ON ESTIMATION OF THE MODE
By J. H. VENTER

Potchefstroom University

1. Summary. Let Yy, -+, Y, be an ordered sample from a density with mode
6. We propose to estimate 6 by suitable points in the interval formed by the first
and the last of those s consecutive Y,’s which are closest together. Choices of s
which yield consistency of these estimates, the speed of convergence and asymp-
totic distributions are discussed in this paper.

2. Introduction. Let f be a density on the real line. The following will be as-
sumed without further statement:

(i) For some known constants @ and b with —w <a < b = 4o, f(z) >0
ifa < z < band f(z) = 0 otherwise;
(ii) fis continuous over (a, b);

(iii) f achieves its maximum at the unique point 6 with ¢ < 6 < b.

We write F for the distribution function corresponding to f.

Let Y1, ---, Y, be an ordered independent sample from the density f. In-
tuitively speaking 6 can be estimated by that point around which the greatest
“clustering” of observations occurs. Depending on how this is measured various
estimates of 6 can be constructed. One possibility is the midpoint of that interval
of length 2a containing the most observations. This is discussed by Chernoff [3].
Here we study the following alternative: Let {r,} be a sequence of integers to be
specified further below. Write

(2.1) Vi=Yira — Vi, J=tat+Lirn+2,-,n—1,,
and define K, by
(2.2) Vi, = min {V;ir, + 1 <7 = n — r}.

Then two estimates of 8 will be considered, viz.
(2'3) aln = %{YK,,-H',,, + Yx,,-r,,} and 02n = YK" .

Theorem 1 of Section 3 gives conditions under which these estimates arestrongly
consistent, Theorem 2 discusses the speed of convergence for some choices of
{r.} and Theorem 3 studies corresponding asymptotic distributions.

We remark that these estimates of the mode are related to that of Grenander
[4] in that they are also based on the sample spacings—here different functionals
of these spacings are being used.

3. Consistency. F(Yy), - -+, F(Y,) may be thought of as the order statistics
of an independent sample from the distribution uniform on [0, 1] and it is well-
known that they can be represented as
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(3.1) F(Y:) = 8i/Snn i=1,-,n,
where
(32) Si=Z1.;+"'+Z¢, i=1,---,n+1,

with Zy , -+ , Zay independent random variables each exponentially distributed
with densities exp (—z) for z = 0 and 0 for z < 0. Hence, writing G = F,

(3.3) Y: = G(S:i/Sn1), i=1-,n.
Let 6 > 0 and write
(34) 04(8) = min {f(x):0 — 6 =z =60+ &},
(3.5) ap(8) = max {f(z):a <z 260 — 25,0+ 23 =2z <bj
(3.6) a(d) = on(8)/aa(9).
TuroreM_1. Suppose the following conditions hold.

(3.7) For all & small enough a(8) > 1.
(3.8) nr,—>0asn— .
(3.9) ForallNwith0 <A< 1, 5 n\N"* < o.

Then 61 , 82 — 0 with probability one (wp 1).
ProoF. Write [2] for the greatest integer not larger than z. Let n™(r, + 1) <
p £1 — n'r, . Then from (2.1), (3.3) and Taylor’s theorem

(3.10) Vit = (Stwgitrn — Stusi—ra)SwniG (¢0(p))
where

(3.11) Stupt—riSait = $n(P) = StaprsrsSuta -
We will show_that wp 1

(3.12) ¢n(p) — p uniformly in p.

For this it will suffice to show that wp 1

(3.13) Stap14rSni1 — p uniformly in p,
(3.14) Stnpl—r,Smi1 — p uniformly in p.
Since

(3.15) S[np]'l‘fnls:'ll'l - P
= {Swmpitr, — [0p] — 7a) + ([np] — np) + p(n — S;-ll-l) + T”}S;}H

and by the strong law of large numbers 7 "S,1 — 1 wp 1, it will, in view of (3.8),
suffice for (3.13) to show that wp 1

(3.16) 7 (Stnpi4? — [np] — 72) — 0 uniformly in  p.
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We have
P,

P{supy [Stapira — [19] — 7a| > e}
(3.17)

I

P{for some j, 7 +1=j=n —r,|S;i—j > ne

< 2" P(8; > 4 ne)+ 2" P(8; < j — ne).
For any random variable X and any constant a,
(3.18) P(X > a) £ Eexp {{(X — a)}, t>0,
provided that this expectation exists. Applying this inequality to S; which has
density ' ¢ ™*/T'(j) for x = 0 and 0 otherwise, we get
(3.19) P(S; > j + ne) < (1 — )% 0<t<1.
Summing over j between 1 and n, we find that the first sum on the right in (3.17)
is bounded by AN" where
(3.20) B=11—(1—208e}", N=(1—1t) et

Now ¢ can be chosen small enough so that A < 1. A similar bound for the second
sum in (3.17) can be derived by applying (3.18) to —S;. It follows that
> P, < « and the Borel-Cantelli lemma implies that (3.16) holds. (3.13) follows
and (3.14) is proved analogously. (3.12) therefore holds.

Let ¢ = F(6) and choose p such that n*(r» + 1) < p < F(6 — 33) or
F(6 +38) < p <1 — n'r,. Then, from (3.10),

(321) VinVing = (Stusitra — Stusi=ra) (Staatsra — Stagi—ra)
G (a(0))/G ($a(9)).

From (3.12), wp 1 there exists no not depending on p such that for all n > n,,
6a(p) = F(0 — 26) or ¢u(p) Z F(0 + 25) and F(6 — ) < éu(q) < F(6 + 5).
Hence, for n > ny

(3.22)  G'(6a(p))/G (6()) = F(G($n(2)))/F(G(a(P))) Z a(5).
Next we show that wp 1

(3.23) (Stnpltra — Stapi—rs)/2rn — 1 uniformly in p.
We have
P{sup, (Stnp1sra — Stpl—ra) > 27a(1 + €)}
(3.24) < D P{Sitr, — Sizrn > 2r(1 + €)}
= nP{8Ss, > 2r.(1 + €)}
< N

A similar inequality can be derived for P{inf, (Sinpjtrn — Stapl—ra) < 2ra(1 — €)}
and (3.23) follows from the Borel-Cantelli lemma in view of (3.9). Hence, wp 1
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there exists n; = no not depending on p, such that for all n > n,
(Stasttra = Stmoi—ra) (Stmartra — Stnai—ra) " > a(8) 7,
and from (3.21), (3.22) and (3.7).it follows that
(3.25) Vi Vina > a(8)! > 1,
so that, by definition of K, ,
[nF(8 — 35)] < K, < [nF(6 + 30)].
Since & may be arbitrarily small, it follows that wp 1
(3.26) n K, —q.

It is now easy to show that wp 1 Yx,—,, Yx,, Yk, ir, — 6, and the theorem
follows.

We remark in passing that if {r,} is chosen so that r, ~ An” with 0 < » < 1
and A > 0, then (3.8) and (3.9) hold.

4. Speed of convergence. Refinement of the analysis of Section 3 yields results
on the speed of convergence of 8, and 62, to 6. This depends on the smoothness of
f near 6. Roughly speaking, the more pronounced the mode the better the speed of
convergence (if {r,} is suitably chosen). We give a general result in the next
theorem and then consider special cases.

TueoreM 2. Suppose the following conditions hold.

(4.1) For all & small enough a(8) = 1 + pé*
where p and k are positive constants.
(4.2) o= AnMOTP i oz 4,
= An*, if k<3,

o with A a positive constant.
Then, wp 1, asn— o,

(4.3) 01, 02 = 0 + 0(8,)
where
(44) bu = n P (logn)™, ik z 4,
= n¥(logn)"*, if k<1
Proor. First.-we show that wp 1
(4.5) n ' Ka = q + 0(3,).

For this purpose we need strengthened versions of (3.13), (3.14) and (3.23).
We show that wp 1

(4.6) StnpitrSnis — p = 0(8,) uniformly in p,
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(4.7) Stupl—raSni1 — p = 0(8,) uniformly in p,
(4.8) (Stat+ra — Stapl=ra)/2rn = 1 + 0(8,") uniformly in p.

Taking ¢ = ¢/(1 + ¢) in (3.20) one finds that for all e small enough & < 4/¢
and N £ 1 — €/4 < exp (—¢*/4). Hence, with e replaced by en* log n in (3.17)
we obtain as bound for the first sum in (3.17).

(4.9) IN® < 4€n(logn) " exp { —€(log n)?/4}

so that Y AA" < oo. Similarly for the second sum in (3.17). Hence, from (3.15),
wp 1

(4.10) Sppi+rSatt — p = nra + o(n*logn) uniformly in p,
and since (4.2) and (4.4) imply that
(4.11) nFlogn = 0(8,) and n7'r, = 0(6,),
(4.6) follows. (4.7) is proved similarly. Further, replacing ¢ by ern logr, in
(3.24) and taking ¢ as above, we get
N < exp {—€(log7,)Y/2) = emn™ ", o, e > 0.
It follows that Y n\"™ < . Hence wp 1
(4.12)  (Stapisrn — Stapl—ra)/2ra = 1 4 o(r, " log 7,) uniformly in p.
Since (4.2) and (4.4) imply that

(4.13) Tw t10g 10 ~ Csd4", c; > 0,
(4.8) follows. From (4.6) and (4.7), according to (3.11), wp 1
(4.14) on(p) = p 4+ 0(8,) uniformly in p.

Now choose € > 0. Then by (4.8), (4.14), (3.4), (3.5), (3.6) and (4.1) applied in
(3.21), wp 1 there exists no not depending on p such that for all n > n,

Voo Vina 2 {1+ 0(8.5)}{1 + p6,"} > 1

whenever n ' (r, + 1) < p < F(60 — 3ed,) or F(0 + 3¢8,) < p <1 —n''r,.
Hence, wp 1, for all » large enough

[nF(O — 3e8,)] < K, < [nF(6 + 3¢,)].

Since 8, {F(0 + 3ed,) — g} — +3¢/f(6) as n — « and e may be arbitrarily
small, (4.5) follows.
Next we show that wp 1

(4.15) Yi,ir, = 0 + 0(8,)

from which the theorem will evidently follow.
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Choose € > 0. Then, wp 1, for all n large enough
Yinoam < Yepr < Yiutrn < YVineren -
It will therefore suffice for (4.15) ta.show that wp 1 for all n large enough
(4.16) 0 — 20,/f(0) < Yineew1 < Yincoretmn < 0 + 2¢5,/f(6).
For the first of these inequality it suffices to show that
(4.17) 20 PYinmam S 0 — 268,/f(0)} < .

The probability appearing as the nth term of this series is also P{B(n, z,) =
[n(g — €8)]} where B(n, 2,) is a binomial random variable with parameters n and
2n = F(0 — 2¢5,/f(6)) = ¢ — 2e8,(1 + 0(1)) as n — . Using the inequality
of Bernstein as in [1], one can show that (4.17) follows. Similarly for the last
inequality in (4.14).

Remarks. With the approach used in the proof above, it seems unlikely that
the speed of convergence found can be improved significantly by choosing {r,}
differently. For, one can hardly do better than (4.12) and as (4.8) is required
one must have at least 6, = O(r,* log,) which, for {r,} of the form r, ~ An’
implies 8, = O(n""*(logn)"*). We also need (4.11) for (4.6) and (4.7) and
this forces the inequalities » < 2k/(1 4+ 2k) and v < k. Within these restrictions
the best result is obtained by choosing » as in the theorem.

Special cases. We assume here that for all § small enough min {f(z):0 — § <
z = 0 + 6} equals either f(6 + 8) or f(6 — §) and that max {f(z):a < z <
6 — 25,0 4+ 25 < z < b} equals either f(§ + 28) or f(6 — 25).

Cask (i). Suppose f satisfies

(4.18) f(z) = vo — Iv(z — 0)® + o(lz — 0]2) as ¢ — 0 Yo, v > 0.

Then (4.1) holds with & = 2 and (4.2) specifies 7, = An*® while according to
(4.3) and (4.4) 61, , 00 = 6 + o(n *(log n)}).
Casg (ii). Suppose f satisfies

(419) f(z) =vo—n(z —8) +o(lxt —0)) for z=06, z— 8,
=5 —v(0 —z) +o(jJz —6]) for <80, z—0,

with vo, v1, v2 > 0. Then (4.1) holds with £ = 1 and (4.2) requires r, = An?
while 6y, , 62, = 6 + o(n " logn).

6. Asymptotic distributions. Because it is somewhat simpler to deal with we
will restrict attention here to 6., = Yk, . Until further conditions are specified,
assume that the conditions of Theorem 1 hold. Then

(5.1) O — 0 = G(Sx,/Sat1) — G(q) = (Sx,/Suir — 9)G'(¥a)
with ¥, a point closer to ¢ than Sg,/S,+1 so that ¥, — ¢ wp 1. Further
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(5.2) Sx,,/sn+1 —q = (Sx,, — Kn)/Sn+l
+ (K, — 1q)/Sn1 + ¢(n — Snt1)/Snt1,
(53)  (Sk. — Ku)/Sun = n7*{(Sx, — K.)/ K Snya/n} Ko/}

By (3.26) and the strong law of large numbers the last two factors in (5.3) tend
to ¢* wpl and by the central limit theorem for a random number of summands,
[2], the third last factor tends in law to a N (0, 1) distribution. Hence

(54) (Skw — Kn)/Spir = Op(n7).
A similar result holds for the last term in (5.2). Hence
(5.5) Skn/Sutr — ¢ = 0p(n™) + (K — 1g)/Sp1 .

Suppose that {a.} is a sequence of positive numbers satisfying
(5.6) n e, —>0 and a,— © as n— ©.

Then multiplication of (5.5) by a, and substitution into (5.1) readily shows that
if a,(n 'K, — q) has a limiting distribution then a,f(6)(6:. — 0) has the same
limiting distribution, which we will characterize below for some situations. The
analysis to follow is largely motivated by that of Chernoff, [3], to whom we will
refer for some finer details.

To begin with, suppose f satisfies (4.18). Then, for p — ¢ we have

(57) Q) = G(g) + v '(p — ) + &p — Olvv’ + o(1)}.
Select {r,.} so that

4/5

(5.8) Tn ~ An
and write
(5.9) U, = 2y, 2= U, (0K, — ).

Then, by definition of K, , z. is a choice of the real variable z which minimizes
V tn(erua21 and hence also

(5.10) (2Unn)7lsn+1'70{ V[n(q+Unz)] - V[nql}-
From (4.10) we get
(5.11) Sttt Uno14ra/Sntr = ¢ + Unz + "+ O(n_% logn)

and similar expressions hold for S+ vae1—ra/Snt » Stnaltra/Sns1 a0 Stng—r,/Snya «
Substituting for the V’s in terms of the Y’s, for these in terms of the S’s and
expanding according to (5.7), (5.10) becomes, after some simplification,

(5.12) Zn(2) + Ra(2)
where
(5.13) Za(2) = (2Un) H (St vatira — Sintarvani—ra)
— (Stwattra — Stng—ra)}
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and R,(z) is the term which results from the third order terms in this expansion.
Using (5.11) and its equivalents, we find

Ru(2) ~ ¥vvo " (2U,) (07" 4 Unz + o(n " log n))*(1 + o(1))

(5.14) — (=07 + Uz + o(n™ log n))*(1 + o(1))
— (n7"r, + o(n? log n))*(1 + o(1))
+ (—n7'r 4+ o(nF log n))%(1 + o(1))}.

The leading term in {-} on the right here is found to be 6n "r,U,%2’(1 + o(1))
and it follows from (5.9) and (5.8) that

(5.15) R.(2) = 2(1 + o(1)) wplasn — .
Now Z,(z) may be thought of as a stochastic process with parameter z. We

have EZ,(z) = 0 and a straight forward but tedious calculation from (5.13)
shows that with

(5.16) LMy 'raUn " = B = A2 Yy
we have
(5.17)  Cov {Zn(2), Za(2™)}
— {min (J¢|, 2B) + min (|z*|, 2B) — min (]z — 2%, 2B)}.
In particular
(5.18) Var {Z,(z)} — min (2|, 2B).

Since {Z,(2)} is a suitable linear combination of independent random variables,
it can be shown that {Z,(2)} tends in law to a Gaussian process with expectation
0 and covariance function given by the limit (5.17). This limiting process will be
denoted by {Z(z)}.

We note that with a, = U, the conditions in (5.6) are satisfied. The analysis
above leads one to expect that for large n 2z, = U, '(n 'K, — ¢), and hence
Uo"'vo(62n — 0), is distributed as the variable z which minimizes the process
Z(z) + 2. The details of this limiting argument are similar to that outlined by
Chernoff, [3], and need not be given here. We have therefore proved

TarorEM 3a. If f satisfies (4.18) and {r,} s chosen according (5.8) then
2 Aty 5_( 02, — 0) s asympiotically distributed as the variable z which mini-
mizes the process {Z(z) + '} where {Z(2)} is a Gaussian process with expectation
0 and covariance function given by the limit in (5.17).

Next we consider the effect of a slightly stronger assumption on f. Suppose
that

(5.19) f(z) = vo — 3y(z — 0)® + 3yvs(x — 6)° + o(lx — 8") as z — 6.
Then (5.7) can be strengthened accordingly. Select {r,} so that
(5.20) Ta~An” with 4 S v < &
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With U, and 2z, as in (5.9) one again finds that 2z, minimizes (5.12) with Z,
asin (5.13) and R,(z) consisting of third and fourth order terms in the expansion.
Instead of (5.14) we now get

(5.21) Ru(2) = 2(1 + o(1)) + R.*(2)

with R,*(2) an expression similar to the right hand side of (5.14) but involving
fourth powers. Under (5.20) we find

(5.22) R,*(2) = o(1) wp 1.

While if, instead of (5.20) we have

(5.23) n ~ An™®

then we find

(524) RJ2) = —3727 4% Wy 2(1 + o(1)) = Cz(1 + o(1)), say.

Also, under (5.20) and (5.23) B = « in (5.16) and the limits in (5.17) and
(5.18) become the covariance and variance functions of a two-sided Wiener-
Levy process. Hence

TuroreM 3b. If f satisfies (5.19) and r, ~ An” with ¢ < v £ % then 271444,
No n® 030y, — 0) is asymptotically distributed according to the distribution of z
which minimizes {Z(2) + &%} if v < % and {Z(2) + 2 + Cz} if v = %, where
{Z(2)} is a two-sided Wiener-Levy process with expectation 0 and unit variance
per unit 2.

The distribution of z in the first of the two cases of this theorem has been

studied by Chernoff, ([3], p. 37).
Finally, suppose that f satisfies (4.19). Then, for p — ¢, we have

(5.25) G(p) = G(9) + v (P — @) + 370 (p — O)*(m + o(1)) ifp 2 ¢
=G+ (p—0 + 30 (®— 0 (—n+ol)ifp < g
Let
(526) 1, ~ An}, U, = 2v,'nr, >, lim U, 'rsn = D = 4%,
and let 2, be as before. By (5.11), wp 1 for all » large enough,
(5.27) Stnervditr/Sns1 = ¢ according as z + D 2 0.
Hence, using (5.25) and (5.11)
Y inarvaniera = G(Q) + %o (St vanitra/Snis — q)
+ 370 'Ua"(z + D(1 + 0o(1)))(m + o(1)) ifz+Dz 0
= G(9) + ¥ (Stmarvan+ra/Swir — @)
+ 37Uz + D(1 4 o(1)))*(=v2 + o(1)) ifz+ D <0

4nd similar expressions hold for other relevant quantities. Expanding (5.10)
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as before, we find that 2, minimizes {Z,(z) + R,**(z)} with Z, as in (5.13)
and R,**(2) an expression consisting of the second order terms in this expansion.
We find that

R.**(2) > R(2) = —2v% — 3D(n1 + 72) ifz< —D
(5.28) = (y1+ 12)2/2D — 2(ys — v2) if =D <2< D
= 2viz — 3D(v1 + 7v2) ifD =< z.

Hence we have

TaEOREM 3¢. If f satisfies (4.19) and r, ~ Ant then v, *A™n}(6s — 0) has
asymptotic distribution equal to that of z which minimizes {Z(z) + R(z)} with
{Z(2)} a Gaussian process with expectation 0 and covariance function given by
(5.17) with B = D and R(z) given by (5.28).

It is evident that similar results can be obtained for other situations.
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