DATA TRANSFORMATIONS AND THE LINEAR MODEL
By D. A. S. FrRASER

Unaversity of Toronto

0. Summary. The familiar application of the normal linear model involves a
response variable that is assumed normally distributed with constant variance
and with location linear in a vector parameter. In other applications a response
variable may occur in a form that suppresses an underlying normal linear struc-
ture. Sometimes in these applications the context may suggest a logarithmic or
square root transformation which reveals the normal linear form. Box and Cox
(1964) consider a parametric class of transformations on the response variable
and derive a method for estimating the class parameter based on Bayesian and
likelihood techniques.

In this paper a more comprehensive statistical model is proposed; it is a revi-
sion of the structural model (Fraser 1966). It gives stronger inference statements
in the context for the linear model. It can handle normal or nonnormal error.
And in the context for the transformed linear model it gives directly a method
for estimsting the class parameter. This estimation avoids an approximation in
the Bayesian prior and it includes additional sensitivity to the data.

1. The linear structural model. This section develops the linear structural
model and records the formulas for the general structural model.

(1.1) The Model. Consider a response variable y based on a process operating
under stable conditions. Variation in a response is usually attributable to a
variety of sources: variation in the material being processed;. variation in the
conditions of the process; variation in the internal operation of the process.
These sources of variation form the ¢nternal error of the system.

Now suppose that the external conditions of the process are controlled and
observations are randomly sequenced against any remaining identifiable sources
of variation. This may provide the basis on which the internal error has stability
and on which the effect of this error in the response has known form with inde-
pendence between observations. The production of the internal error is the
random process of the system and the effect of this in the response is the error
variable of the system. These characteristics require a scale of measurement;
they do not require a unit of measurement on this scale, and they do not require
an origin. Let e be the error variable in some arbitrary units and let f(e) de be its
probability element on the real line.

The medial or general level of the response is the quantity typically of interest
and it depends in general on the variables being controlled. This quantity can
have numerical definition by introducing a unit of measurement, and by intro-
ducing an origin of measurement for any chosen set of conditions. Suppose ex-
perience with similar systems gives grounds for assuming that the medial level
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is linear in some combination of variables constructed from the variables being
controlled.

Now consider a succession of n response observations corresponding to a suc-
cession of levels chosen for the controllable variables. Let y; be the 7th observa-
tion on the response, and v1;, - - - , v,; be the corresponding values of the con-
structed variables. And let ¢ be the response scaling of the error variable and
Bi, -, B be the quantities that give the general levels of the response from the
levels of the constructed variables. This gives the linear structural model

II: f(ea) TTE de
Y1 = Bwn + -+ + B + o
:l./n = ﬁlvln + et + 6rvrn + 0y .

The model has two parts: an error distribution || f(e;) ] de: describing the effect
of multiple operation of the internal error (the e¢’s are variables) ; and a composite

structural equation in which a realized vector € = (ey, - -+ ,e,) from the error
distribution determines the relationship between the known observations x =
(21, -+ ,,) and the unknown physical quantities 8y, --- , 8,, ¢ (the €’s are

unknown constants).
(1.2) The transformations. The structural equation presents the response
vectors as a transformation of the error vector; this can be expressed conveniently

in matrix notation as
l' 1 0 0
. [vll cer U

v O | : ' e
Vi o U 0 1 oJ e v e

ﬂl e ﬂr T

U oo V1in

or as Y = OF where
Y = (vl, AP Vf’y’),, B = (vll e vr’e'),'

Consider the effect of the regression group

1 0‘|
G = =1, '.1 ;)J;—oo<a,-<oo,0<c<°0
al DY ar C

of such transformations on Euclidean n-space. A point Y is carried by the ele-
ments of @ into the orbit GY = {gY:g ¢ G}. The bottom row of ¥ gives the
vector point in n-space; the remaining rows are surplus and allow group multi-
plication to be matrix multiplication. The orbits partition n-space: assume the
levels of controllable variables were chosen to avoid the triviality of linear de-
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pendence among the v’s; and delete the linear subspace of the v’s as a trivial
orbit. The orbits are then disjoint r 4+ 1 dimensional half-spaces.

(1.3) Transformation variables. The position of a point ¥ on its orbit can be
described by a transformation variable:

DrFINITION. [Y] is a transformation variable if [Y] takes values in G and
[gY] = ¢lY] for all g, Y.

A transformation gives a reference point on each orbit: D(Y) = [¥]'Y. The
reference points index the orbits and the transformation variable gives position
on an orbit: ¥ = [Y]D(Y). Two transformation variables differ on any orbit by
right multiplication by a group element.

A transformation variable can be obtained by regression analysis:

0 0 0
=1y 1 0
b(Y) .-+ b(Y) s(Y)
where b, --- ,b,, and s are respectively the regression coefficients of y on
vi, -+, V., and the residual length. The corresponding reference point is
Uiz -0 vln_l
D =10 oo o
d - dy
where
d(Y) = s Ny — t(Y)vs — -+ = b(Y)v]

is the unit residual vector. And as noted by W. Keith Hastings a transformation
variable can also be obtained from linear programming algorithms by finding
coefficients that minimize the sum of absolute deviations; this avoids the quad-
ratic calculations of least squares.

The linear structural model can now be written

J(E) dE
GY = GE,  [Y] = 6lE).

The model has two parts: an error distribution f(E) dE = ] f(e:) ] de: (E is
a variable) ; and a composite structural equation in which a realized error E from
the error distribution gives the relationship between the known observation ¥
and the unknown quantity 6 (E is an unknown constant).

More generally, let E be a variable on a space ¥ with probability element
f(E) dE based on a fixed measure, and let G be a group of transformations that
is unitary on Y and preserves the s-algebra of the measure. With these substitu-
tions the preceding formulas describe the general structural model.

(1.4) Homogeneity. Consider a transformation g in G,

Y* = g7, 0* = go,
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and view the transformation as providing new coordinates for the observation
Y and the quantity 6. A transformation g changes the response unit, and it
changes the response origins differentially among the individual observations.

Consider the effect on the model. The structural equation ¥ = 6F becomes
Y* = 6*E. Thus the model

f(E) dE

Y = 6E
becomes

f(E)dE

Y* = ¢*E.
The physical problem is untouched by the transformation. The model reflects
this and has the same form point for point under the change of coordinates. The
model is said to be komogeneous under the regression group.

(1.5) Probabilities for constants. Consider probability statements for unknown
constants.

Suppose 2 cards are dealt face down on a table from a well shuffled deck of
playing cards. The designations on the 2 cards are unknown constants. An ob-
server can make a probability assertion

Pr {2 diamonds} = (13/52)(12/51),

based on the random process that generated the unknown constants.

Now suppose 2 further cards are dealt face down and suppose the observer
examines them and finds the first is a diamond and the second a non diamond.
The observer can make a revised probability assertion
Pr {2 diamonds} = (13/52)(12/51)(11/50)(39/49)/(13/52)(39/51)

= (13/50)(12/49)(11/13)
based on the random process as conditioned by the observed event.

Alternatively, suppose the second pair of cards is kept face down and passed
to a participant in an adjacent room. And suppose the participant reports the
item of information “There’s a diamond here”. The observer might assert
Pr {2 diamonds} = (13/52) (12/51)(11/50)/(13/52) = (13/51)(12/50)(11/13)
if he thought the participant had examined only the first card. Or he might
assert .

Pr {2 diamonds} = (13/52)(12/51)(2(11/50)(39/49))/2(13/52)(39/51)
= (13/50)(12/49)(11/13),

if he thought the participant had examined both and would have reported 2
diamonds if there were 2 diamonds. The two assertions are contradictory.



1460 D. A. S. FRASER

In this alternative situation a correct assertion giving a value to
Pr {2 diamonds} cannot be made. The item of information “There’s a diamond
here”, is not an event but has the form of a deduction from some unknown event.

The example illustrates sufficient conditions for making probability assertions
about unknown constants: (i) The constants were generated as realized values from
a random process with known probability characteristics. (i) The only other infor-
mation concerning the unknown constants has the form of an event for the random
process that generated the constants.

(1.6) Reduction. Consider an application of the linear structural model. And
suppose there is no outside information concerning 6. This could arise minimally
if the system is being examined in isolation to see what information it alone sup-
plies concerning 6.

Consider the information in the structural equation _

GY = GE, [Y] = 0[E]

concerning the unknown realized error E. The orbit of E is known: GY = GE.
And it is known in the form of an event based on the variable GE. The position
of E on its orbit is not known:

[B] = 07[Y] = g[Y].

The unknown position [E] is represented as an unknown transformation g applied
to a position value [Y]. If the known position were different, say [¥*] = A[Y],
then the unknown position [E] would be represented as [E] = gh[Y] = ¢*[Y]
where ¢* is also an unknown transformation in the group (this uses the homoge-
neity of the model). Thus different values for the transformation [¥] would pro-
vide the same description of [E]. There is thus no information concerning the
position [E].

The only information concerning the unknown E has the form GE = GY, an
event for the random process that generated E. It follows that exact probability
statements can be made concerning the unknown E; these are based on the conditional
distribution of the error variable E given the orbit GE = GY.

(1.7) The reduced model. The conditional distribution of the error variable E
given the orbit GE is easily derived using invariant differentials.

On the space R" the transformation ¥ — g¢gY has Jacobian |9gY/dY| = c".
A scale variable is s(Y); accordingly, an invariant differential is

dm(Y) = dY/s™(Y).

On the group @ the left transformation h — gh has Jacobian |agh/oh| = ¢,
Accordingly, the invariant differential is

du(g) = dg/c™

(up to a constant multiplier). Similarly the right transformation has invariant
djfferential

dv(g) = dg/c.
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These are related by
du(g) = Alg) dv(g) = Ag) du(g™),  A(g) = ¢
The probability element along a peighbourhood of orbits is
f(E) dE = J(E) "dm(Y) = a(D)f(IEID) du((E]).

The conditional probability element for [E] given [E]'E = D is obtained by
normalization:

I

g(LE]:D) du([E])
= k(D)J(IEID) du((E])
= k(D)f([EID)s""(E) d|E].

The information in the linear structural model producés the reduced model
g(LE]:D) du([E])
[Y] = o[E].
The reduced model has an error probability distribution G([E]:D) du([E]),
k(D)f(ED)s" " (E) d[E],

which provides exact probability statements concerning the unknown constant
[E] in the structural equation; and it has a structural equation [Y] = 0[E],

bi(Y) = B + oby(E)

g(LE]:D) d|E]

b.(Y) = B, + ob.(E)
s(Y) = os(E),

in which the unknown [E] determines the relationship between the known posi-
tion [Y] and the unknown 4.

The formulas in this section, except for occasional specialization are those of
the general structural model as described in Section (1.3).

For the case of a normal error variable

F(B) dE = (2m)™"" exp {—32_ e} 11 de:
the conditional distribution takes the form
k(D)f(IE\D)s"" " dIE] = k(D) exp {—32_ (s(E) di + 2_ b(E)v)*}s™ " dE]
= (|4]}/(2m)"") exp {—3 3 bibuau} db.
(An_s/(2m) " " exp {—2sHs" " ds

where A = (a:) is the inner product matrix for the vectors vy, --- , v, and
A7 = 22'%/T'(f/2) is the area of a unit sphere in f-space. The condltlonal distri-
bution does not depend on D for this case of normal error.
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(1.8) Inference. Suppose a value 8, = S, has been suggested by some outside
source. The hypothesis: 8, = 8,0 leads to a further characteristic of the error E:

b,(E)/S(E) = (br(Y) - BTO)/S(Y)

This value can be compared with the distribution of the variable b,(E)/s(E)
based on the error distribution of the reduced model, and the hypothesis assessed
accordingly.

Suppose that general information concerning the value of 8 is wanted. The re-
duced model gives a probability distribution describing the unknown value [E].
And it gives a structural equation: [Y] = 6[E], [E] = 6 '[¥]. For each possible
value for [E] there corresponds a possible value for 8 ([Y] is fixed and known).
The error distribution describing the unknown [E] is thus ipso facto a distri-
bution for 8, the structural distribution for 6:

g(67(Y]:D) du(671Y]) = §(67(¥]:D)A(67'(Y1]) du(6)
k(D)J(67'Y) - A(67(Y]) du(0)
= k(D)f(67'Y)(s(¥)/a)"- (s(Y)/0) ™" dgdo/o™".
For the normal error case the structural distribution is
(141/(2m)™) exp { = (1/26") 22 (b(Y) — B)(Bu(Y) — Bu)an dg
“(Anr/ (20) ") exp {—3(s(Y)/0)*} ((Y) /o)™ do/a™ .

2. The transformed linear structural model. Consider a response variable y
and a class of transformations

It

y® = Uy:N).

And suppose that for some \ the transformed response can be described by a
linear structural model:

f(E) dE
(%11 te V1n Un V1n
y® =1 Cle =1 " | = 0E.
v(rxl) .. vz‘;‘) vfl D) vm
yl RS y" 61 o e en

Box and Cox (1964) suggest two examples for the transformation I(y:\):
I(y:\) = o, A # 0,
= In y, AN=0,
and
W) = W+ 0", N0,
=In(y+XN), M=0.
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The first and simpler example gives the three common-transformations, the

square-root, the reciprocal, and the logarithmie. For ease of notation, the brackets

on the index ) will be deleted in the remainder of this section: y™» — 4.

First consider inference concerning 6 assuming that the value of the class
parameter \ is known. C
The reduced model is

k(DM)f(LE\D*)s" ™" dIE]
[Y'] = 6lE].
The structural distribution for 6 is
k(DMf(67Y") (s(Y*) /o)™ dBda/a™
and for normal error is ‘
(141/(2m)™) exp (= (1/26") 2 (0(Y") — B2 (bu(¥") — Bu)aw} df
(Ans/ (2m) ") exp {—3(s(Y") /) (s(Y*)/0)" " do /o™
Now consider inference concerning \. The structural equation is
GE = GY", [V = ¢[E].

With 6 unknown the second component gives no information concerning \. Hence
consider the first component GE = GY* and evaluate it in terms of the classical
model.

The probability element for [Y*] given D" is

E(DMF(87Y™) (s(Y™) /o)™ d[Y™)/sH(Y).

The transformation ¥* = I(y:\) produces a change in metric; the relationship
between differentials is

(dys, -+, dya") = (dyr, -+, dya) (73N,
(dys, -+, dya) = (dys, -+, dy" )T (¥:N)
where
dy"/dys 0

J(y:\) =

0 Ay ) dyn

is the Jacobian matrix of the transformation. The transformation ¥* = [Y*]D" to
position [Y*] on the orbit D also gives a change in metric; the relationship
between differentials is

(dyd, -+, dy") = (dby, -+~ , db,, ds)D".
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For the composite transformation the relationship between differentials is then
(dyl y T dyn) = (dbl y "ty dbr; dS)DXJ_l(y:)\).

For fixed D an r + 1 dimensional subspace of R" is generated by the composite
transformation. Let o* be Euclidean volume in this subspace; then

d* = |D' 2 (y:\)D™} db ds.
The probability element of [Y*] given D* can then be expressed in terms of the
element v':

K(DMF(6T YN (s(YN))" " /a" d’/| DT (y:\) D™
The probability element for the response Y is
SOV (1/a") aY™ = f(67Y")(1/") dY/|T (y:N)| 7

The probability element for the response Y divided by the conditional element
for the position [Y"] gives the marginal probability element for the orbital

variable D:
1/ (Y IDN (v ) D™/K(DY) | (y:0)[7]-dY /o™,

In the case of normal error the marginal element for D is
(/8" HYNOUDN (3N D™/ Ao AP | (y:0) 7] AY /o

= (1/s"7(Y))-(ID (gD A IDD T (3:0)[7] dY/do,
The marginal likelihood function for \ is then

L(\:DY) = (1/s"77(Y) -UD*(y:\)D™/k(D) |7 (y:0)]7]
and in the normal case is

L(:DY) = (1/s"77HYY)- D (y: DM/ ID'D™M} | (y:0)| L

An estimate of A can be obtained as the value maximizing the marginal likeli-
hood function. Structural statements can be made about 8 conditional on any A

value.
The case with normal error has been analyzed by Box and Cox (1964) using a

likelihood method and a Bayesian method. The likelihood method maximizes the
full likelihood function of ¥ over variation in the regression parameters leaving
a residual likelihood function for A:

LM y) = [J(y | MI/s"(YY).

The Bayesian method uses a prior distribution obtained by an approximation
and integrates out the regression variables leaving a likelihood factor

L\ y) = [J(y | M/ (V).
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Both of these likelihoods contain contributions from the distribution g(6™
[Y:DMa~*? for the non informative variable [Y*].
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