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0. Summary. Tables are given for the asymptotic distribution function of the
extremal quotient, which is valid for a wide class of initial distributions. Selected
values of the shape parameter N are considered. This parameter depends upon
the initial distribution, and the size of the sample from which the quotient is
drawn. This distribution function is not too different from that of a logarithmic
normal distribution. The large sample approach of the distribution function to
the logistic one is very slow. A Monte Carlo study shows an unexpectedly good
fit to the theory.

1. Distribution of the extremal quotient. Let X be a random variable, sym-
metrical about zero, that is one such that
(1) F(z) =1— F(—x). ‘
Let X; be the smallest, and X, the largest, observation in a sample of size n. The
expression
(2) Q = X./(—X1)
is called the extremal quotient. Clearly, by symmetry, the probability ap-
proaches one that
(3) X; <0, X. >0,

in which case the extremal quotient is positive. In what follows we assume that
n is so large that (3) holds. We define the characteristic largest value u, , and
the extremal intensity «, , respectively, by

(4) Flu,) =1 — 1/n,
and
(5) Qp = nf(un)

For a large class of initial distributions, the distribution function of the largest
value, Prob {X, = z} = ®,(x), converges as n becomes large to

(6) B,(z) = exp (—¢ ™),

Such initial distributions are said to be of the exponential type.
By symmetry — X, has the same distribution as X, . Furthermore, as is well
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known, X; and X, are asymptotically independent. So the asymptotic distribu-
tion of @ is that of the ratio of two independent positive random variables each
having the distribution function (6). In [2] it is shown that the distribution
function Hx(g) of the extremal quotient is

(1) Hx(g) = WA —e™)fe' exp(=Nz + 2))de — /(1 — €¢™)

where the parameter A = exp(a,u,), is a function of the initial distribution, and
the size n of the sample from which the quotient was drawn. Since u, has the
dimension of X and «, has the inverse dimension, \ is dimensionless.

For large n and consequently for large values of A, the expression (7) becomes
simply

(8) Hy(q) = o exp (—\(z + 2Y)) de.
Since
(9) log Q = log X, — log (—X,),

and log X, , and log (—X;) are identically distributed and asymptotically inde-
pendent, log @ is symmetrical about zero. The most prominent symmetric distri-
bution is the normal one, which is in fact the distribution of the difference of two
identically distributed normal variates. Hence, the log-normal distribution is the
distribution of the quotient of two independent lognormal variates. It is interest-
ing to note that the two quotients have the same logarithmic symmetry. As
shown in [2],

(10) H(1/q) =1 — H(q).

The distribution of the extremal quotient rapidly becomes concentrated with
increasing sample size. The concentration is about the median which is unity.
In order to compensate for this concentration, the difference @ — 1 is multiplied
by @, and u, . Thus we have the variable

(11) 7= (Q — 1) log\ = a,au.(Q — 1).

In [2] it was shown that the distribution of 7 approaches the logistic distribution
as \ approaches infinity; that is,

(12) for all z, limy», P{7 S 2} = 1/(1 + €°7).

It should be noted, however, that while a logistic variate has all moments 7 has
none since @ has none.

2. Tables of the distribution function. Table 1 gives numerical values of the
distribution function (7) of the extremal quotient. From equation (10) it is clear
that it is sufficient to compute the probabilities for @ =< 1. To facilitate the
computation, a logarithmic transformation was made. First, let w=2M\z, then the
integral (8) can be written

fo)‘ exp (—(u + Bu?)) du, where g = N7
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TABLE 1
The distribution function
A=2 A=5 A= 9.48
q H(q) - q °  H(@ - q Hx(q) -
0.0 0.0000 .69315 0.0 0.0000 1.60944 0.0 0.0000 2.24918
.1 0.0528 .62383 .1 0.0133 1.4489%4 .1 0.0011 2.02427
.2 0.1120 .55452 .2 0.0426 1.28755 .2 0.0091 1.79935
.3 0.1727 .48520 .3 0.0882 1.12661 .3 0.0337 1.57443
4 0.2316 .41589 .4 0.1455 0.96566 .4 0.0784 1.34951
.5 0.2870 . 34657 .5 0.2086 0.80472 .5 0.1398 1.12459
.6 0.3381 .27726 .6 0.2731 0.64378 .6 0.2114 0.89967
7 0.3847 .20794 7 0.3359 0.48283 7 0.2872 0.67476
.8 0.4270 .13863 .8 0.3952 0.32189 * .8 0.3624 0.44984
.9 0.4653 .06931 .9 0.4500 0.16094 .9 0.4340 0.22492
1.0 0.5000 .00000 1.0 0.5000 0.00000 1.0 0.5000 0.00000
A=10 A=15 A=20
q Hi(q) -7 q Hi(q) -7 q Hi(q) -7
0.0 0.0000 2.30259 0.0 0.0000 2.70805 0.0 0.0000 2.99573
.1 0.0008 2.07233 1 0.0001 2.43725 .1 0.0000 2.69616
.2 0.0078 1.84207 .2 0.0020 2.16644 .2 0.0000 2.39659
.3 0.0306 1.61181 .3 0.0140 1.89564 .3 0.0077 2.09701
.4 0.0738 1.38155 4 0.0457 1.62483 .4 0.0317 1.79744
.5 0.1346 1.15129 .5 0.0995 1.35403 .5 0.0792 1.49787
.6 0.2065 0.92103 .6 0.1711 1.08322 .6 0.1487 1.19829
7 0.2832 0.69078 7 0.2532 0.81242 .7 0.2330 0.89872
.8 0.3596 0.46052 .8 0.3386 0.54161 .8 0.3240 0.59915
.9 0.4326 0.23026 .9 0.4221 0.27081 .9 0.4146 0.29957
1.0 0.5000 0.00000 1.0 0.5000 0.00000 1.0 0.5000 0.00000
A=25 A =30 A=235
q Hx(q) -7 q Hx(q) - q Hx(q) -
0.0 0.0000 3.21888 0.0 0.0000 3.40120 0.0 0.0000 3.55535
.1 0.0000 2.89699 .1 0.0000 3.06108 .1 0.0000 3.19981
.2 0.0003 2.57510 .2 0.0001 2.72096 .2 0.0001 2.84428
.3 0.0047 2.25321 .3 0.0031 2.38084 .3 0.0022 2.48874
.4 0.0236 1.93133 .4 0.0184 2.04072 .4 0.0148 2.13321
.5 0.0659 1.60944 .5 0.0564 1.70060 .5 0.0494 1.77767
.6 0.1328 1.28755 .6 0.1207 1.36048 .6 0.1112 1.42214
9 0.2181 0.96566 - 7 0.2063 1.02036 7 0.1967 1.06660
.8 0.3129 0.64378 .8 0.3040 0.68024 .8 0.2965 0.71107
.9 0.4089 0.32189 .9 0.4042 0.34012 .9 0.4003 0.35553
1.0 0.5000 0.00000 1.0 0.5000 0.00000 1.0 0.5000 0.00000
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TABLE 1—Continued

=40 A= 50 A = 60
q Hi(q) - q Hi(q) -7 q Hi(q) -7
0.0 0.0000 3.68888 0.0 - 0.0000 3.91202 0.0  0.0000  4.09434
.1 0.0000 3.31999 .1 0.0000 3.52082 .1 0.0000 3.68491
.2 0.0000 2.95110 .2 0.0000 3.12962 .2 0.0000 3.27548
.3 0.0016  2.58222 .3 0.0010 2.73842 .3 0.0006  2.86604
4 0.0123  2.21333 4 0.0089 2.34721 4 0.0069  2.45661
5 0.0439  1.84444 .5 0.0360  1.95601 .5 0.0304  2.04717
.6 0.1035  1.47555 .6 0.0915  1.56481 .6 0.0826  1.63774
7 0.1886  1.10666 7 0.1756  1.17361 7 0.1655  1.22830
.8 0.2901  0.73778 8 0.2796  0.78240 .8 0.2711  0.81887
9 0.3969  0.36889 9 0.3912  0.39120 .9 0.3866  0.40943
1.0  0.5000 0.00000 1.0  0.5000 0.00000 1.0  0.5000  0.00000
A =80 A = 100 r = 144.3
q Hx(q) -7 q Ha(a) -7 q Hx(q) -7
0.0  0.0000 4.38203 0.0  0.0000 4.60517 0.0  0.0000  4.97189
.1 0.0000 3.94382 .1 0.0000  4.14465 .1 0.0000 4.47470
.2 0.0000 3.50562 .2 0.0000 3.68414 .2 0.0000 3.97752
.3 0.0003  3.06742 .3 0.0002  3.22362 .3 0.0001  3.48033
4 0.0045  2.62922 4 0.0032  2.76310 4 0.0019  2.98314
.5 0.0233  2.19101 5 0.0189  2.30259 5 0.0133  2.48595
6 0.0700  1.75281 .6 0.0615  1.84207 .6 0.0494  1.98876
7 0.1504  1.31461 7 0.1394  1.38155 7 0.1227  1.49157
.8 0.2581  0.87641 8 0.2482  0.92103 .8 0.2325  0.99438
9 0.3794  0.43820 .9 0.3738  0.46052 .9 0.3647  0.49719
1.0  0.5000 0.00000 1.0  0.5000 0.00000 1.0  0.5000  0.50000
A = 200 N = 492.8 A = 500
q Ha(q) -7 q Ha(q) -7 q Hi(q) -7
0.0 0.0000 5.29832 0.0  0.0000 6.20010 0.0  0.0000 6.21461
.1 0.0000  4.76849 .1 0.0000  5.58009 .1 0.0000 5.59315
.2 0.0000 4.23865 .2 0.0000  4.96008 .2 0.0000  4.97169
.3 0.0000 3.70882 .3 0.0000  4.34007 .3 0.0000 4.35023
4 0.0011  3.17899 .4 0.0003  3.72006 .4 0.0003  3.72876
5 0.0097  2.64916 5 0.0040  3.10005 .5 0.0039  3.10730
6 0.0405  2.11933 .6 0.0230  2.48004 6 0.0228  2.48584
7 0.1092  1.58950 7 0.0782  1.86003 7 0.0778  1.86438
.8 0.2191  1.05955 8 0.1848  1.24002 8 0.1843  1.24292
9 0.3567 0.52083 .9  0.3349  0.62001 9 0.3346  0.62146
1.0  0.5000 0.00000 1.0  0.5000 0.00000 1.0  0.5000  0.00000
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TABLE 1—Continued

A = 1000 A = 2000
q Hi(q) -7 q H(q) -7
0.0 0.0000 6.90776 0.0 0.0000  7.60090
.1 0.0000 6.21698 .1 0.0000 6.84081
.2 0.0000  5.52620 .2 0.0000 6.08072
.3 0.0000  4.83543 .3 0.0000  5.32063
.4 0.0001 4.14465 4 0.0000 4.56054
.5 0.0020  3.45388 .5 0.0010  3.80045
.6 0.0146 2.76310 .6 0.0093 3.04036
7 0.0596 2.07233 7 0.0453 2.28027
.8 0.1607 1.38155 .8 0.1396 1.52018
.9 0.3183 0.69078 .9 0.3024 0.76009 |
1.0 0.5000 0.00000 1.0 0.5000 0.00000
TABLE 2
The normal parameters un , on , Au
Probability Sample Size Product Parameter
F n Unan = 1g A An
.90 1.000 1 2.24910 9.479 0
.95 2.000 1 3.39286 2.975 1
.96 2.500 1 3.77158 4.345 1
.98 5.000 1 4.97193 1.443 2
.990 1.000 2 6.20022 4.928 2
.992 1.250 2 6.60030 7.353 2
.995 2.000 2 7.44917 1.718 3
.996 2.500 2 7.85465 2.577 3
.998 5.000 2 9.12405 9.173 3
.9990 1.000 3 10.40509 3.302 4

Nore: The column following the entries for n and A, indicates the power of ten by which
the preceding number is to be multiplied.

Let v = —log 7. Then the integral is given by
fe-r exp (—B(—log 7)") dr.

The integral was taken to be the average of the values of the intergrand at the
points 1/2m, 3/2m, 5/2m, +-- , 2m — 1/2m. The integrand is taken to be zero
if the argument is less than ¢ . The value of m was successively doubted until
there was agreement to four decimal places. Throughout most of the range of
the computation the values of m which gave agreement were 576 and 1152. To
have used the original form (8) of the integral would have multiplied the cost
of the computations by at least forty.

. The distribution functions of the extremal quotient are traced in Graph 1 on
logarithmic normal paper for the parameters X = 2, 5, 10, 20, 50, 100, and 492.
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The curve for A = 1000 is indistinguishable from the curve for A = 492, It is
worth mentioning that the distribution function of the extremal quotient plots
nearly as a straight line for large values of A, although the moments of the ex-
tremal quotient do not exist, while all moments of the lognormal distribution
do exist.

The values of 7 satisfying the relationship (11) are given in Table 1, and are
plotted in Graph 2 on logistic probability paper. The approach towards a straight
line foreseen by the theory, is very slow and does not yet hold for those values
of \ for which the distribution function was computed.

As analytical examples of symmetrical distributions of the exponential type,
consider the following three. The first Laplacean distribution function is

F(z) = €/2, ifz 20,
=1-(¢7/2), ifx = 0.
It follows that

u, = log (n/2), a, =1, A= n/2.
1546
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THE NORMAL PARAMETER A,
- AS FUNCTION OF THE SAMPLE SIZE |n l
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For the logistic distribution function given in equation (12),
u, = log (n — 1), a, =1—1/n.

In the normal case, with mean zero, and variance 1, the two parameters u, and
a, cannot be written in closed form.
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Therefore the numerical values of the parameter A, are needed. The definitions
(4) and (5) of u, and a, lead with the help of the usual normal tables, to the

values given in Table 2. The results are traced in Graph 3. The product au, is
practically a linear function of the logarithm of n. As shown in [1], pages 138-9,

log\, = (2logn — log (27))(1 + o(1)),

asn — ©,

The graph is read as follows. For 10 < n < 100, the first slanting line on the
left is read to give N, . For values on n from 100 to 1000, the second line gives
10%\,. For n in the ranges 10° to 10*, and 10* to 10° respectively, the third and
fourth lines give 10"\, , and 10°\, .

3. Empirical results. In order to test the preceding results, some sampling
experiments were made. Although it is known that the distribution of the largest
_3n0rmal value approaches the extremal distribution only slowly, normal extremes
were chosen because no other random numbers of an unlimited symmetrical type
were available. From the Rand Corporation tables [3], 49 samples were taken,

1549
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each of size n = 10. For each sample, the extremal quotient was computed. The
value of N corresponding to n = 10 is 9.48, as given in Table 2. The 49 observed
extremal quotients are plotted on logarithmic normal paper in Graph 4, together
with the theoretical curve given in Table 1. Except for a large unexplained jump
at the end, the agreement between the observations, and the theoretical values is
quite good.

Then 49 samples were taken, each of size fifty, and the same procedure was
followed. In this case, N = 144.3. The quotients are plotted on Graph 5. Since
the distribution contracts considerably with increasing \, the scale was twice the
previous one. The approximation of the sample to the theoretical distribution is
excellent.

The same procedure was then followed using 49 samples each of size 100, in
which case N = 492.8. The results are plotted in Graph 6. The fit to the theory
is marred by the fact that all observations, though scattered about a straight
line, lie above the theoretical curve.

4. Estimation. In [2], it is proposed to estimate the parameter N by comparing
the expected proportion of the sample for which 3 < @ < 2, with the observed
proportion. Clearly, however, unless \ is extremely small, all of the sample will
lie in this range with very high probability. So this method is not applicable.

The cumbersome nature of the distribution function makes it plain that even
on a high speed computer, maximum likelihood estimation would not be feasible.
But Q has no moments, and the median is 1, independent of \. Therefore, neither
quantile nor moment methods will suffice either.

The authors have been unable to find a method of estimating this parameter.
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