A NOTE ON STATISTICAL EQUIVALENCE!

BY RICHARD SACKSTEDER

University of New York

1. Introduction. Bahadur [1 p. 292] has, in effect, remarked that Blackwell’s
use of sufficiency for experiments agrees with the classical definition of a sufficient
statistic. More precisely : a statistic ¢: X — Y is sufficient for a set 9 of measures
of X in the sense of Halmos and Savage [8] if and only if the experiment induced
on Y by T is sufficient for ¢ in the sense of Blackwell [2], [3], provided certain
technical conditions are fulfilled. Bahadur derives the non-trivial half of this
statement from the main theorem of [1] (cf. [7], [9]). Here, the analogue of
Bahadur’s result will be given in a technically different context and some related
questions will be discussed. The proofs will be as self-contained as possible and, in
particular, they will not depend on the theorem of [1] or any other deep results
from other papers, except in Section [8] where a result from [10] is used. The
relations between Bahadur’s results and ours are discussed in the final section. A
paper of DeGroot [6] gives some interesting applications of Blackwell’s concept of
sufficiency.

2. The main theorem. First a revised version of some definitions from [10]
will be given. If @ is a Borel field (= c-algebra = o-field) of subsets of a set X, a
subcollection @, C © will be called a -ideal if Q is closed under countable unions
and if the intersection of an element of @ with an element of Q is an element of
Q. The example which motivates the concept is: if 9t is a set of probability
measures on (X, @) the set of elements E of Q@ such that m(E) = 0 for every m
in I is a o-ideal. The notation “mod Q" will be used to indicate that the subset
of X on which an assertion fails to hold is an element of Qq . A statistical operation
from a triple (X, 2, Qo) to another triple (Y, A, Ao) is a real valued function 7 on
a subset of A X X which satisfies:

(i) foreach Fin A, T(F, z) is defined mod Q and is an Q-measurable function
of x satisfying 0 = T'(F,z) £ 1mod Qand T(Y,z) = 1 mod Q.

(ii) if Fy, Fy, -+ is a sequence of pairwise disjoint elements of A, then
T(UiaFi,z) = D2 2 T(F:, x) mod Q.

(iii) if Fisin Ao, T(F, ) = 0 mod Qo . If Q, is empty, T is just a stochastic
transformation in the sense of Blackwell [2], ]3], or a transition measure in the
sense of Cencov [5]. Although 7T is a map from a subset of A X X to the real
numbers in the sense of set theory, 7' is also a map from (X, 2, Q) to (Y, A, Ag)
in the sense of category theory, hence it will often be written T': (X, @, Q) —
(Y, A, Ao). The composition of two statistical operations T: (X, Q, Q) —
(Y, A, Ao) and S: (Y, A, A1) — (Z, Z, Z0) can be defined if A; 2 Ao by a slight
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788 RICHARD SACKSTEDER

modification of the argument given in [10 Section 4]. A statistical system on
(X, Q, Q) is a set M of probability measures on (X, Q) such that @, =2 I(IMN),
where the notation I(9?) will be used to denote the o-ideal consisting of all
elements E in @ such that m(E) = 0 for every E in M. In the definition of [10],
Qo was, in effect, taken to be equal to I(9), but the present formulation has some
advantages.

Given any statistical system It on (X, Q, Q) and a statistical operation
T:(X,Q, Q) — (Y, A, Ay) there is determined a map T« from I to a statistical
system T4 on (Y, A, A¢) by the formula

(Tsm)(F) = [x T(F, x)m(dz).

A statistical operation P: (Y, A, A1) — (X, @, Qo) is said to be a conditional prob-
ability for T (relative to M) if Ay = Ao and for every E in @, F in A, and m in I

(2.1) JeT(F, z)m(dz) = [»P(E, y)Twm(dy),

cf. [8] and [10]. The interpretation of either side of (2.1) is “the probability that
z isin K and y is in F if m is the true distribution”, and P(E, y) is the “proba-
bility that  is in E, given y’’. Such a conditional probability need not exist if I
has more than one element but if it does exist T is called a sufficiency. The
property of being a sufficiency depends on It as well as on T, of course. T« is
called an isomorphism if it has an inverse, that is if there is a statistical operation
S: (Y, A, A1) — (X, Q, Q)(A1 2 Ao) such that SxT'« = (ST)4 is the identity
map of M. It follows from (2.1) taking F = Y, that

(2.2) if T 1is a sufficiency, T« is an isomorphism,

ef. [10 Proposition 5.2]. T: (X, Q, Q) — (Y, A, A¢) is called a pairwise sufficiency
if T has a conditional probability relative to every subsystem {m:, ms} < I
consisting of two elements. Clearly every sufficiency is a pairwise sufficiency, but
the converse is not true in general as will be seen in Section 6.

Let m; and m. be measures in I, m = my + mq , and denote a Radon-Nikodym
derivative dm./dm by D; . If a = (a', @®) is a pair of non-negative numbers, let
E(a) = {z e X:a'Dy(z) = a’Dy(2)} and F(a) = {y e Y:a'Di*(y) = &’D;*(y)},
where D;* denotes a Radon-Nikodym derivative of n; = Tsm; with respect to
n = Tym. T is said to preserve likelihood ratios if for every m; and ms in IR and
a = (a',d"), T(F(a),z) = 0forzin X — E(a), except for a set of m-measure
Z€ero.

Our main result is:

TueEoREM 2.1. Let M be a statistical system on the triple (X, Q, Q) and
T:(X,Q,Q) — (Y, A, A) a statistical operation. Then each of the conditions below
implies the condition that follows it.

(i) T s a sufficiency.
(ii) T« is an isomorphism.

(iii) T preserves likelihood ratios.

(iv) T s a pairwise sufficiency.

Moreover, the conditions are all equivalent if M is dominated.
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REMARK. Actually (iii) and (iv) are equivalent. This follows from the theorem
by applying (iv) implies (iii) to any subsystem of 9t consisting of two elements.
The implication (i) implies (ii) is just (2.2). The remaining ones are proved in
the following sections. &

3. Isomorphism and likelihood ratios.

Lemma 3.1. The condition (ii) of Theorem 2.1 implies condition (iii).

Proor. Suppose that a = (a, @®), my, mg, and m = my + mg are such that
the condition for T' to preserve likelihood ratios is violated. Then if By = E(a),
Ey=X —E(a),F1=F(a),and Fy = Y — F(a),

(3.1) T(Fi:2) #0 for 2 in ECE,, where m(E) > 0.

Let g* denote the characteristic function of F; and let #; = Twm; . Then, using
the notation of Sections 4 and 7 of [10], we have

B(a,m, m) = ' [vg'(y)m(dy) + & [v g’ (y)na(dy)

d [x (T*¢) (@)mu(dz) + o [x (T%9")(x)mao(dw).
Corollary 1 of [10] implies that B( a, ny, n2) = B(a, m1, my). The form of the
N eyman-Pearson Lemma given in [10 Section 6] implies that this equality can
only hold if (T*¢*)(x) = 1 for z in E,, except for an m-null set. On the other

hand, (3.1) implies that if zisin £ € By, (T*g)(2z) = 1 — T(Fy,z) < 1. This
contradiction proves the lemma.

4. Liklihood ratios and pairwise sufficiency.

Lemwma 4.1. Condition (iii) of Theorem 2.1 implies condition (iv). :

Proor. Let m; and mg be in I, m = my + mg, and let D; (or D;*) denote a
Radon-Nikodym derivative of m; (or Twm;) with respect to m (or n = Tm).
It suffices to show that

(4.1) Jr P(E, y)n(dy) = [ Pu(E, y)n(dy)

holds for every £ in @ and F in A, where P, is a condltlonal probability for { .

For any N > 1, let F; {yeF ND*(y) < Di*(y) £ )\’HD ()},
(1=0,=%1,--), Fo = {ysF Di*(y) = 0}, and Fiufy e Y: Da*(y) = 0}.
F is then the union of Fs with an n-null set. The condition (iii) implies
that T(F;,z) = 0 except for # in the union of an m-null set and
E: = {zeX: \N'Dy(z) < Di(z) = N"'Dy(z)}. Similarly, T(F_,, z) = 0 (or
T(Fiw, ) = 0) except for z in the union of an m-null set with E_, =
{xeX: Di(z) = 0} (or By = {xeX: Dy(z) = 0}). Let E be in © and set
Gi=EnkE;. Thenforj =1, 2

(4.2)  [r; Pi(E, y)D;"(y)n(dy) = [ T(F, @)my(dzx) = [o; T(F:,z)mi(dz),

holds for —w = ¢ < -+ . The definition of E;for —» < 4 < -+ implies that
N i,;z T(F:, z)Dy(z)m(dz) < [a; T(Fs, z)Di(x)m(dz) hence (4.2) implies

(4.3) N [#; Po(E, y)Do*(y)n(dy) < [r, Pu(E, y)Di*(y)n(dy).
Combining (4.3) with the definition of F; gives \* fy,; Py(E, y)D:*(y)n(dy) <
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N[5, Pu(E, y)D*(y)n(dy). Dividing by A\ and summing over — o < ¢ < + o
gives

(44) o PuE, 9)D"(y)n(dy) S\ o Pi(E, y)De*(y)n(dy),

where F' = F — F_, — Fy., . A similar argument using [ », P1(E, y)D:*(y)n(dy)
< N &, Po(E, y)Dy*(y)n(dy) instead of (4.3) leads to

(4.5) [# P(E, y)D2*(y)n(dy) = N\ [# Po(E, y)De*(y)n(dy).
Since N > 1 was arbitrary, (4.4) and (4.5) imply

(4.6) v Po(E, y)Do*(y)n(dy) = [ Pi(E, y)Ds*(y)n(dy).
Interchanging m; and me gives )

(4.7) v Po(B, y)Di*(y)n(dy) = [r Py(E, y)D:*(y)n(dy).
Adding (4.6) and (4.7) gives

(4.8) v Po(E, y)n(dy) = [ Py(E, y)n(dy).

Py(E, y) can be defined arbitrarily for y in F_, and Py(E, y) can be defined arbi-
trarily for y in F, . Therefore if Pi(E, y) = Ps(E, y) is regarded as a definition
of Py fory in F_,, and of P, for y in F,, — F_,, , (4.8) implies (4.1). This proves
the lemma.

5. Sufficiencies and pairwise sufficiencies. The last assertion of Theorem 2.1
is verified in this section.

LemMA 5.1. Let T be a pairwise sufficiency and let my , ms , - - - be a sequence of
elements of M. Then there is a statistical operation P: (Y, A, A1) — (X, Q, Q) with
A1 2 Ao which serves as a conditional probability for every m; .

Proor. Let m be a measure on (X, Q) such that each m; is absolutely con-
tinuous with respect to m and m(E) > 0 implies m;(E) > 0 for some 7. For ex-
ample, let m = D i=y cami, where ¢; > 0 and > taci = 1. Then n; = Tym;is
absolutely continuous with respect to n = Twm cf. [10 Section 5]. Let D; denote
a Radon-Nikodym derivative dn./dn, Fo = the empty set,

F,={yeY:Dyy) 20}, and G;= U{F;:0 =<7 = 4}.

It will be proved by induction on & that there is a sequence of statistical oper-
ations Py : (Y, A, A;) — (X, Q, Q) such that Py serves as a conditional prob-
ability for {m:, - - - , ms}, and for every E in Q, Px(E, y) = Py (E, y) fory in
Gi_1 . Then a statistical operation P with the desired properties given by defining
P(E,y) = lim. Pu(E,y) foryin U G, and P(E, y) = 0 otherwise.

The case k = 1 is trivial. Suppose that P; is defined for 1 = j < k. Let
Py (Y, A Ay;) = (X,9,2)(G =1, -,k — 1) be a conditional probability
which serves for {m; , mi}. It can be supposed that Pi;(E, y) = Py1(E, y) for
all y in Gvy and Pii(E, y) = Pu(E, y) for y in G4 — Gir. Then define
Py(E,y) = Pra(E, y) foryin Gia, Pu(E, y) = Pu(E, y) foryin Gr — Gr,
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and Px(E, y) = 0 otherwise. It is clear then that P, serves as a conditional prob-
ability for {my , - - - , ms} and the proof is complete.

The next lemma is the final assertion of Theorem 2.1.

Lemma 5.2. If M is a dominated statistical system, the condition (iv) of Theorem
2.1 smplies the condition (1).

Proor. Lemma 7 of [8] implies that there is a countable subset {m;, - - -} of
M such that if F is an element of © such that if m(E) > 0 for some m in M, then
mi(E) > 0forsome? = 1,2, --- . Let P be as in Lemma 5.1. It will be shown
that P is a conditional probability for any m in M. For any m in 9 let P’ be a
conditional probability for {m, m.}. Then for any E in Q,

P(E, y) = P(E,y)

except for a set of T'wm; measure zero. Since m(E)> 0 implies m:(E) > 0 for
some 7, this shows that P is a conditional probability for m and completes the
proof.

6. The undominated case. If I is not a dominated statistical system, then
the conditions of Theorem 2.1 are not equivalent. That (iii) (or (iv)) does not
imply (ii) (hence does not imply (i)) is shown by the example given in [10
Section 7]. That (ii) does not imply (i) is shown by an example of Burkholder
[4 Example 1]. In our notation, Burkholder’s example is roughly as follows. Let
X = Y = thereal line, @ = Borel sets, &y = empty subset of Q. Let S be a non-
measurable subset of X such that S = —S = {—2:2 ¢ 8}. Let A be the field con-
sisting of sets of the form A u E, where A & S, A, E arein @, and E = —E. Let
Ao be the empty set and It the set of measures on X consisting of all measures
with mass % at x and mass 3 at —z for some z in X. Then take T(F,z) = 1or0
according as x is in F or not, that is, let T be the statistical operation induced by
the identity map of X = Y. It follows easily letting B, = {x ¢ X:x > 0}, that if
T were a sufficiency, the conditional probability P would have to satisfy

P(Ry,y) =1, for y in SnR, and
P(R,,y) =%, for y in (X —8)nR,.

But since S n R, is not A-measurable, this shows that P is not a statistical
operation from (Y, A, A;). Therefore T is not a sufficiency. However, Ty is an
isomorphism, because an operation S: (Y, A, A¢) — (X, @, Q) such that SuT'x
is the identity map of IN is given by:

S(E,y) =1 if both y and —y are in E,
S(E,y) =0 if neither y nor —y is in K,
S(E,y) =

7. On likelihood ratio preservation. The proof of Theorem 8.1 requires a
modified and somewhat technical version of the condition (iii) of Theorem 2.1.
We shall only give this condition for dominated systems, although it is possible

otherwise.

ol
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to formulate it for any system. Let It be a dominated statistical system on
(X, Q, %) and T: (X, @, Q) — (Y, A, A) a statistical operation. Theorem 1
and the results of Section 9 of [10] show that there is a measure m, in (X, Q)
with the following properties: :

(i) For every E in @, mo(E) = 0if and only if m(E) = 0 for every m in It.

(i) fm, -+, mparein M, n; = Twmsi =0, -+, k, anda = (d°, --- , a*)
then in the notation of [10 Section 7],
(7'1) ‘ B(a’mo)“'ymk) =B(a7n07“';nk)

holds whenever 7'y is an isomorphism.

Now if m,is in M, pick Radon-Nikodym derivatives D; (resp D;*) of m; (respn:)
with respect to mo (resp no). Then if {m;, ---} < I for fixed b = (b, -, %
with b° > 0 define:

Ey={zxeX:D(x) £b;,c=1,---,k} and
Fo={yeY:D*) £bs, i =1, -, k}.

Then T is said to satisfy the condition (iii)* if T(F,, #) = 0 for z in
X — Eymod I(IM), for all possible choices of my , - - - , mi and b, and

T(Fy,z) =1 for z in Ey mod I(IN).

Lemua 7.1. If T« is a sufficiency, T satisfies the condition (iii)™.

Proor. For a given choice of my, ---, mzand b leta = (d’, - - -, a*) where
o’ = 1,a° = 1/b". Let F; be the set of points y in ¥ such that a’D;*(y) < a’D *(y)
if j < 7 and o’D,;*(y) = a'D*(y) if j > 4. Note that for ¢ = 0 this agrees with
the notation established above. Let g; denote the characteristic function of F; .
Then the form of the Neyman-Pearson Lemma given in [10 Section 6] shows that

B(a, no, ~++, m) = 2sod [rgiy)nidy)= 2 iwd’ [x (T%g:)(x)mi(dz),

where the last equality comes from the formula (4.1) of [10]. Now (7.1) and
the Neyman-Pearson Lemma give that (T¥go)(z) = 0forzin X — Eymod I(M).
But since (T*go)(z) = T(Fo, x), this is just the first part of the condition
(iii)*. The Neyman-Pearson Lemma also shows that (T%ge)(z) = 1 for z in
the set

Gy = {xeX:Dy(x) <b,4—1, -,k modI(M).

The second part of the condition (iii)* follows by applying this fact with b°*
replaced by b* + ¢; where ¢; > €43 -+ and ¢; — 0 as j — . For if we let Fy’
and G,’ denote the sets corresponding to Fo and Gy if b° 4+ ¢; replaces b°, we get
(using (ii) of the definition of a statistical operation) T(Gy’, z) = 1 and
lim;,. T(Gy’, ) = T(F,, z) for z in Ey mod I(I).

. 8. Uniqueness of inverses. Simple examples show that when Ty is an iso-
morphism that it is possible that there are many essentially different statistical
operations S such that S = (7). In particular, such an S need not be a
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conditional probability in the sense of formula (2.1). In this section a condition
which prevents this sort of effect is described.

Let N be a dominated statistical system in (Y, A, A¢). Let ny be a measure
which dominates N, and for each n in N pick an everywhere defined Radon-
Nikodym derivative of n with respect to no . Then 0 is said to be minimal if
the smallest Borel field A" such that every derivative is A’-measurable has the
property that if F is in A, there isan F' in A’ such that the symmetric difference
FAF' is an element of I(M). This definition of minimality does not depend on
the choices of no and the Radon-Nikodym derivatives; however the field A
does depend on them. The terminology is justified by the easily verified fact
that if ¢: X — Y is a minimal sufficient statistic then 743 is a minimal statistical
system, where T(F, ) = 1 or 0 according as ¢(z) is or is not in F.

TuEOREM 8.1 Let M be dominated and such that TxIN is minimal and let T
satisfy one (hence all) of the conditions (i), (ii), (iii), (iv) of Theorem 2.1. Let
S: (Y, A, A1) = (X, Q, Q) be such that Sx = (T«)™". Then S is a conditional
probability, that is

(8.1) Je T(F, x)m(dz) = [»S(E, y)n(dy)

holds for every E in Q, F in A, and m in I, where n = Tym.

Proor. Let mq be a measure satisfying the conditions (i) and (ii) of Section
7, let ng = Tsmo., and define Radon-Nikodym derivatives as in Section 7. The
minimality of T4«I implies that it suffices to verify (8.1) for sets F of the form
F = F,, where Fy is as defined in Section 7. It will, in fact, be shown that both
sides of (8.1) are equal to m(E n E,), where E, is defined as in Section 7. By
the condition (iii)*, the left side of (8.1) is

[e T(Fo, x)m(dz) = [snz, T(Fo, x)m(dz)
But 7(Y, z) = T(Fy,z) = 1 for z in E; D E n E;mod I(M), hence the left

side of (8.1) is just fEnEo T(Y, z)m(dz) = m(E n E,). The condition (iii)*
also applies to S, hence for y in Fo ,

S(E — EBo,y) = 8(X — Eo,y) = 8X,y) —8(Fo,y) =1—1=0 modI(N),

andforyinY — Fo,S(EnE,,y) < S(Ey,y) = 0mod I(N), hence for every
n = Tsm for m in M,
[ SCE, y)n(dy) = [ry S(E 0 Bo, y)n(dy)

= [vS(E n E,, y)n(dy) = m(E n Ey).
This completes the proof.

As a final remark, note that Theorem 8.1 is a kind of uniqueness theorem,
since (8.1) clearly determines S(E, y) mod I(N).

9. An alternate method. Some of the facts which are contained in Theorem
2.1 are known in the case where 7' is determined by a measurable transformation,
that is where there exists a ¢{: X — Y such that T(F, ) = 1 or 0 according as F
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does or does not contain #(z). For example, the assertion that (iv) implies (i)
when I is dominated is given for measurable transformations by [8 Theorem 3].
The assertion that (ii) implies (i) for measurable transformations under suit-
able conditions is the remark of Bahadur referred to in the introduction. There-
fore much of the content of Theorem 2.1 can be deduced from results known for
measurable transformations with the aid of a principle which will now be de-
scribed.

Let T: (X, Q, %) — (Y, A, Ay) be a statistical operation. Consider the sta-
tistical operation T": (X, @, @) — (X X Y, 2 X A, Z), where 2 is the smallest
o-ideal in @ X A containing all sets of the form Ey X F and £ X F,, with E in
Q, Eyin Q, F in A, and Fy in Ao, defined by T'(E X F, z) = T(F, x)8S.(E),
where S,(E) = 1 or 0 according as x is or is not in E. (T'(G, ) is defined for
measurable subsets G of X X Y if G is not of the form. £ X F, by a process like
the usual construction of product measures.) Let P be the statistical operation
defined by the projection of X X Y onto Y, that is P(F, (x,y)) = 1 or 0 accord-
ingasyisorisnotin . Then 7 = Po T’, where the composition is defined as in
[10 Section 4]. The operation 7" is in many respects quite trivial, hence it is
often easy to show that 7' will have certain properties if and only if P has them.
Thus, for such properties, conclusions proved for measurable transformations
(e.g. the projection defining P) must hold for general statistical operations.
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