.4) filz) = 3(5 — 2%)/20-5, —5 <2

=0 otherwise.

3

5,

IIA

We can thus state the following obvious corollary.
CoRoLLARY 4.3. For the S alternatives (6 — 0),

576 < E(p,t) < w, 576 < E(r, 1) < o

with the lower bound achieved with fi as in (4.4) and k = 2.
CoROLLARY 4.4. For the S alternatives (6 — 0),

(4.5) E(p, 7) = k(2k + 5)/2(k + 1)

We note that E(p, v) = 1 when k¥ = 2 since in this case the two procedures
are equivalent to the paired sign test. Also, E(p, 7) increases until it reaches its
maximum value of 1.042 at k = 5 and then decreases to its limiting value (k — o)
of 1. We also remark that Noether and van Elteren [4] found expression (4.2) to
be the Pitman efficiency (translation alternatives) of Friedman’s rank test with
respect to the normal theory F-test.

The values of E(p, t) and E(r, t) for small k, especially when F is normal, are
somewhat discouraging and one would like to be able to improve on these. The
Y test, as we will now see, yields such an improvement.

TuaroreMm 4.5. For the S alternatives (6 — 0),

(4.6) E(Y,t) = 24(k + 1)lf ¢’/ (3 + 2(k — 2)p™(F))

where G s defined to be the dustribution function of X1 — X, , with corresponding
density g, when X1 , X, are independent and identically distributed according to F,

and * = Var (F).

2 Here, and in the sequel, when we differentiate under the integral we assume sufficient
regularity.
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Proor. From (3.4) and the definition of Y it is easily seen that
lim, (d/d8)Es(Y)/n(n — 1) | om0 = (k(k — 1)(k + 1) [ ¢°)/6.

Expression (4.6) follows by recalling (2.3).

CoROLLARY 4.6. For the S alternatives (6§ — 0), .864 < E(Y,t) £ .

Proor. Since p*(F) < 1, it follows from (4.6) that for each fixed F (o° finite),
E(Y, t) is an increasing function of k, unless p*(F) = 1 in which case E(Y,t)
equals 24¢°[[ ¢*F" for all k. For k = 2, E(Y, t) is 24¢°[[ ¢* and since 12¢°[ f*]*
achieves its minimum for the f given by (4.4), we conclude that E(Y, ¢) > .864.
The last inequality is strict since there does not exist any density A such that
X: — X,is distributed according to f; when X; , X are independent and identically
distributed according to k. This can be seen as follows. For fi(z) = b(a® — 2°),
—a < z < a, and 0 otherwise, the characteristic function is

4.7) é7,(t) = 4bt *(sin (at) — (at) cos (at)).
Thus, there does not exist a characteristic function ¢, such that
(4.8) ROERAQRION

since a suitable choice of ¢ makes ¢;,(¢) negative, contradicting (4.8).

While we do not establish an attainable lower bound for E(Y, ¢) we note that
for k = 2 and F uniform, E(Y, t) = .889. When k = 2, Y reduces to Wilcoxon’s
signed-rank test [21] and E( Y, ¢) reduces to 2402[f ¢’T’, the efficiency of Wilcoxon’s
signed-rank test with respect to the ¢-test.

In Table 4.1 we list some values of E(p, t) and E(Y, t) when F is normal.
(From (4.2) and (4.6) it is easily seen that E(Y, p) > 1 for every &k when F is

normal.)
We should also point out that the Pitman efficiency results of this section are

valid for the more general alternatives

8™ PP (x) = F(z — bi — agen™)
where we require that the sequence of constants [a;]%—; does not depend on 7 and
the o’s are not all equal. Of course the ¢-test is still to be interpreted as the one
developed for the model specified by (iii), Section 1.

5. Related work. Doksum [3] has recently proposed a test that is very similar
to the Y test. Doksum uses the random variables Uy, = Tuy — O 1= ¢57, and
considers the statistic %<, (Us. — U,.). An asymptotically equivalent statistic
isY = >k, (T. — T,.). Doksum shows that E(Y’, Y) = 1 for all F and k;

TABLE 4.1

k

2 3 4 5 6 7 10 20 50 ©

TE(Y,t .955 .963  .968  .972  .974  .976  .980  .984  .987 .989
E(p,t) .637 .76 .764 796 .819  .836  .868  .909  .936 .955
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we note that limy.., E(Y’, Y) = 1 for all F. How close E(Y’, Y) is to one de-
pends on k& and on how close MN(F') is to Lehmann’s upper bound of 7/24. All
values of N(F') tabulated to this date are very near the upper bound and the
values of max; E(Y’, Y) given below indicate that only a very slight increase
in Pitman efficiency is obtained by ‘using ¥’ instead of Y.

F Normal Rectangular Exponential
Maxx E(Y', Y) 1.00356 1.00193 1.00575

In each case the maximum occurs at &k = 5.

Doksum also considers the application of a Niesch type test [16] to the multi-
variate vector [Ty. — Ty , u < v].

The analogous problem of testing homogeneity against ordered alternatives in
the k-sample problem (where we have random variables X;;,¢ = 1, ---, n;,
j=1,---,k,independent with distribution functions P(X;; £ z) = Fj(z)) has
received considerable attention. Procedures have been proposed by (among
others) Bartholomew [1], Hogg [8], Kudd [13], in the parametric case and non-
parametric tests have been proposed by Chacko [2], Jonckheere [10], Puri [18] and
Whitney [20]. Puri also compares the performance of many of these procedures
on the basis of asymptotic power and Pitman efficiency.
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