A GENERAL CLASS OF BULK QUEUES WITH POISSON INPUT!

By MargrcerL F. NruTs
Purdue University

We assume that customers arrive at a counter according to a homogeneous
Poisson process and are served in groups, according to the following policy:
If there are less than L customers waiting at the time of a departure, the server
must wait until there are L customers present, whereupon he serves them to-
gether. If there are L or more, but less than K(K = L) customers waiting, all
are served together. If there are K or more customers waiting, a group of K
customers are served and the others must wait. The service times of successive
groups are assumed to be conditionally independent given the bulk sizes, but
may depend on their magnitude. We obtain 1. a description of the output
process, 2. the queue length in discrete time, 3. the distribution of the busy
period, 4. the queue length in continuous time and 5. some limit theorems for the
number of customers served over a long period of time.

The order of service is irrelevant in this paper. The method used throughout
is that of the imbedded semi-Markov process.

1. Introduction. This paper is devoted to the study of the following queueing
model. We assume that customers arrive at a counter, according to a homo-
geneous Poisson process of rate N. They are served in groups, according to
the following rule. If immediately after a departure there are less than L cus-
tomers present, the server must wait until there are L customers, whereupon all
L enter service. If there are L or more, but at most K customers waiting, then all
customers present are served together (L < K). If there are more than K cus-
tomers waiting, a group of K enters service and the others must wait. In this
paper the order of service is immaterial. We assume that the successive service
times are conditionally independent, given the batch sizes, but their distribu-
tions may depend on the batch size.

It is of interest to describe some actual situations, which may be described
by this model. The operation of an unscheduled car ferry or a single ground floor
station of an elevator may be approximated by the above description. The
author is indebted to Professor G. Newell for supplying the following applica-
tion to traffic flow. We consider a main road and a minor road merging into it.
A trafic light on the main road interrupts its traffic flow after a certain length of
time if at least L cars have activated a tripplate on the minor road. Otherwise
the light stays green until L cars have arrived. The red cycle is timed so that at
most K cars can merge during it. We count as the successive service times the
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760 MARCEL F. NEUTS

time required for the platoon to merge, plus the fixed length of the green cycle
on the main road. The model then studies the queue forming on the minor road,
under the assumptions of Poisson arrivals and the rule that cars arriving during
the time that vehicles ahead are merging must wait for the next cycle. This
assumption is not too unrealistic in very light or very heavy traffic, or if K is
not too large.

There are some generalizations of the model, which may occur in practice.
We may want to serve a group of less than L customers if its waiting time exceeds
a given value. This generalization is easy to work out, along the same lines as the
discussion below.

Another generalization is obtained when L and K are random variables on
the lattice points (a, b) with ¢ = b. This may occur if the service times of in-
dividual customers are independent, identically distributed random variables
and the server accepts only as many customers as to satisfy the condition that
their total service time lies between given lower and upper bounds. If K is a
bounded random variable, this model may be analyzed by the same reasoning as
given below, but the calculations become exceedingly involved.

We now denote the distribution of the service time for a batch of j customers
by H;(-),j = L, --- , K. Let &, be the number of customers in the system after
the nth departure and let X, be the length of time between the (n — 1)st and
the nth departure. It follows immediately from the assumptions of Poisson
input and the conditional independence of the service times, that the bivariate
sequence {(&, , X.), n = 0} is a semi-Markov sequence as defined by Pyke
[5]. We set & equal to the queue length at time { = 0+ and X, = 0 a.s. Without
loss of generality and with a substantial gain in computational simplicity, we
assume that the point ¢ = 0 is a departure point, so that the sequence { (&, , X,)}
is an ordinary semi-Markov sequence.

The semi-Markov process is completely characterized by the transition prob-

ability distributions
(1) Qii(x)=P{En=j;Xnéx|En—l=i}, 'L.,]‘=0,1,"‘,’ﬂ;1.

If we write E,(x) for the distribution function of an Erlang variable of order »
with parameter A, then the probabilities Q;;(x) are given by:

(2) For0<:i=<Lj=0
Qii(z) = [i Br-i(z — y)e ™ (N\y)’/j1dH u(y),
for L£7{=K,5=0
Qi(z) = [$e7(N\y)/j! dH(y),
fori 2 K,j<i—K
Qi(z) = 0,

foriz2 K,j=i—K

Qii(x) = [ie ™) /(j — i + K)! dHx(y),
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The Laplace-Stieltjes transforms of the Qij(z) are denoted by g¢:i(s) and are
given by:
(3) For0<i=L,jz0 ‘

gi(s) = VN 4 )77 [T &MUy /1 dH 1(y),
forL£:71=2K,j=0

gii(s) = [5e " N\y) /51 dH (y),
foriz K,j<i—K
qif(s) = 07

foriz K,j=zi— K

ii(s) = J5 &) /(G — i + K) L dHx(y),

Particular cases. For particular choices of L and K, several queueing models
are obtained, which have been studied earlier. For L = K, we obtain the bulk
queue with fixed batch size, which has been studied by Takées [11].

For L = 1, we obtain the case in which the server is operating as soon as one

customer is present This model has been investigated by Bloemena [1], Le Gall
[2], Runnenburg [9] and Neuts [3, 4]. The M /G/1 queue isobtainedfor L = K = 1.

2. The output process and the nnbedded Markov chain. The nth departure
from the queue occurs at a random time " = X1+ --- + X, . We propose to
calculate the n-step transition probabilities

$(x) = Plta = j, 70 S w|bo=1}

for the discrete Markov process { (£, , 7 ), n = 0}. We introduce the following
generating functions for the L-S-transforms of the Q' (2):

IA

4) (a) U (2, 8) = 2o qf’izl.,(s)z,
Res= 0, |z =
(b) Wals, w) = 250 qJ)(s)w",
Res=0,jw<1,j=0,1,--- , K—1,
(c) Vi(z, 8, w) = D2neo Ui (2, ),

Res=0,|w <1,z =1

and we denote the Laplace-Stieltjes transforms of the distributions H,(z)
by k(s) forv = L, ---, K and Re s 2 0.

We then have the following theorem:

TareoreM 1. The generating function Vi (z, s, w) is given by:
Vi sw) = X — whx(s + X — )]
(5) A2+ 20 NN+ 8)) Tha(s + N — N2) — ZIWals, w)

+ 205k wh(s + N — N2) — ZTW (s, w)}
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in which the functions W (s, w) are the solutions to the system of linear equations:
7o (w, s) ‘
(6) =I5 7w, 8) — 0OV 9)) hals + X = My, )] (s, )
+ S E iy (w, 8) — whils + N — My(w, ) Wals,w), p=1,---, K.
The functions v,(w, s), p = 1, --- , K are the K roots of the equation
(7 2 = whg(s + X — Nz,

which lie in the unit disk |2| < 1 and defined analytically for Re s = 0, |w| < 1.
Proor. The transforms ¢{7(s) satisfy the recurrence relations:

a7 (s) = &, ‘
(8) ¢I™(s) = I g ()N + ) 7[5 e () /51 dH o(y)
+ SEL P (s) o e () /51 dH L (y)
+ DR P (s) [§ e M) T/ (G — v + K) 1 dHx(y),

for n = 0.
We obtain
I g ()27 4 U (e, 9)
(9) = 2050V (NN + 8) Thu(s + N — W)

+ 2052 g5 (9)h(s + N — €2)
o + U (2, $)hx(s + N — N2),
and upon multiplication by w™' and summation we obtain (5). The function
Vi(2, s, w) is analytic in its region of definition. The denominator has exactly K
roots in the unit disk |2| < 1 (Takées [11] p. 82). We denote them by v,(w, s),
p =1, -, K and define them so as to be analytic in the region of interest. Ex-
pressing that the zeros of numerator and denominator must coincide, we obtain

the system (6).
TuEOREM 2. The n-step transition probabilities P{P for the imbedded Markov

chain {£, , n = 0} are given by:
20 Do 2P = [F — whe(N — W)
(10) AT D005 wW (0, w)["ha(N — Ne) — Zhe(N — N2)]
+ 2052 wW (0, w)[h(N — Ne) — Zhx(N — N2)]},

The limiting probabilities m, = lim,.e P{™ are obtained by multiplying (10) on
both sides by 1 — w and letting w tend to one. We have:

(11) 7, = limy.; (1 — w)Ws(0, w), for »=0,1,---,K —1,
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and
(12)  Xiomd’ = [ — heON = N)TH{ 22030 mleha(N — Ne) — 2%he(N — N2)]
+ 2 m (N — N2) — Zhe(N — N2)]}
Let ax denote the first moment of Hx(-), then the Markov chain {&,, n = 0} s
positive recurrent if and only if K — Nax > 0, null-recurrent if and only if
K — Nax = 0 and transtent if and only if K — Nax < 0.
Proor. Formula (10) follows from (5) and (6) by setting s = 0+ in
e 2im0 2w () = 20550 Wiiw, 8)2" + 2Vi(z, s, w).

The proof of (12) is well-known.
From the system (6) we obtain W (0, w) as the ratlo of two determinants,

namely the determinant
1 — whe(N = M), =+, %, 7 = wha(N — M,),
ve' = wh(N = Nv,), o, v, T — whea (N — M) ||

in the denominator and a determinant, obtained by replacing the »th column
of the above by the column with entries v, (w, 0), p = 1, --- , K. We form the
product (1 — w)W4(0, w) by dividing the first row of the denominator by

1 — w. The equation
(13) 25 = he(N — Ne)

has a real, positive root of smallest value in the interval [0, 1]. Let us define
v1(w, s) to be the root of the equation (7) which corresponds to this positive root
of (13) forw = 1, s = 0+. By a well-known argument, we have

(14) vi(1,04) =1 ifandonlyif K — hax = 0
71(1,04+) <1 ifandonlyif K — Nax < 0

Consider the case vi(1,0+) = 1. The numerator in the expression for
(1 — w)Wi(0, w) tends for w 7 1 to the cofactor of the element v,*(w, 0) in the
first row and the »th column, evaluated at w = 1. This quantity does not depend
on the initial state 7. The denominator converges to a determinant in which the
first row is given by the constants

(Ao, -+, Apa, AL, -+, Ax)
where
A, = limyo1 (1 — w) 7’ (w, 0) — whe(N — Ma(w, 0))],
(15) for v=0,1,--+- ,L—1
A, = limyan (1 — w) [y (w, 0) — why(X — Ma(w, 0))],
for v=1L,---,K—1.
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These limits may be evaluated explicitly using de I’Hopital’s rule and the fact
that

(16) (8/0w) 11 (w, 8)|w=t,e=0 = (K — Nag) ™

We find

(17) A, = (K — v + Naz — hax)(K — hax)™ for » =0,1,---,L — 1,
A, = (K — v+ Ny — hax)(K — Nag)™, for v=1L,---,K — 1,

in which o, , v = L, .-+, K is the expected duration of the service time for a

group of » customers.
The other rows of the determinant in the denominator are given by :

1 - hLD‘ - N'YAO(]-’ O)]’ ) 'YPL_I(L O) - hLD‘ - )"Yp(ly O)]’
v (1,0) = hiN — M(1,0)], -+, %, 7(1,0) — hxaN — My,(1, 0)]
forp=2,..--, K.

If K — Aax > 0, this procedure yields the generating function for the station-
ary probability distribution of the queue length immediately after departures.
The imbedded Markov chain is then positive recurrent, since an absolutely
convergent solution to the stationarity equations is exhibited.

IfK —Nag =0,allw,,» = 0,1, --- are equal to zero and the chain is null
recurrent.

If K — Mag < 0, we need an additional argument to show that the imbedded
chain is transient. Slightly extending a theorem due to Foster, we have:

ProrosrTioN. An drreducible Markov chain is transient if and only if the system
of equations:

(%) 2o Piyi = s, i1gC
where C s any finite subset of the state space, has a bounded nonconstant solution.

The proof of this proposition is essentially the same as for Foster’s theorem.

Applying this property, it is easy to see that if we remove the equations, cor-
responding to the first K rows the resulting system has a bounded nonconstant
solution if K — Nax < 0.

3. The successive busy periods. The server will become free as soon as there
are less than L customers left in the queue immediately after a departure. We
define a busy period as the length of time between the beginning of service for the
first batch, which contains L customers and the time when the number of
customers in the system drops below L for the first time thereafter. The initial
busy period will depend on the initial conditions in the queue and we will not
derive its distribution here. It may be obtained by an analogous reasoning to the
one given here. We denote the lengths of the busy periods by ¥, ,n =1,2, .-
and the number of customers left in the queue upon termination of the nth busy
period by I, . It is obvious that the sequence

{(In,Y,),n =2 0,Y, = 0,1, arbitrary}
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forms a semi-Markov sequence with L states {0, - - - , L — 1}. We will now obtain
transforms for the transition probability distributions
(18) Gij(x) = P{I, = j, Yn £ 2| I = 3}

fori,j =0,1,---,L — landn > L.

TurEoREM 3. The transition probability distributions G;(x) do not depend on 1.
Their Laplace-Stieltjes transforms E;(1,s)(j = 0, -, -+ , L — 1) are the solutions
to the system of linear equations

11-;‘01 Er(]-, S)Vpr(]-; S)
(19) + f;lll ['Ypr(ly 8) - hr[s + A — )"Yp(ly 3)]]Er(1: 8)
= hefs + X — M (L, 8)], p=1,---, K.

Proor. The proof is an extension of an argument by Tak4cs [10] for the M |G| 1
queue.

Let G(k, n, ) be the probability that a busy period consists of at least n
services, which last a length of time of at most 2 and such that at the end of the
nth service there are s customers waiting.

It is clear that the G(%, n, ) do not depend on the number of customers in the

queue at the end of the previous busy period.
The probabilities G(k, n, «) satisfy the recurrence relations

(20) G(k, 1,2) = [3e™[(\y)*/kY dH1(y),
and forn > 1:
Gk, n, z) = 202k [§G(r,n — 1,2 — y)e[(\y)"/kY dHA(y)
+ 2R [5G0, n — 1,2 — y)e ™M)/ (k + K — ») 1 dHx(y).

We denote the Laplace-Stieltjes transforms of the G(k, n, ) by I'(k, n, s) and
obtain the transformed version of equations (20). We also introduce the generat-
ing functions:

(a) Cx(z,m,8) = 2 wo2T(v + K, n, s), |zl = 1,Res = 0;
(21) (b) DK(zi w, ‘S) = Z:=1 CK(z’ n, s)wn’ ‘Zl = 17 lwl # 17 Res = O;
(e) E(w, s) = > waT(r,n, s)w", lw| £ 1,Res = 0,7 =0,

-+, K—1.
We obtain successively
(22) S o T(k, 1, 8)2" = hu(s + N — \2)
and forn > 1

S EAT(k, n, 8)&° + 25Ck(z, n, s)

= >EIr(r,n — 1, $)h(s + N — Ne) + hx(s + N — Ne)Cx(2, n — 1, 5),
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L—1

(23) Dx(z, w,8) = [whi(s + N — N2) — D22y Ex(w, 8)2"
+ D E T [whe(s + N — N2) — 21E(w, 8)]lZ" — whe(s + N — N2)%

Applying the standard argument, we obtain the unknown functions E,(w, s) as
the solutions to the system of linear equations

720 E(w, s)v, (w, s)

(24) + f;z Vo (w, 8) — whils + N — Ny, (w, $)]1E(w, s)
=WhL[8+)\—)\'Yp(w’ 8)], p=1,-",K

in which the v,(w, s) are the roots of equation (7)in |¢| < 1.For w = 1 and
j=0,---,L — 1the E;(1, s) are the transforms of G;(x).

Since the G;(x) do not depend on 7, the successive busy periods form a semi-
Markov process of zero order as defined by Pyke [7].

If K — Nag = 0, we have v1(1,04+) = 1. If wesetw = 1,s =04+ andp = 1

in equation (24), we obtain
2N E(1,04) = 1.

This quantity is less than one if K — Aax < 0, because the imbedded semi-
Markov process is transient. E.(1,04+),r = 0, --- , L. — 1, is the probability
that at the end of a busy period there will be » customers left behind.

The sequence of successive idle periods is now also easy to describe. They form
a semi-Markov process of zero order in which the transition probabilities are
E,(1,04) and the corresponding idle periods have an Erlang distribution with
parameter N and order L — r,r = 0,1, --- , L — 1. The moments of the busy
periods may be calculated from the determinant representation of E,(1, s),
r=0,---, L — 1. One verifies directly that the first moment is infinite if

K=)\ax.

4. The queue length in continuous time. The distribution of the queue length
in continuous time is readily obtained from the renewal functions for the im-
bedded semi-Markov process { (£, , X»), n = 0}. For simplicity we again assume
that the point ¢ = 0 is a departure point. We define M ;;(t),%, 7 = 0,1, - - - as the
expected number of visits to state j in the closed interval [0, ¢], starting in state z,
in the imbedded semi-Markov process. The Laplace-Stieltjes transforms of the
M ;;(t) are denoted by us(s). We denote by u;* the mean recurrence time of the
state 7 in the imbedded semi-Markov process.

Let £(2) be the queue length at time ¢ and let:

(25) Pi(t) = P{&(t) = j|& = 4},

We denote the Laplace transform of P;(t) by pii(s) and we introduce the
generating function:

(26) (s, 2) = X = pi(8)e’, lel <1,Res 20
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We now prove the following theorem:
THEOREM 4. The generating function 11(s, z) is given by:

(s, 2) = [1/(s + N — N).2350 Wa(1, 8)27[L — (\e/(N + )]
(27) 4+ /(s + X = N)I[L — ha(s + N —N2)] 252 W (1, )N/ (N + £))

+ [1/(s + N = X)) 22050 Wa(1, )[1 — k(s + N — W)

+ /(s + X = N)IVilz, s, 1)[L — hx(s + N — N2)],

in which the functions W (1,8),» = 0,1, -+ K — 1 and V(z, s, 1) are given by
Sformulae (5) and (6) for w = 1.

The limits P;* = lims.. Pi;(t) exist and are given below for the positive re-
current case. In the null-recurrent and transient cases these limits are equal to
zero.

Proor. We have

(28) Mi(t) = 20 Q87 (1),
and hence
(29) Z:’LO I"’ij(s)zj = f=_01 W'if(ly s)zj + zxvi(z) S, 1)’

by formulae (4), (5) and (6).
By enumeration of cases and the law of total probability, we obtain

(30) For0=j=L-1
Pii(t) = 2o J3 VI — )7/ — »)1dM (1),
forLEj=K-1
Pi(t) = 20= [6dM o(r)e ™7
ST TT/(L = v = DN — 7 — )7/ (G — L)Y
M= Hult— 7 — W du + Yo JEdM o (r)e ™
AN = DF7/G = L — Hy(t — 7)),
forj = K
Py(t) = 2050 [0dMu(r) [ e I0) /(L — v — 1]
CINE =7 = W)/ = DL — Ho(t — 7 — )]\ du
+ 205 [EdM (0TI — DPT/G = UL = Bt — )]
+ 2ex JOdM (1) — P/ — ») L — Hx(t — 7)),
Taking Laplace transforms, we obtain
‘(31) For0=j=L—-1
pii(s) = 2 =0 ua()(I/N)N (A + )™,
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forL=sj£K—-1
pii(s) = 2058 mun(8) /(N4 )" [5 e I(N) ™/ (j — L)L — Hu(v)] dv
+ Xinua(s) [T )7/ — »UIL = Hy(v)] do,
and forj = K
pii(s) = 2050 ra(s)(N (N +8))"7 [§ e I) 7"/ (j — L)L — Hu(v)]dv
+ 205 wa(s) [T )T/ (G — )L — Ho(v)] do
+ Pk us(s) [§ e I0) /(G — ») 1L —Hx(v)] do,

Formula (27) follows by taking the generating function.
The mean recurrence times p;* in the imbedded semi-Markov process are
found as the limits

(32) limg,e Mii(t)/t = l/u,-*,

and are independent of 7. If K — Aax < 0, these limits are zero. If K — Nax > 0,
the p;* are finite. Applying the key renewal theorem to the integrals in formula
(30) we obtain

For0<j=<L-1
= 1/A Zi=0 1/Mv*,
forL<j<K-—-1
(33) Pi* = 203 (1/w™) [T (W) /(G — L)L — Hy(v)] d
+ 2 (/") [T (W)7/(G = v)DIL — Hy(v)] dv,
and forj = K
P = 210 (1/w™) [T e (W) ™/ (G — LNl — Hu(v)] dv
+ 2R (/™) [T e (/G — vINIL — Hy(v)]d
+ ik (1/w™) [T e™(Ow)/(G — »)DIL — Hx(v)] dv,

There seems to be no simple relation in general, between these limiting proba-
bilities and those for the queue length in discrete time.

The formulae (33) may be obtained directly by considering the stationary
version of the semi-Markov process.

5. Limit Theorems. In this section we apply theorems due to Pyke and
Schaufele [8] to obtain the strong law of large numbers and the central limit
theorem for the output of the queueing model in the positive recurrent case.

Let ¢ be the size of the batch, leaving the queue at the nth departure. We
then have

(34:) v g‘n = f(fn—l)) n

v
—
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in which
fv) = L, for 0=
(35) =y, . for L=Zv

= K, for » = K.

IIA
IIA

L,
K,

IIA

Let N(t) denote the number of customess leaving the queue in the interval
(0, t], then it follows from theorems of Pyke and Schaufele that the following
theorems hold:

THEOREM 5. Ast — o, we have

(36) N(t)/t a.s. A = {L ’Z’.=—01 ™ + 15;2 ymy, + K[]- - 5;01 Wy]}
A2 mlar + (L — vy + D may + axll — D o w7

The quantity A may be interpreted as the asymptotic average number of customerS
leaving the queue per unit of time. The numerator is the asymplotic average numbe”
of customers per batch and the denominator is a measure of the average time between
departures.

TaEOREM 6. Let A be the constant found in Theorem 5, then if the service time
distributions have finite second moments and if the queue is ergodic, the random
variable

N (t) — tA]

converges in law to a normal random variable with mean zero and variance o*, given
by:
(37) o = (imommd) {2 im0 mid® 4 2D 7m0 Dokti Do Erkr s M 0 )}
in which
(38)  Dimamami = 2.i%y mlaw + (L — DN 4+ 285 mios + ax[l — 20050 m),
and

¢ = 115) — A2 im |7 7" dQal(x),

i = F(D)Qu( ) — A [Tz dQu(x)
&0 = f(r) — A2 [T 2 dQu(x)
Mur(©) = (wj + pir — por) /e

in which the quantities ux; are the first moments of the first passage times from

state k to state j in the semi-Markov process. This central limit theorem is
difficult to apply because of the involved calculations for the us; .
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