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1. Introduction. Lieberman and Miller (1963) extended the tolerance-interval
theory of Wald and Wolfowitz (1946) and Wallis (1951) so as to permit us to
put a tolerance band about a regression line. Given any pair (8, v) of probabili-
ties, the band can be constructed in such a way that the probability will be
approximately & of obtaining a line whose tolerance band includes a proportion
v of the population. Adoption in this paper of a different approach results in some
departures from familiar phenomena:-

(1) The way we begin by explicit construction of the set on which the toler-
ance statements are to hold strengthens our intuition regarding the procedure,
how far it falls short of optimality, and (to some extent) the nature of the Lieber-
man-Miller set.

(2) Because our procedure yields a tolerance band wider, at # = &, than the
L-M variety, but narrower for larger values of [z — &|, it may be anticipated that
it will have advantages for extrapolation outside the observed range of z.

(3) A separate caleulation is necessary at each value of x for which the band-
width is needed. However, one has only to solve a quadratic equation, and once
the work has been organized for desk caleulator, five to ten minutes suffices for
each value. : ‘

2. The problem. Let z:,---, z. be given, and for convenience let
@ + -+ 2, = 0 and 2" + --- 4+ z, = 1. The components of y =
(Y1, -+, Ya) are assumed independently normal with E(y;) = « + Bz; and

Var(y:) = o' The regression equation will be §(z) = § + bz, where b = do(xy);
and & = (X () — ng® — b*)/(n — 2). It will be obvious how the treatment
in this paper extends to the multiple-regression model.

Let f(y; o, B, o) be the density of a variable whose distribution is N (« +
B , ¢”). Given probabilities 6and v, and x, , a value of the transformed z, Wallis
(1951) showed how a constant v = »(xo) > 0 could be determined such that if
we define, in the n-dimensional space of y or the 3-dimensional space of (7, b, s),
the set

R(zo) = {[Tn5i f(t , 8, 0) dt 2 7},

then P(R(w0)) = & approximately.

In the present paper we define a set T' of probability approximately §, then
derive a relationship A = \(xo) such that if S(z) = { i f(4 o, B, 0) dE = 7},
-
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T < S(=) for all , . Naturally, we make each set S(2o)—which is to say each
A(xo)—as small as we can.

3. Preliminaries. Not only does § == As suggest itself as the most “natural”
form for tolerance limits; it has a valuable invariance property. Let f (y; a, B, @)
represent the density of y ~ N(a + Bz, o). If

Foaon (4 @, B, 0) dt =,

and we make the transformation z = ({ — a — 82)/o so as to have ff(t;0,0, 1)dt,
the limits of integration become (§ — a)/d + [(b — B)/clx &= A(s/c). Conse-
quently, in determining A\, we can assume that the transformation has already
been made, that y ~ N(0,I), 7 ~ N(0,n™"), b ~ N(0, 1) and (n — 2)s" ~
x4z . The independence of 4, b and s is important for this section.

To make calculation feasible, we are going to use the familiar approximation
(2xm_2)! ~ N((2(n — 2) — 1)}, 1). When a line is fitted on the basis of, say,
ten or fifteen observations, this approximation will be somewhat inexact. But
it is conjectured that when, in the following paragraph, we construct a new v
statistic, a proportion of the imprecision will be “ironed out.” And in the next
section it will be argued that departures from ostensible probability levels can
exist without affecting the reliability of the eventual result.

According to the approximation above, which we employ from now on as if it
were exact, s ~ N(k, 1/(2n — 4)), where k* = (2n — 5)/(2n — 4). If

(1) T ={nf + b+ (2n — 4)(s — k)’ £ 26},

constituting the interior of the ellipsoid of concentration for the variables (7,
b, 5), 2¢ being that value of x; exceeded with probability 1 — 8, then P(T) = .

4. Method.
LemMA. If A = § + bx and r = Xs, then

(2) TCUN\z) = {AY (0" +2°) + (2n — 4)(r — Nb)*/N £ 2¢7)

for all x and all N > 0.

That is, if (7, b, s) is a point of the 3-dimensional ellipsoid, (4, r) will be a
point of the related ellipse.

Proor. Since nj® + b* = A%/ (n' + 2°) + (agnt — )Y/ (n7t + 2¥) >
AY/(n 4 &%) and (s — k)® = (r — Nk)?/N?, the inequality of (1) implies that
of (2).

ReMmark. Although not setting forth the full argument applicable to a mul-
tiple regression surface, we need to be sure that the inequality ng + b >
A%/ (n* + z”) generalizes to that situation. The model is then y ~ N (X8, 1),
where X is (n X p) with X'X = I. The BLUE of g is b = X'y. In the case of
8 = 0, ¢ = 1, the ellipsoid of concentration for the variables by, bz, -+ -, by,
sisb’b + 2(n — p)(s — K)? = 2€%, where K* = ((2n — p) — 1)/2(n —p)),
and 2C® equals the value of xot1 exceeded with probability 1 — 8. If xo is an
arbitrary (1 X p) vector # 0, the tolerance limits for (%) have the form
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xob == As. An ellipse of concentration for the variables A = x¢b and r = As is
AYxxo + 2(n — p)(r — \K)¥/N = 2C°.

It is sufficient to establish that b'b = (xb)?/xeXo ; and this is merely a form
of the Schwarz inequality. [The components of Xo must of course be interpreted
as quantities that have been adjusted as was done to make X'X = 1]

Consider the relationship between A and r determined by the requirement

(3) 417 £(4;0,0,1) dt = 7.

For A = 0, r has the familiar value such that P{—r <y <r|y ~ N(0, 1)} = v,
while as A — o, r — |A| — ro where P{y < 7} = v. The (4, r) curve has
asymptotes r — ro = A (r = 0), and it was found convenient to represent it

by. the upper branch of an hyperbola
(4) (r—r)—A" =W

(taking the r-axis as the vertical one) h being chosen to achieve a good fit in
that part of the curve, found, in the sequel, to be of interest. For each v, a suita-
ble h can be found by trial and error. In practice it turned out that a very satis-
factory value of h was one which minimized the sum of squared deviations
(r — 1) — A® — B for the eleven values A = 0(.1)1 and corresponding r. In
the range of interest, the hyperbola (4) lies slightly above the true curve, and
it will be seen shortly that this situation guarantees conservative intervals.
Table 1 gives approximate values of ro and h? appropriate to certain selected .

It is obvious that if we have a value of X such that no point of the ellipse (2)
lies below the hyperbola (4), 7 + bz == \s will be a set of tolerance limits, since

T cUMz) C 8O\ ) = (A f(t;0,0,1) dt = v}

and P(T) = 6. For sufficiently small A\, U(\, ) will intersect the hyperbola;
the optimal \ will correspond to tangency of the two conics. When A has this
value, \' say, designate U, z) = Ux); SN, z) = S(x).

Substituting 4> = (r — r)® — Ak in (2), and replacing the inequality sign
with equality, we have a quadratic equation in r; the discriminant is itself pro-
portional to a quadratic ¢(\) in \. It can be verified that for all values of n, ,
8 and v, ¢(\) = 0 has real roots, of which the larger, \, yields the desired ellipse
U, z) = Ux).

TABLE 1
ey To h?
.50 0 0.455
75 0.674 ©0.250
.80 0.842 0.107
.90 1.28 0.0657
.95 1.65 0.0438

.99 2.33 0.0244
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The variable s may be replaced by any statistic proportional to one approxi-
mately normally distributed, independent of § and b, so long as it has the “in-
variance” property that its expectatlon is unaffected by changing E(y), while
its variance is proportlonal to o For example, if a number of subpopulatlons had
different regression lines but sharéd a common o, it would be appropriate, in ob-
taining a tolerance band for any one of the lines, to employ s based on the pooled
observations. Alternatively, our technique would yield simultaneous tolerance
bands for all the lines. ‘

The set S(xo), regarded as a tolerance set corresponding to the single value z ,
has an inevitable redundancy because of the constraint that the intersection of
all U(x) must have probability at least §; and the resulting tendency is to widen
the tolerance interval. A “precise” calculation (subject to the approximation
used) of the redundancy may be based on the fact that in (2) we are using the
1 — § point for x5, although the left member of the inequality is distributed as
xo". If, for example, & = .95, so that 2¢° = 7.815, P(U(, )) is just over .98.

TABLE 2

5 ¥ o] (a) (b) © @ ©

.99 .95 0 3.61 7.79 3.97 4.79 5.75
.99 .95 0.393 6.58 7.94 7.23 5.65 6.15
.99 .95 0.430 6.99 7.97 7.70 5.77 6.19
.95 .75 0 1.77 3.59 2.13 2.67 2.78
.95 .75 0.393 3.23 3.78 3.89 3.34 2.97
.95 .75 0.430 3.43 3.82 4.14 3.43 3.05
.90 .50 0 0.95 1.91 1.33 1.71 1.38
.90 .50 0.393 1.73 2.18 2.42 2.30 1.69
90 .60 0.430 1.84 2.22 2.58 2.39 1.76

Table 3 of Lieberman and Miller (1963) includes values of X for three combi-
nations of (3, v), and, for each combination, the same three values of . The
value of n was set at 15. In addition to their “Simultaneous Wallis” (a), they
developed three other procedures termed by them “Simultaneous z and P
central” (b), “Simultaneous x (fixed P) central” (c), and “Bonferroni” (d).
Readers are referred to their paper for details. Table 2 (in which = has been
standardized to conform with our notation) gives the values of A obtained, that
of the present paper being in the column (e).

It is reasonable to fear that n = 15 will make the approximation of Section 3
somewhat imprecise. If the result is a slightly large value for A, we will not be
unduly concerned; but we would not want A to be underestimated as a result of
P(T) being less than 6. But an intuitive argument can be used to reassure us
that if P(T) is a bit less than 3, say P(T) = 6 — ¢, T can be enlarged to the
desired size without A being increased. We need only visualize attaching an
inerement AT(P(AT) = ¢) to T, as much as possible of AT being at the bottom
of the ellipsoid, the remainder at the top. Under the transformation A = § + bz,
r = N's, each ellipse U(z) will have an induced increment AU(7), the smallest
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set such that AT < U(z) + AU(z). It is obvious that AT can always be so
defined that U(z) 4+ AU(xz) < S(z) for all z.
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