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1. Introduction. Let 7T'; be independent one-sided test statistics for testing the
hypothesis H;:0; =80, for the independent real-valued parameter 6; against the
one-sided alternatives 6; > 6,0, 7 = 1, 2, --- , k. For the sake of definiteness
we suppose that large values of T'; lead to rejection of H; . It is desired to com-
bine the results of these tests, i.e. to construct a function of 'y , T, - - - , T that
may be used to test the combined hypothesis Ho:0; = 6,0, = 1,2, --- , k,
against the alternative 6; = 6;0,7 = 1,2, - - - , k, with strict inequality at least
once.

A well-known combination method is the so-called omnibus test of R. A. Fisher
[4] which is based on the probability integral transformation. If 7'; has a con-
tinuous distribution function ¥; under the null-hypothesis H;,, then F«(T;) is
uniformly distributed on (0, 1) under H;o,. As a result, under H,,
—log (1 — F«(T:)),i=1,2, --- ,k, have independent exponential distributions,
hence

— 2 icilog (1 — Fi(TY)

has a gamma distribution with parameter k¥ and consequently a chi-square test
is applicable. Independent of Fisher’s work, K. Pearson [12] proposed
— Dk i log Fi(T;) as a test statistic, small values leading to rejection of H,.
L. H. C. Tippett [13] considered max; <:<» F:( T:), whereas B. Wilkinson [15] put
forward the mth largest value among the F;(T;), which has a beta distribution
under H, . A. Birnbaum [1] has shown, however, that for the exponential class of
distributions Pearson’s test and Wilkinson’s test for 7 > 1 are inadmissible.

Generalizing the approach of Fisher and Pearson, T. Liptak [10] studied
statistics of the type )i ad@ " (F(T;)), where ¥ is the inverse of an arbitrary
distribution function ¥ and «; are arbitrary weights. Taking for ¥ the exponential
distribution one obtains a weighted version of Fisher’s test which was introduced
by 1. J. Good [5]. However, from the point of view of distribution theory a more
obvious choice is Liptak’s proposal to consider D iy a® (Fi(T:)), where ®
denotes the standard normal distribution function. Under H, this statistic is
normally distributed for any set of weights.

H. O. Lancaster [9] suggested another way to add weights to Fisher’s test by
transforming 1 — F«(T;) to gamma (or chi-square) distributed variates with
possibly different parameter values. He also gave an approximate likelihood-ratio
procedure for combining & identical tests against the same simple alternative and
discussed asymptotic theory and weighting.

, The validity of all tests based on the probability integral transformation de-
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pends on the continuity of #;. H. O. Lancaster [8] and E. S. Pearson [11] have
proposed methods to save the situation for discrete test statistics.

Notwithstanding these various developments, many statisticians tend to dis-
regard the procedures outlined above as soon as the total number of observations
on which the  test statistics are based is at all large. Relying on the asymptotic
normality of many test statistics they prefer to use 2 a7 to test Hy .

Apart from the work of Lancaster [9] and Liptak [10] the above-mentioned
tests are obviously motivated by a desire to obtain a simple distribution in the
null-case. The present paper constitutes an attempt to find combination methods
that are optimal in some sense, regardless of possible difficulties in obtaining the
distribution of the test statistic.

We complete this section by noting that the formulation of the combination
problem given above restricts the parameter space to the set 6, = 6;,),
1=1,2, .-+, k. Since we shall only be concerned with the case where the T'; have
distributions or asymptotic distributions of exponential type, H, may equally well
be extended to 8; = 6;0,¢ = 1,2, - -+ , k. However, the possibility that some of
the 6; — 6., should be positive and others negative is simply ruled out in ad-
vance. We believe that this is essential in the definition of the one-sided combina-
tion problem. The two-sided problem of testing Ho:0; = 0:0,7 = 1,2, --- , k,
against 6; = 60;0,¢=1,2, -+ ,k,or0; = 0i0,¢ = 1,2, -+, k, with inequality
at least once, may be dealt with by applying two one-sided combination pro-
cedures. The entirely different problem of testing H, against 8; = 6; o at least once
8 not being discussed here.

2. Large sample combination. With many tests, especially distribution-free
tests, the power is sufficiently intractable to defeat any attempt to find optimal
combination methods for small samples. However, a number of the test statistics
involved have asymptotic normal distributions. The following lemma describes
the relation between the problem of finding asymptotically optimal combination
procedures in this case and the small sample combination problem for normally
distributed test statistics. By N(u, ¢°) we denote normality with expectation u
and variance o".

Levwma 2.1. Let Zyw, -+, Zn,n be independent and, for N — o let Z; y be

asymptotically N(u;, 1),2 = 1,2, -+, k. Furthermore, let Zy , - -+ , Z; be inde-
pendent, where Z; ©s N(u;, 1), =1,2 --- k. Then, if Y (21, - - -, 2:) s @ measur-
able function that vs monotonic tn 2y, -+, 2,

limN*ooP(‘p(Zl,N; )Zk,N) = C) = P(‘p(Zl’ R Zk) = C),

uniformly for all ¥ and c.

Proor. Without loss of generality we may suppose ¢ to be non-decreasing in
each of its k arguments. Let F;x and F; denote the distribution functions of
Z ;. x and Z; respectively. We define

-

s(za, - ,2,) = supfz|¥(z 2, ,2) < c}.
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As ¢ is measurable, so is s since

{(22’ )Zk)ls = 0,} = nz>ﬂr{(z27 7270)!‘[/(27'22) 7z/-7) > C}
and the sets in the right-hand membe_;‘ are non-decreasing in z. Hence
0= limN—wof f[Fl,N(S(Z2; 7zk) _O) —‘Fl(S(Zz, 7zk))]

- dFy n(23) - -+ dFy n(2k)
< limyee [P(Y(Z1w, -+ 5 Ziw) S ¢) — P(W(Zy, Zow, -+ 5 Ziw) Zc)]
< limyow [ -+ [ [Fun(s(za, ooy 26)) — Fu(s(ze, oo+, 20)]

“dFan(22) - - dFyn(2)

=0,

uniformly in ¥ and ¢, since the convergence Fy,y — F\ is uniform because of the
continuity of F; . Repeating this procedure we arrive in k steps at the result of
the lemma.

The asymptotic combination problem we have in mind may be described as
follows: ForN = 1,2, --- ,let Tsw,2 = 1,2, - - - , k, denote k independent test
statistics for the hypothesis H ;,0:0; = 6,0 against alternatives 6; > 65,0 . ASN — o
the sample sizes on which the T'; » are based increase indefinitely. We suppose that
there exist positive numbers o;y and real-valued functions w:» such that, if
6., are the true parameter values of 6;,

(Tiw — win(0iw))/osn, i=1,2 ---,Fk,
tend in law to the standard normal distribution for N — « for every sequence
6;,x having limy.e 0iy = 050,72 = 1,2, -+, k. On the basisof Ty w, -+, Th,n
we wish to test the combined hypothesis H:0; = 6,0,¢ = 1,2, --- , k, against
alternatives Hy:0; = 6, 5,7 = 1,2, - - - , k, satisfying

limy,e 0:x = 0i0, limyaew (pan(0in) — pin(050))/oen = ps = 0,
1=1,2, -k, with ug; > 0 at least once.
Let
Zi,N = (Tz',N — p,i,N(ei,o))/o',’,N, 1 = 1,2, .., k'

Obviously Z; y is asymptotically N (0, 1) under H, and asymptotically N (u:, 1)
under H; . Consider a monotonic combination procedure of limiting size «, i.e.
a procedure: reject H, if

(2.1) V(Zyw, 5 Zen) Z ¢,
where ¥ is monotonic in each of its k& arguments separately and
liMyoe ax = liMyaw P(W(Ziw, o+ 5 Zin) Z €| 00, -+ 5 ko) = a.
As before, let Z, , - - -, Z, be independent and let Z; be N(u:, 1). Consider the

hypothesis Ho*ipi = 0,4 = 1,2, -+ , k,and H;*:p; = 0,7 = 1,2, - -+ , k, with
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strict inequality at least once. Then, according to Lemma, 2.1, the limiting power
for N — o of the monotonic combination procedure (2.1) is equal to the power of
the monotonic size-a combination procedure: reject Ho™ if ¥(Zy, -+, Z) = ¢
for testing H," against H,*, .

Suppose that we adopt some optimality criterion based on the power and that
we can find an optimal combination procedure of size  for testing Ho* against
H,*. If this procedure is monotonic, then the procedure obtained by replacing
Z; by Z; x is asymptotically optimal for testing H, against H; among all mono-
tonic combination procedures of limiting size & for this problem.

It will become clear in the sequel that for any reasonable optimality criterion,
the optimal procedure for testing H,* against H;* is necessarily monotonic. This
follows from the fact that all other procedures are inadmissible. Still, for the
asymptotic problem a non-monotonic procedure (or & sequence of such pro-
cedures) may be asymptotically better. This is easily verified by examples.

In practice, however, we shall simply ignore this possibility and apply an
optimal combination procedure for testing H o against H;* without hesitation to
the corresponding large sample problem for testing H, against H; . This may be
motivated as follows: If, for each ¢ and all limiting sizes «, the one-sided test:
reject H,oif Z; x = ¢;, is asymptotically most powerful among all tests based on
T n for testing H;0:0; = 00 against H;1:0; = ;5 , where

limyse Oin = 050, limyoso (pi,w(0s,5) — wmin(8i0)) /i = pi > 0,

then we can certainly not improve on large sample monotonic combination for
testing H, against H; on the basis of T1,x, - -+ , T~ . On the other hand, if the
one-sided tests based on T';, y , that formed the starting point of our investigation,
perform poorly and better one-sided test statistics that are functions of T's,» are
available, then we should not have started out on the combination of theT; yin
the first place. Thus the restriction to monotonic combination merely means that
poor tests will give rise to poor combination procedures.

We note that this point of view coincides with that of Liptak [10] who requires
monotonicity for any combination procedure. One might argue that non-mono-
tonic procedures hardly deserve to be called combinations of the original one-
sided tests based on T » .

3. Combination against a simple alternative. In the small sample set-up of
Section 1, let T'; possess a density p«(t, 8;) with respect to a o-finite measure »; on
R for all values of 6, i.e.

P(T,étlﬁz) = ft—-oopi(x,ei)dl/i, i=1,2’...,k.

We consider testing Ho:0; = 6;0,%7 = 1,2, - - -, k, against the simple alternative
Hi:60;, = 0;1,7=1,2, -+, k. If L; denotes the logarithm of the likelihood ratio

Li(t) = log pi(t, 0:1) — log pi(t, 0i,0),

then, according to the Neyman-Pearson fundamental lemma, the most powerful
test for H, against H; rejects Ho if D iy Li(T:) = c. If the densities pi(¢, 6;)
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constitute one parameter exponential families pi(t, ;) = Ci(8;)e® ",

¢ =1,2, -k, the most powerful test rejects H, if

(3.1) 261 {Qi(0i1) — Qu(0:0)}T: = c.

Hence in this case any given linear combination: reject Hoif D 51 oiT: = ¢, is
most powerful against all alternatives §; = 6,:, ¢ = 1, 2, --- | k, satisfying

Qi(0:1) — Qi(0:0) = Nai, N> 0.
ExampLE 3.1. Consider & (2 X 2)-tables,7 = 1,2, -+ , k.

Success Failure Total
First series A; C; mi
Second series B; D; n;
Total R; S; me + n;

The conditional test for testing equality of the probabilities p; 1 and p. 2 of success
in the first and second series of experiments against the alternative p;1 > p: s re-
jects for large values of 4. If 4, is defined by

0; = pia(1l — pi2)/pis(l — psa),

the conditional distribution of 4; constitutes an exponential family with respect
to 0;

P(Ai=ai|Ri=r:i,8: = s:,0:) = (07)(+25)05/ 200 (") (515)65,
where Q4(6;) = log 6; . Hence the optimal conditional combination procedure for
testing Ho:0: = 1,¢ = 1, 2, - -+ , k, against a simple alternative H1:0; = 0, ,
1=1,2, -, k, has test statistic

(3.2) A = Zi‘;], log 01‘,1'1‘11‘ .

The procedure remains optimal if the 6;; are changed in such a manner that the
ratios of log 6, remain fixed.

However, in terms of p;; and p;» such a composite alternative seems rather
hard to interpret and one would often prefer to test against alternatives like
€.g.: Pi1 — PDig = € for fixed &1, €2, -+, & . For ¢ — 0 we have under this

alternative
log 8; = ei/pia(1 — piy) + O(ed).

For large sample sizes and small e, - -+, &, p:;1 may be approximated by
ri/(m; + n;), and one may therefore expect that the test statistic

(3.3) Z’f=1 [(mi + ne)?/risded:

will be approximately optimal in this case. This rather dubious argument may be
made rigorous by considering the asymptotic situation where my , ma , - -+ , my ,
Ny, M, -+, ng tend to infinity, and e; tends to zero as fast as (m; + n:) . One
eagily shows in this case, that the conditional procedure based on (3.3) is asymp-
totically equivalent to the optimal conditional procedure (3.2), except for sets of
values r; with probability tending to zero.
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Similarly, for large samples and small e; the statistic Y i [(m: + ns)/sde:d; is
approximately optimal against p;1/p:2 = 1 + €; for fixed «; .

ExampLe 3.2, For ¢ =1,2,---,k, let X;1, Xso, - -, Xim; and
Yii,Yia, -, Yin be independent with continuous distribution functions F';
and @; respectively, where Gi(z) = Fx — A;). If U, denotes the number of
pairs (X,;,j , Yi,jl) with Xi'j < Yi,,'/ ,j = 1, 2, e, My ,j/ = 1, 2, rre,MNg, then
Wilcoxon’s two-sample test for H;o:A; = 0 against A; > 0, rejects H, oif U; = c.

For each 7, consider a sequence of such test statistics U;y, N = 1,2, -+,
based on m;y and n;y observations, where for N — «, m;y and n; y tend to
infinity in such a way that their ratio tends to a positive finite limit. If A; y are
the true parameter values of A;, and 6, y = f Fyx)dF(x — A;x), then U, y is
asymptotically N(mixn:n0:n, fsmiynin(miy + niny + 1)), whenever A;
tends to zero for N — . Combining the results of Section 2 and (3.1) we find
that the asymptotically most powerful monotonic combination procedure for
testing Ho:A; = 0,¢ = 1,2, -+ | k, against Hy:A; = A;w,2=1,2,---, k,
where limy.o Asy = 0 and (m;y + nix) (0:y — %) tend to finite limits, rejects
Hoif D2 50w — 3)/(miw + niw + DIUsw = cx.

This combination procedure has been proposed by Ph. van Elteren [3]. For
equal values of 6, , 6, , - - - , 6 under the alternative it reduces to what is called in
[3] the locally best W-test with test statistic Dy Usn/(mix + niy + 1). The
reasoning leading to the designfree procedure that was also put forward in [3]
does not apply to our problem since we restrict ourselves to one-sided alternatives
where all A; = 0 (or 6; = %).

4. Decision theory for the normal case. With the asymptotic problem of
Section 2 in mind, we consider independent random variables Ty, Ty, -+, T,
where 7'; is N(u;, 1) with u; = 0. We wish to test the hypothesis Ho:u: = 0,
1=1,2, .-k against Hy:p; = 0,7 = 1,2, - -+ | k, with strict inequality at least
once. Much of what follows may, however, be extended to the case where the
densities of 7'; constitute one-parameter exponential families.

According to (3.1) the most powerful size-« test for H, against a simple alterna-

tive (w1, p2, -+, we) rejects Ho if
Do nds Z (2t nd)l
£, denoting the upper a-point of the standard normal distribution. Hence the
envelope power (i.e. the supremum over all size-a tests of the power at
(w1, m2, -+, m)) is given by
ﬁa+(ﬂ'l y T IJ"C) =1- q)(ga - (EI;=1 I-”Z)%)’
where ® denotes the standard normal distribution function. For a size-a test with

power B(u1, - - -, ws) we define the risk R(u1, - -+, ux) as the amount by which
the actual power of the test falls short of the envelope power at a given alternative

(#l;#i’"")l-"k):
R(l“}"')#k) =ﬁa+(ﬂ1,"’,#k) —ﬁ(f"Ll)"')#k)'
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Hence for a non-randomized test with acceptance region A
R(w, - sm) =P((Tr, -, Tw) e d lp, ooy m) — (ka — (Llap)h).

In order to interpret this risk as expected loss, the appropriate loss functions are
Ll(/"'17 7“76) = :Ba+(p'1> 7””0) - la'ndL?(l-‘ly e ,Ilk) = .Ba+(l-"1’ yl-‘k)
when rejecting or accepting H, respectively. The fact that these losses depend on
a is irrelevant since we discuss the decision problem for a fixed value of a.
Consider the size-a Bayes-test relative to a prior distribution P on the param-
eter space p; = 0, i.e. the size-« test that minimizes [ R(ui, ---, u) dP, or
equivalently the one that maximizes f B(p1, -+, u) dP. If P assigns probability
1 to the point p; = 0,7 = 1,2, --- , k, then every test is Bayes. Among all other
prior distributions we may as well restrict consideration to those that assign
probability 1 to the alternative u; = 0, X u; > 0, since R(0, ---,0) = 0. Ac-
cording to the fundamental lemma, the size-o Bayes-test relative to such a
prior distribution P is essentially (i.e. almost surely) unique and rejects H, if

(41) $(t, -, 4) = [ [exp (Xiapds) exp(—% 2iand)dP = ca.

Since all derivatives of ¢ are non-negative, it follows that this combination pro-
cedure is monotonic and its acceptance region is convex. By a limiting argument
one shows that the class of wide-sense Bayes-solutions coincides with the class
of all monotone procedures with convex acceptance region.

It follows from their unicity that all (non-trivial) Bayes-solutions are ad-
missible, i.e. their risk functions cannot uniformly be improved upon, if the im-
provement is to be strict at at least one point. Hence the wide-sense Bayes-solu-
tions form a minimal complete class, i.e. the class of all admissible tests (ecf.
[14]). In this way one arrives at a result due to A. Birnbaum [2]:

Lemma 4.1." A combination procedure for testing Ho against Hy is admissible if
and only if its acceptance region A is convex and the procedure is monotonic (i.e.
(tiyty, -, 1) € A implies (1,8, -+ , &) & A whenever t; =< t;for all ).

We now prove a theorem on the behavior of an admissible risk function on a
half-line through the origin. By a strongly increasing (decreasing) function we
mean a function with positive (negative) derivative.

TuroreEM 4.1. Consider any admassible combination procedure and any fixed
Ni=0,i=1,2, -k, having D N = 1, with the exception of the cases mentioned
below. Then

f('/') = R()\IT, )\27'; ] )\]J‘)

has a unique relative maximum on (0, « ) that is also its unique absolute maximum.
In fact f(r) decreases strongly away from this maximum on both sides, vanishes for
r = 0 and for r — «, and has a negative second derivative at the maximum. The ex-
ceptions occur tn the following two cases:

(1) The combination procedure rejects Ho if Y NeT: = & .

1 In the formulation of results like this we shall identify procedures that are essentially
identical.
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(2) The combination procedure does not involve T'; for those values of © for which
N> 0.

Proor. Let us first consider the exceptions to the theorem. The procedure in
case (1) is the essentially unique most powerful size-« test against (\yr, -+ , Ner)
for every r > 0. Hence f(r) = 0 on (0, » ) in case (1);sincef(r) = Oon (0, »),
we have f(r) > 0 for all r > 0in all other cases.

In case (2) the power of the procedure against (A7, - - - , \y) does not depend
on r. Since the envelope power is strongly increasing for r = 0, the same holds
for f(r). If, on the other hand, N\;, > 0 and T, is involved in an admissible pro-
cedure, then by Lemma 4.1 its acceptance region lies below a supporting hyper-
plane D vid: = ¢, where »; = 0 for all 4, > _»? = 1, and »;, > 0. Therefore

0 = f(r) £ P( Z’f=1 vTs < c|Mry oo, M) — B(&a — 1)
= (I>(C -7 Z?:l)\il’i) - q>(£a - T))

and hence lim,.. f(7) = 0 in all cases but (2).

Disregarding the exceptions (1) and (2) for the remainder of the proof, we
have found that f(r) > 0 for r > 0 and f(r) — 0 for r — ». Of course also
f(0) = 0.

Consider an orthogonal transformation ecarrying Ti, Ts, ---, T) into
X1, Xy, -+, Xi, where X; = D f.NT;. Then X;, X,, ---, Xy are inde-
pendent and if ET; = u; = A, ¢ = 1,2, -+ | k, then X; is N(r, 1) and X; is
N(0,1) fori = 2,3, - -+ , k. Let A denote the acceptance region of the admissible
procedure of the lemma and let B be the transformed acceptance region in z-space.

Consider two points (21, €2, -+ , 2) and (z1, 22, - -+ , 22) with z’ < 1 cor-
responding to points (&, ty, -+, &) and (&, &, -+, &) respectively. If
(21,%2, - ,%) e Bthen (¢1,6, -+, t) € A and inverting the transformation
we find

t; — ti, = )\,(xl - xl') = 0.
’

Hence by Lemma 4.1 (&', &, -+, &) e A or (z1, @&, - -+ , 2&) € B. It follows
that if B, = {(x2, -+, zx)|(x, 22, - -+, 2x) € B} denotes the section of B at
21 = x, then the sets B, are non-increasing in x. Hence the function
p(x) = P((X2, ---, Xi) € B;), which, for u; = N, is independent of r, is also
non-increasing. Finally we note that for u; = A\# the envelope power is equal to
the power of the test that rejects Ho if ) N7 = &, , i.e. if X1 = £, . Therefore

(4.2) f(r) = [ {p(2) = Icw(2)}é(z — 1) d,

where I(_,, denotes the characteristic function of ( —«, ¢) and ¢ the standard
normal density.

As p is non-increasing and 0 < p(z) = 1, it follows that for any positive con-
stant a the function p(z) — I(—w,zy(z) — a changes sign at most twice; if it does
have two sign-changes, the signs occur in the order ( —, +, —) for increasing z.
Furthermore f is certainly twice continuously differentiable and the differentiation
may be carried out under the integral sign in (4.2); f cannot be identically equal
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to a constant since f(0) = 0 and f(r) > 0 forr > 0; ¢(x — r) is strictly totally
positive of order « in z and r (cf. [6]). These conditions being satisfied, we find

that for any a > 0
fr) —a = [{p(&) = Icwia(z) — a}é(z — 1) da

has at most two zeros counting multiplicities (ecf. [7]). Asf(r) > 0 forr > 0 and
f(r) tends to zero for r — 0 and for r — «, the function has a unique relative
(and absolute) maximum on (0, »). A vanishing derivative at some point
0 < ro < « other than the maximum would produce at least one double and
one single zero of f(r) — f(7o). Choosing for a the maximum value of the func-
tion, a vanishing second derivative at the maximum would produce a triple zero of
f(r) — a. This completes the proof of the theorem.

From the class of all combination procedures of fixed size « we wish to select
an optimal procedure on the basis of the risk function R. Lacking other reason-
able criteria we shall try to determine a minimax risk procedure, i.e. a procedure
that minimizes the supremum of R on the set us = 0,72 = 1,2, --- , k. In the
terminology of hypothesis testing such a procedure is called a most stringent
(MS) size-a test. According to [14] such a MS procedure exists in our case and is
wide-senise Bayes. The supremum of R of a size-a MS procedure is called the
size-a minimax risk. As we have already remarked that the wide-sense Bayes-
solutions constitute a minimal complete class, a MS procedure is admissible.

If P is a prior distribution on the set u; = 0,72 = 1,2, -+ | k, then

R(P) =inff---fR(u1,---,uk)dP,

where the infimum is taken over all size-a procedures, denotes the Bayes-risk
relative to P. Any prior distribution that maximizes R(P) is called least favorable
(LF) for the given size . A prior distribution is LF for the given size « if and
only if its Bayes-risk is equal to the size-o minimax risk. Equivalently, a prior
distribution and its size-a Bayes-solution constitute a LF distribution and a MS
procedure respectively for the given size « if and only if the prior distribution
assigns probability 1 to the set of absolute maxima of the risk function of the
Bayes-procedure. If a LF distribution exists, every size-o MS procedure is Bayes
with respect to this prior distribution (cf. [14]).

In our case we have

Lemma 4.2. For any size a there exists a LF prior distribution and a unique MS
combination procedure. This procedure 1is invariant wunder permutation of
Tl, T2, c e ,Tk.

Proor. For any MS procedure we consider the randomized procedure that
consists of employing each of the k! procedures, that may be obtained from the
MS procedure by permuting Ty , T , - - - , T , with probability (%!)™. Since this
randomized procedure is again MS, it is admissible and hence it must be essen-
tially identical to a non-randomized procedure by Lemma 4.1. Every MS pro-
cdedure must therefore be (essentially) invariant under permutation of
Ty, Ty, , Th.
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As we know that a MS procedure exists, it follows that a procedure is MS if
and only if it is MS relative to the class C of admissible and permutation in-
variant size-a procedures. For every procedure in C the point ¢ = g,
i=1,2, -,k where ®(a) = (1 ~ a)'’* must lie either outside the acceptance
region A or on its boundary. Otherwise, by Lemma 4.1, A would contain the set
t:=a+e1=1,2, -k, for some e > 0 and the size of the procedure would be
smaller than «. Also the invariance under permutations together with Lemma 4.1
guarantees that 4 has a supporting hyperplane > t; = ¢ and heace that for every
procedure in C the acceptance region A is contained in the set ) ¢; < ka. There-
fore

R(:“’l) yl"k) = P(Z?=1Ti = ka’l:ul) yl"k) - cI)(Ea - (Z’:=lll-i2)%)
= ®(kHka — Db ps)) — (ke ~ (Dt ud)?)

for every procedure in C.

Let R denote the size-a minimax risk. Since By > 0, it follows from the above
inequality that there exists a number p such that for every procedure in C
R(ui, -+ ,m) < 3Rowhenever >k ui > p,us = 0. Hence for every procedure
in C the risk function assumes its maximal value =R, only on the set ) u’ < p,
wi = 0. Now consider the same decision problem for the case where the parameter
space is reduced to the set Z pi < p, i = 0. Obviously the size-a MS procedures
for the new problem are the same as those for the original problem. Also the
supremum of their risk functions remains R, in the new problem. However, as the
parameter space is now compact, there exists a LF distribution P for the new
problem. Since its Bayes-risk is equal to the minimax risk R, in the new problem,
P must also be LF for the original problem. As every size-a MS procedure is
Bayes relative to P the unicity of the MS procedure follows from the unicity of
the Bayes-solutions. This completes the proof.

6. Combination of two tests. In the remainder of this report we shall specialize
the setup of Section 4 to the case where &k = 2. If S and 7" are independent N (u, 1)
and N(», 1) respectively with u, » = 0, the problem is to test Hotp = » = 0
against Hiipu, v = 0, p + » > 0. We shall sometimes find it convenient to use

polar coordinates in the parameter space and write
u = rcoséb, v = rsin 6.

By Lemma 4.1 a combination procedure is admissible if and only if its accept-
ance region is of the form ¢ < a(s), where a(s) is a non-increasing function that is
concave on the interval where a(s) > — o (as a boundary case we have
a(s) = o fors < & and s > &, respectively). A procedure is invariant under
permutation of S and 7' iff its acceptance region is symmetric about theline s = ¢.
Such a procedure will be called symmetric. Obviously the risk function of a sym-
metric procedure is symmetric about the line u = ». An admissible procedure with
decreasing a(s) is symmetric iff a is its own inverse

a(a(s)) = s.
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TrEOREM 5.1. For every admissible combination procedure the risk function has a
finite number of absolute maxima.

Proor. We start by assuming that the procedure depends on both S and T'and
that it is not linear. Hence Theorem 4.1 holds on every half-line » = 0,6 = 6o,
with 0 < 6, < 7. Let R* denote the risk as a function of r and 6

(51) R*(r,0) = P(T < a(8) |7,0) — (&, — 1)
= [®(a(s) — rsin6)d(s — rcos0) ds — B(&x — 7).

Since ¢ and ® are analytic, one easily verifies that R* is analytic for r = 0 and
0 = 0 = 37. By Theorem 4.1 there exists a unique value r(8) > 0 for every

0 ; 6 = 7 such that

(5.2) OR*(r, 0)/d" |rmrey = 0.
Also forevery 0 = 0 < ir

(5.3) OR*(r, 0)/07 |,y < 0.

It follows from the implicit function theorem that r() is analytic for0 < 6§ < ir
and hence so is g(8) = R*(r(9), 6).
From Theorem 4.1 we know that the absolute maxima of R* lie on the curve
r = r(0). If R* and hence g would have an infinite number of absolute maxima,
¢(0) would be identically equal to a constant on [0, ;7] because of its analyticity.
However, this is impossible since R* has a local maximum at the boundary-point
= 0,r = r(0), because of (5.2), (5.3) and

(5.4) OR*(r, 0)/30 lio = —1 [ ¢(a(s))p(s — r) ds < 0.

It remains to consider the exceptions to Theorem 4.1. If the procedure de-
pends on both S and 7 but is linear, e.g. rejects Ho if S + NT = ¢, M, N2 > 0,
then the conclusion of Theorem 4.1 continues to hold for every half-line r = 0,
0 = 00,With0 =6 = %1r, 0o %= 61 ,Where tn 6, = )\2/)\1 y 0< )\2/)\1 < . Hence
in this case we have analyticity of r(8) and g on [0, 6,) as well as on (6, 3«].
The conclusion of the theorem then follows from (5.2), (5.3), (5.4) and

dR™(r,8)/30 s = —1 [ ®(a(s) — r)¢(s)sds
= —r [ ¢(a(s) — r)é(s)a’(s) ds > 0,

since a'(s) = —\/A\; < 0.

Finally, if the procedure does not depend on both S and 7, e.g. rejects Hy
if S = &, , then R(u, ») is a strongly increasing function of » for every value of
g = 0 and R does not possess any absolute maxima at all. This completes the
proof of the theorem.

As a LF prior distribution assigns probability 1 to the set of absolute maxima

2 of the risk function of the MS procedure, we have

CoRrOLLARY 5.1. For each o, every LF prior distribution assigns probability 1

to a finite pointset.
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Now let us, for a moment, restrict the parameter space to the half-lines u = 0,
v = 0,and » = 0, p = 0. By the same reasoning as that of Lemma 4.2, there
exists a LF prior distribution and a unique and symmetric MS procedure for
every size a for the new problem. Since this MS procedure is admissible for the
original problem and depends on both S and T because of its symmetry, its risk
function has exactly one maximum on each of the half-lines 4y = 0 and » = 0
by Theorem 4.1. Also because of the symmetry of the procedure, this risk func-
tion is symmetric about the line 4 = » and hence it assumes the same maxmum
value on both half-linesy = 0and» = O at pointsuy = 0, v =randv =0, u = r
respectively. It follows that for the new problem the LF distribution concentrates
on the two points (0, r) and (7, 0) and hence by (4. 1) the MS procedure for the
new problem rejects Hy if

pes + (1 —p)e’ = ¢, 0<p=1.

From the symmetry of the acceptance region we find that p = 3, i.e. the LF
distribution assigns probabilities 3 to each of the points (0, ) and (r, 0). Because
of the unicity of the MS procedure, the constants r and ¢, that depend on e,
are uniquely determined by the requirements that the size of the procedure be
equal to « and that its risk function assumes its maximum for y = 0 at » = r.

Returning to our original problem we consider the behavior of the risk func-
tion of the above procedure on the entire parameter space u, v = 0. If this risk
function assumes its absolute maximum anywhere on the boundary u = 0
(or » = 0) of the parameter space, then the above procedure is not only MS
on the restricted parameter space u = 0 and » = 0, but also on the entire param-
eter space u, » = 0. Hence we have proved (we find it convenient to replace ¢’
by erc)

TaEOREM 5.2. For each a there exists a unique size-o combination procedure that
rejects Ho if

er(a)s + er(a)T g er(a)c(a)

and for which R(0, v) assumes its maximum at v = r(a). If, for a certain o,
R(0, r(a)) s also the mazimum value of R on the entire parameter space u, v = 0,
then the procedure is MS for this value of o.

The usefulness of this theorem depends heavily on our ability to check whether
the condition of the theorem is fulfilled for a given value of «. In this respect the
following lemma will prove helpful.

Lemma 5.1. Consider an admissible and symmetric combination procedure for
which a(s) is continuously differentiable on the interval where a(s) > — «, and
let sy denote the potnt where a(so) = 0. If g(s) = s + a(s)a’(s) < 0on (— o, s),
then the risk function R of the procedure assumes its absolute maximum only on the
boundary of the parameter space (u = 0 or v = 0). If g(s) changes sign exactly
once in the order (—, +) for increasing s on (— x, 8), then R can attain its ab-
solute maximum only on the boundary of the parameter space and on the half-line
n= .
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Proor. Let
lim;, o a(s) = a (finite or infinite),
then by the symmetry of the procedure
lim,jqaa(s) = —o.

As before, let R*(r, 8) denote the risk as a function of the polar coordinates r
and 6. We shall prove the lemma by studying the behavior of R* for fixedr > 0
as a function of 6. Since the risk is symmetric about 8§ = =/4 we restrict attention
to the interval 0 < 8 < w/4. According to (5.1) we have

Ro*(r,0) = (8/30)R*(r, 6)
=1 [2e{—cos 0 ¢(a(s) — rsin0)¢(s — r (;os 8)
+sin 0 ®(a(s) — rsin0)¢'(s — r cos 8)} ds
= —r [2s {cos 8 + a'(s) sin 8}¢(a(s) — r sin 0)¢(s — r cos6) ds
= —(re/21) J% {cos 6 + d'(s) sin 6}
-[exp (r(s cos 8 + a(s) sin 6))] exp [—3(s* + d’(s))] ds
= —(e/2r) [%u{s + a(s)d(s)}
-lexp (r(s cos 6 + a(s) sin 0))] exp [— (s’ + a’(s))] ds

by repeated partial integration. By substitution of s = a( s')ors’ = a(s) we may
change the integral from s, to @ into an integral from — o to sy and obtain

(5.5) Ro*(r,0) = [ g(s)f:(0, 5) d\(s),
where
g(s) = s + d'(s)a(s),
f+(6, 8) = [exp (r(a(s) cos 8 + s sin 6))] — [exp (r(s cos 6 + a(s) sin 6))],

and the measure A, is defined by
dM(s) = (¢7¥7/2r) exp [—3(s" + d'(s))] ds.

We proceed to study the function f, for 0 < 6 < 7/4 and s < so . Since a(s) > s
for s < soand cos § > sin 6 for 0 < 0 < m/4, we have

a(s) cos @ + ssin @ — scos 6 — a(s) sin 6 = (a(s) — s)(cos § — sin 6) > 0,
and hence f, > 0. Furthermore consider the determinant
| ses (/e s
K (8/8s8)f-(8, 8) (8%/0603)f.(8, s)
= [exp (r(a(s) + s)(cos 0 + sin §))][**(cos’ 8 — sin” 6) (a(s) — 8)(a'(s) — 1)
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— r(cos 6 — sin 0)(a'(s) + 1)]
+ [exp (2r(a(s) cos 6 + s sin 6))][—ra’(s) sin 6 + 7 cos 6]
+ [exp (2r(a(s) sin 8 + s cos 8))][ra’(s) cos § — r sin 6].

Let us denote the sum of the last two terms in this expression by D* and con-
sider the inequality ae® — Be™ > (a — B) + (a + B)z, whenever « = B,
a4+ B> 0and z > 0. We have

D* = [exp (r(a(s) + s)(cos 6 + sin 0))][r( —a’(s) sin 6 + cos 6)
-lexp (r(cos 6 — sin 8)(a(s) — s))]
— r(—a’(s) cos 6 + sin 0)[exp (—r(cos 6 — sin 0)(a(s) — s))]
> [exp (r(a(s) + s)(cos 6 + sin 6))]
-[r*(cos’ 0 — sin”0) (a(s) — s)(1 — a’(s)) + r(cosf — sin ) (a’(s) + 1)],

since a'(sy) = —1 because of the symmetry and hence —1 < a'(s) = 0 for
s < 8. It follows that D > 0 and hence that the function f, is strictly totally
positive of order 2 for 0 < 6 < 7/4 and s < s (cf. [7]).

Returning to expression (5.5) we note that g(s) cannot be identically zero for
s < 8o almost everywhere [\.], since 2¢(s) is the derivative of s 4 a’(s) which
tends to infinity for s — — «. Therefore, if g(s) < 0 on (— =, s), we find that
Ro*(r,0) < Oforallr > 0and0 < 6 < 7/4 becausef, > 0. Since R* is symmetric
about § = w/4 it can only have absolute maxima for 8 = 0 and § = ir.

Similarly, if g(s) changes sign exactly once in the order (—, ) for increasing
son (—x, 8), then expression (5.5) together with the strict total positivity of
f- ensures that for any r > 0, Ry*(r, 6) has at most one zero for 0 < 8 < w/4; if
it does have one zero it changes sign at this zero in the order (—, +) for in-
creasing 8 (cf. [7]). Hence for every r > 0, R*(, 6) has at most one minimum and
no maximum for 0 < 8 < /4. Because of the symmetry of R* about § = =/4
its absolute maxima can only occur for § = 0, 8 = 7/4 and 8 = =/2, which
completes the proof of the lemma.

A procedure that rejects Hy if

ers + erT ; erc’ r > O’

will be called an exponential combination procedure with parameters r and c.

We prove
TarorEM 5.3. For any exponential combination procedure the risk function

can assume its absolute maxima only on the half-lines u = 0,» = 0 and p = ».
Moreover, if rc = 1 + log 2, this absolute maximum can only be attained on the

half-lines u = 0 and v = 0.
Proor. For an exponential procedure we have for — < s < ¢

a(s) = r"log (¢ — €
9(s) = s+ a(s)a'(s) =s — (¢°/r(° — €°)) log (£° — €7).

The point s, where a(s)) = s is given by sg = ¢ — " log 2.
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To study the sign-changes of g on (—», ) weset z = €™, b = €, and con-
sider the function
h(z) = r(e” — " )g(sy = (b — z)logxz — zlog (b — z)
for0 < z < €™ = 1b. We have
lim,.oh(z) = —w,  h(3b) =0,
B(z) = =logz — log (b — z) + (b — 2)/z + /(b — 2),
limge.o k' (z) = 4+,  A(%b) = 2(1 — log b/2),
B (z) = (1/(b — z) — 1/z) + b(1/(b — 2)* — 1/2") <0
for0 < z < 3b. .

Ifrc £ 1+ log2,ie. b < 2, then h'(3b) = 0 and since b’ is decreasing, it is
positive on (0, 3b). Hence h is negative on (0, $b) and so is g on (— o, ).

If rc > 1 + log 2,ie. b > 2, then h'(b) < 0 and since & is decreasing, it
changes sign exactly once on (0, 3b) in the order (4, —) for increasing z.
Hence & has one maximum and no minimum on (0, 3b). It follows that & changes
sign exactly once on (0, 3b) in the order (—, +) for increasing z, and so does g
on ( — o, §) for increasing s.

Application of Lemma 5.1 completes the proof.

Combining Theorems 5.2 and 5.3 we have

COROLLARY 5.2. For a given size a the exponential combination procedure of
Theorem 5.2 s MS if and only if one of the following conditions is satisfied:

(1) r(a)e(a) =1 4 log 2,

(2) the maximum risk of the procedure on the half-line u = v does not exceed
that on the half-line u = 0.

Corollary 5.2 admits at least a partial solution to the problem of finding the
size-o. MS procedure. By varying r and ¢ for a given size a it is fairly simple to
determine numerically the exponential procedure of Theorem 5.2 for which the
risk assumes its (unique) maximum for u = 0 at » = r. Once r(a) and c¢(a)
have been determined, the validity of conditions (1) or (2) is easily checked.
At most the computations involve the determination of the (unique) maximum
of the risk function for u = ».

It turns out that condition (1) is of little practical interest since it covers only
large values of a. For & = 0.75 the acceptance region of any exponential procedure
can not include the origin as an interior point, since it would then strictly con-
tain the set s, ¢ < 0 that has probability 0.25 under H,. Therefore, for « = 0.75,
¢” < 2 for any size-a exponential procedure and hence in particular r(a)c(a)
< log 2 and the procedure of Theorem 5.2 is MS. Of course the estimate involved
is rather rough and it turns out that the procedure of Theorem 5.2 has r(a)c(a)
= log 2 for & & 0.60 and reaches the point where r(a)c(o) = 1 + log 2 only for
a = 0.24.

Below this point the validity of condition (1) for 7(a) and ¢(«) seems to end
and we have to rely on condition (2). For « = 0.10 and « = 0.05 the procedures
of Theorem 5.2 still satisfy condition (2) and we find that the MS combination
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procedures reject H if
(5.6) e 4 T > 16.52 for « = 0.10,
(5.7) 005 4 g7 S 4447 for o = 0.05.

The point where the risk function of the procedure of Theorem 5.2 assumes equal
maxima on the half-lines 4 = v and u = 0 is reached for a = ay X 0.043. Although
we have proved no such result, numerical evidence strongly suggests that the
procedure of Theorem 5.2 is MS for all @ = a0 & 0.043.

For o < ap the situation becomes more complicated. We conjecture that a
LF prior distribution that is symmetric about the half-line u = » will continue
to exist and that for values of « slightly below oy it will assign positive probability
to three points (u(a), 0), (0, u(a)), (/‘*(a), I‘*(a)) in the (n, »)-plane. By
(4.1) the MS procedure would then reject H, if

e#(a)S + eﬂ(a)T + )\(a)eu‘(a)(s+7') > c*(a),

where M), u(a), p*(a) > 0. As o decreases further towards zero the LF dis-
tribution will supposedly concentrate on an indefinitely increasing (but finite)
number of points. As a result, the number of terms involved in the test statistic of
the MS procedure would also increase indefinitely for e — 0, and the task of
determining the MS procedure would rapidly become hopeless.

Obviously, what remains to be done is to find an asymptotically good procedure
for @« — 0. To this end we consider the likelihood ratio (LR) test for the hy-
pothesis Hy:p = 7 = 0 against the composite alternative Hi:p,» = 0,4 + » > 0.
One easily verifies that the size-a LR procedure rejects H if

(5.8) ST (8) + T Ioo(T) Z pas

where I« denotes the characteristic function of the set (0, «) and p, > 0.
We note that these LR procedures have size @ < £ since the set s, ¢ = 0 is always
strictly contained in the acceptance region A, of the procedure. The region
4, is bounded by the quarter-circle s + # = p, in the first quadrant and by
the half-lines ¢ = p, and s = p, in the second and fourth quadrants respectively.
It follows from Lemma 4.1 that the LR procedures are admissible; however,
these procedures are not (strict-sense) Bayes, since one easily shows from (4.1)
that the acceptance region of a Bayes procedure is either s < £, or ¢t < &,
ort < a(s), where a(s) is strongly decreasing.
The risk function of the size-a LR procedure is given by

(59) Ra(p,v) = ®(pa — »)®(—p) + [t @((pa’ — ) — »)o(s — ) ds
— &% — (' + ).

qustitutmg p = v = 0 we find that p, is determined by the relation

(5.10) R )

If the acceptance region A, is written in the form ¢ < a.(s), then for s < 2%, ,



COMBINATION OF INDEPENDENT TEST STATISTICS 675

s* 4+ a.(s) is obviously non-increasing and s -+ aq(s)a.(s) < 0. Hence by
Lemma 5.1, R, assumes its absolute maximum only on the half-lines 4 = 0
and » = 0. Let uo,. denote the unique value of u for which R.(u, 0) assumes its
maximum (cf. Theorem 4.1). Then Ra(u, ») = Ra(uo,a, 0) for all u, » = 0,
and since the second term in the right-hand member of (5.9) is smaller than

®(pa — p) — B(—n)
(5.11) Ra(p, ) = {®(pa) — UP(—po,a) + B(pa — po,a) — P(éx — Ho,a)

forall w,» = 0.
Now pa > &a, and as « tends to zero, both p, and £, tend to infinity. More-

over, as
(z) = 1 — 27%(2) + 0(z7(2)) for ©— w,
we have from (5.10)
177+ 0(pa'9(pa)) = (2m) 76 + O(878(a)),
or, taking logarithms,
0.’ = 3t + log & + O(1).
It follows that
pa = ba+ £a " log fa + O(E™") for a—0,
and hence in particular lim,.o (pa — &) = 0. Combining this with (5.11) we
obtain
(5.12) limg.o Ra(p, ) = 0 uniformly for all u,» = 0.

Though property (5.12) is obviously a desirable one, it remains to be seen what
other families of combination procedures besides the LR procedures possess this
property. We proceed to show that, in a sense to be made precise below, any
family of admissible procedures that satisfies (5.12) approaches to the LR
procedures for o — 0.

Consider an arbitrary family of admissible procedures with acceptance re-
gions A, (0 < « < 1), where the procedure characterized by 4, has size « and
risk function R, . If p and 5 denote polar coordinates in the (s, ¢)-plane,

$ = p cos 1, t = psin g,

the acceptance region 4, may be written as p < ba(n). We note that in the special
case where A, = A, wehavebs(n) = pafor0 = 9 = 7/2, where p, ~ £, fora — 0.
THEOREM 5.4.

1im .00 SUPuz0,520 Ra(p, #) = 0 iff limaso SUPogagera [ba(n) — &l = O.

Proor. We start by remarking that b.(n) = &, for all « and #, since otherwise

+there would exist a line of support of 4, at a distance from the origin smaller

than &, , and as a result the procedure corresponding to 4, would have a size > a.
We proceed to prove the “only if”’ assertion of the theorem.
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Let & be an arbitrary positive number,
e=3P(S+ T =38 |p=v=0),
and let p > 13 be so large that A
PS+Tzp|lu=r=0)<e
Furthermore let o be so small that for all & < aowe have
(1) pa — £a < 36;
(2) pa > {38+ (" — 3N - p7'(0" — 1))
Suppose that for some a1 < agand 0 < 1 < 3, be (m1) - £ai= d > 8,’and hence,
because of (1), bey,(m) — pay = di > 36. Returning to the cartesian coordinate
system in the (s, t)-plane, let L; be the line through the origin at an angle 7
to the positive s-axis, and let P; and P, = (s, , &) denote the points of intersec-

tion of L; with the boundaries of 4., and 4., respectively. Define the region
G, by

Gp={(s5,8) | (s — )"+ (t — )" <D}

We shall show that the boundaries of A,, and 4., have no common points in
the set G, . Suppose to the contrary that such a point would exist, say P;.
We note that this would imply that P; e G, or that di < p. Denote the line
through P, and P; by L, and let { be the positive acute angle between L, and the
line of support of 4., at Py. Let L; be the line through the origin orthogonal to
L, and let P4 be the point of intersection of L; and L . Then OP,; = (pa, + d1)
-cos ¢ < (pa; + P) cos ¢, where O denotes the origin. Since

sin ¢ = dy/P,P; > 6/2p,
we have by (2) and (1)
O_Pz < (Pm + p)(l - (6/217)2)i < Poy; — %5 < Eal .

Since P, , P; and P4 are collinear and P; is situated between P, and P, , P, lies
outside A4, or on its boundary. This follows from the fact that 4., is convex and
that P, and P; are boundary points. But this contradicts OP; < £, (cf. the re-
mark at the beginning of the proof) and hence the assertion that 4., and A,
have no common boundary points in G, is proved.

Hence (Gpn Aa) C (Gpn 44,), and (G, n A,,) — (G, n A,,) contains a
circle sector Cg4, of a circle with centre P., radius di and extending over an
angle iw. Taking uo = sz, v = &2, it follows from thedefinitionsof ¢, p and G, that

Rey(po, v0) — Ray(uo,v0) > P((S, T) € Cay | po, v0) — € > e

Hence R.,(ko, v0) > €, which proves the “only if” ass_ertion of the theorem.
To prove the converse, suppose to the contrary that b,(n) — &., and hence
ba(1) — pa, converges uniformly to zero on [0, }=], and that sequences {a.}
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and {x;, v;} exist such that lim;., a; =

(5.13) Ra.’(#t’, v) > e for 1©

where ¢ is a positive number. Define d > 0 by

PSS +T'>d|u=v
and let

Co={(st) | (s —m)’ + (¢

Furthermore, let D; be the intersection of C;
A, and 4, .

677

0, i, vi = 0 and

=1,2 -,
=0) = ¢
— )t = d}, i=1,2 .

with the symmetric difference of

The uniform convergence of b.(n) — pa on [0, 3] also ensures the uniform
convergence. of the boundary of 4, to the boundary of A, in strips with width
d along the s- and t-axes outside the first quadrant. This may be shown by the
same line of argument that we used in the first part of the proof to show that
G, contained no common boundary points of A4, and 4,, . Hence

limi.o M D) = 0,

1}

FISHER'S TEST

EXPONENTIAL TEST

-1

F1a. 5:1. Boundaries of the acceptance regions of 4 symmetric tests; size a

.05.
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where N denotes Lebesgue-measure, and consequently for all sufficiently large ¢
IR‘!&(I“ y Vi) — Ra.‘(l‘t’: ”")l < 3e.

Since by (5.12) lim.e Ra;(ui, vi) = 0, this contradicts (5.13), which com-
pletes the proof of the theorem.

It may be of interest to remark that Fisher’s omnibus combination procedure,
that rejects H, for large values of
(5.14) —log (1 — &(8S)) — log (1 — &(T)),
satisfies the convergence criterion for b, in Theorem 5.4. As a result, for « — 0,
it shares the property of uniformly vanishing risk of the LR procedure. The
exponential combination procedure of Theorem 5.2, however, does not enjoy
this property. For « — 0 its maximum risk tends to 1 as it approaches Tippett’s
procedure that rejects Ho for large values of max (S, T). The additional fact
that this limiting risk 1 is reached on every half-line through the origin except
p = 0 and » = 0 makes exponential combination most unsatisfactory for very
small values of a.

This unsatisfactory behavior for « — 0 is of course due to the fact that the
exponential procedure of Theorem 5.2 is Bayes relative to prior distributions
that remain concentrated on a bounded number of points as « tends to zero.

t RISK

LINEAR TEST

FISHER'S TEST

TEST

EXPONENTIAL TEST

+ ALTERNATIVE v
1 2 3 4

F1q. 5.2. Risk functions of 4 symmetric tests on the half-line u = 0, v 2 0; size @ = .05.
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+ RISK : -

al EXPONENTIAL TEST

LR TEST

FISHER'S TEST

-~ ALTERNATIVE n=v

i 3 3

Fia. 5.3. Risk functions of 3 symmetric tests on the half-line 4 = » = 0; size & = .05.

A similar case is therefore afforded by linear combination. For « — 0 the pro-
cedure that rejects H, for large values of

(5.15) MS + T, ANi,N2 2 0,

has limiting maximum risk 1, that is reached on every half-line through the
origin but Nep — Av = 0. The proofs of the above remarks will be omitted here.

To conclude this paper we give some numerical results that provide some in-
dication of the performance of several procedures discussed in this paper for
the time-honoured value of &« = 0.05. The following procedures have been in-
cluded:

(1) Exponential combination (5.7), which is the MS procedure for e = 0.05;

(2) Fisher’s combination procedure (5.14);

(3) Likelihood-ratio (LR) procedure (5.8);

(4) Linear combination (5.15) with Ay = Ny, which is MS among all linear
procedures because of its symmetry.

For these four symmetric procedures and o = 0.05 Figure 5.1 shows the bound-
ary of the acceptance region. Figures 5.2 and 5.3 show the risk of these proce-
dures on the half-lines 4 = 0 and u = » respectively. For linear combination
(4) the risk for u = » is not shown since it is identically equal to zero.
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