A NOTE ON THE UNIMODALITY OF DISTRIBUTION FUNCTIONS
OF CLASS L

By Tze-CHien Sun

Wayne State University

1. Let X;, Xo, -+, Xa, --- denote a sequence of independent random
variables. Set

§n=Bn—IZI?-1Xk—An7 n=1727"'7

where B, > 0 and A, are some constants. Let F, (x) be the distribution functions
of {pform=1,2, ---.

We say that a distribution function F belongs to the class L ( [2], p. 145) if there
is a sequence of independent random variables X, such that

(i) for suitably chosen B, and A,, the distribution functions F, converge
weakly to F;

(ii) the random variables ¢, = Xi/B, are asymptotically constant.

We say a distribution function F is unimodal ([2], p. 157) if there exists at
least one value 2 = a such that F (z) is convex for x < a and concave for x > a.

A number of people have been interested in the following problem:

Are all the distribution functions belonging to the class L unimodal?

First, B. V. Gnedenko gave a proof to show that the answer to the problem
was positive. Later, K. L. Chung pointed out that Gnedenko’s proof, based on
a wrong theorem of A. I. Lapin, was not valid (see [1] and the Appendix II in
[2]). The problem thus remained open.

In 1957, I. A. Ibragimov gave an example of non-unimodal probability distri-
butions of class L ([3]). It appeared that the problem was finally settled on the
negative side. However, in this note, we shall point out that Ibragimov’s proof
is not valid either and moreover we shall show that the distribution functions
given in [3] are in fact all unimodal. Therefore, this problem again remains open.

2. In [3)], the following theorem was stated:
Among the distributions of class L, the logarithm of whose characteristic function
s given by Lévy’s formula by the functions

M(u) = 0,
N (u) = X log u, u =1,
=0, u > 1,

with \ € [3, 3], are non-unimodal ones.
Let fi (t) denote the characteristic function corresponding to A. We find

log fir(t) = iyt + X\ fo (6" — 1)/u du.
We shall assume that v = 0.
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Let F)(z) and y»(2) denote the distribution function and the density function
of fr(t) respectively.

Ibragimov’s proof proceeds as follows:

1) [Hh@®)] =0(™) ast > £.

(2) Suppose Fi(x), N € [3, 1], are unimodal, then the mode of F (z) is at zero
foreach =\ = 1.

(3) When A > 1, ya(z) = Oforz < 0.

(4) When A > 1, 250 (z) = (A — D)ya(®) — M — 1), 2 # 0.

(5) Suppose Fy(x), A € [3, 3], are unimodal. Let a) denote the mode of Fy (z).
Since, as A — 17, fa(t) = f1(t), FA(z) = Fi(z), we have ay — a; = 0 (from part
(2)). So there is ax < % for some A > 1. By part (3) and part (4), we have
awn (@) = (A — 1)ya(ar). Since gy (ax) = 0, it follows that yx(ay) = O,
yr(xz) = 0 and this is impossible.

This argument is correct until part (5). The statement in part (5), “ax —
a1 = 0 as A — 177 is incorrect. Although he proved a; = 0 in part (2), he did
not prove that F;(x) has a unique mode. If F;(z) has more than one mode, a»
does not necessarily converge to the mode at zero. In fact, we can see from the
following that all points in [0, 1] are modes of F;(z) and ay — 1 as A — 17,

3. We shall prove the following:
The distribution functions of class L, the logarithm of whose characteristic func-
tion 1s given by Lévy’s formula by the functions

M(u) = 0,
N (u) = Xlog u, u =1,
=0, u > 1,

with X ¢ [, €], for any 0 < ¢ < 1, are all unimodal.
Proor. Recall that fy () = exp{\ [¢ (¢™ — 1)/u du}. The result in part (1)
of [3] remains to be true here,

(a) IAOI =030,  Nele 7, as N\ — .
By the inversion formu]a,
Fr(z) — Fa(0) = @2m)7" [2.[(e7 — 1)/—tlfa () dt.

Note that the above integral is absolutely integrable, so F\ (z) is continuous. For
xz > 0, set tx = s. Then

Fr(z) — Fr(0) = @r)7" [Zo[(e — 1)/—islfr(s/x) ds
@) [Z. (€™ — 1)/—is] exp (N [§/7 (e™ — 1)/u du} ds.
Differentiating both sides with respect to x, we have
@) = Cr)7" [Zul(e™ — 1)/ —islfa(s/z)A(1 — €**)/z ds
=A2m)7 [ZL [ — 1)/ —dalfa(t) A — &) dt
= (\/z)[Fx(z) — FA(0) — (Fa(x — 1) — FA(—1))]
= (\/x){[Fa(@) — Fx(x — 1)] = [FA(0) — Fa(—=1)}}, x> 0.
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Differentiation under the integral sign is legitimate here because the last integral
converges uniformly in x ¢ [§, « ) for any 6§ > 0. The same formula can be ob-
tained for x < 0. Thus

() w) = W) {[Fr(x) — Fxlx — 1)] = [FA(0) — Fx(=1)]}, x=0.

First we note that y,(x) is continuous at all x # 0. Also it is easily seen from
(b) that F\(0) — F\(—1) = 0, otherwise we would have negative values for
yx () for sufficiently large x. Therefore, (b) becomes

(@) = AN/2)Fr(x) — Fa(x — 1)), x # 0.

Since Fr(z) — Fa(x — 1) =2 0, and yr(x) = 0, we have 45 (z) = 0 for x < 0.
Consider

(¢) () = ANx)[Fr(x) — Fx(x — 1)] for z > 0.
Differentiating (¢), we have
(d) ay @) = A = Dn(x) — M@ — 1), x> 0.

We sce from (d) that ' () is continuous at all x except at + = 0 and z = 1.

Casgl. A = 1.

From (d), we have 1. () < 0 for all x > 0. So y\(x) is monotonically de-
creasing forz > 0. It follows F(z) is unimodal. Actually, by integrating (d) for
0 < z < 1, we have yx(z) = ¢z’ where ¢ is a non-negative constant. ¢ > 0
otherwise y» (z) would be zero for all z. Thus, for A < 1, F)(z) has a unique
mode at zero and for A = 1, all points in [0, 1] are modes of F; (z).

Case 2. N > 1.

For 0 < z < 1, again, we have ,(x) = ¢’ ¢ > 0. Since y»(z) now is con-
tinuous at & = 0, we see that 3\ (¢) is continuous for all # 0. Note that
y (x) > 0for0 < x < 1, also yr(z) — 0 as v — . It follows y (z) has at least
one local maximum in 1 < r < «.

Let x; be the smallest point where y) (x) achieves maximum. Then

(i) o > 1,

(ii) ya(x) is strictly increasing in 0 < 2 < x4,

(i) yr(e)/ya(@ — 1) =N/ (A — 1) by (d).

Suppose ¥ (z) has at least a local minimum in ;3 < ¥ < . Let 2 be the
smallest such point. Then

(iv) @2 > a1 ;

(v) ya(x) is strictly decreasing inay; = & < a9

(vi) pa(e)/yn(@e — 1) = N/ (N — 1) > 1.

(v)and (vi) imply 0 <2 — 1 <ay.Butas— 1> a;— 1 > 0, by (ii), ya(x2 —
1) > ya(ax — 1). By (iii) and (vi), we then have

Ur(r2) > ya ().

This is impossible. Hence g (x) is strictly decreasing in 23 < # < . Therefore
¥ (2) has a unique mode at z; . Q.IN.D.
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