REMARK ON THE LINEARIZED MAXIMUM
LIKELIHOOD ESTIMATE'

By L. K. Caan
University of Western Ontario
1. Introduction. Let
(1) Yu < Yup1 < oo+ < Yo

(u = [np] (the greatest integer <np),v = [ng],0 < p < ¢ < 1) be a Type 11
doubly censored sample corresponding to an ordered random sample of size n from
a continuous distribution whose distribution funetion is F((y — 61)/6:), where
the location parameter 6; and scale parameter , > 0 are the unknown parameters
to be estimated. Plackett [6] derived a linearized maximum likelihood estimate of
(61, 65) which has been referred to in the literature, e.g. [2], [8] and [3]. Unfortu-
nately there is an error in his derivation ([6], page 138) in which he treated all
the consecutive order statistics of (1) as sample quantiles. When we study the
asymptotic properties of sample quantiles, e.g. [7], Section 2.2, the quantiles are
determined by a fixed number, say k, of pre-determined proportions and hence
only % order statistics are considered for each n. However for a Type II doubly
censored sample, the number v — u -+ 1 of order statistics tends to « asn — .
In this remark, a more rigorous derivation under less restricted conditions is
given. A consequence of this is that the estimate is asymptotically equivalent to
the linear estimate proposed by Weiss [10] and Chernoff, et al. [3].

Most of the notations used will be the same as those in [6]. Since the con-
ditions on the distribution F({y — 61)/6;) were not explicitly given in [6], we
shall mention here the conditions required for our argument. We shall let
(1/6:)f((y — 61)/8:) be the probability density function corresponding to
F((y — 61)/8:),and let x = (y — 6,)/6..

Ci. F((y — 61)/8:) is a continuous distribution, and for almost all y

8" log (1/62)f((y — 61)/62)/96,°36,
,j=0,1,2 3; 1=++3=3; r,s =12,

exist for every (61, 62) belonging to some two dimensional non-degenerate region
Oc{(wz2)— o <w< 0, 0<2< =}.
C.. For every (6, 6;) ¢ O,

6°3(1/0)f((y — 60)/62)/36041 < As(y),
6" log (1/6:)5((y — 0:)/0:)/30790] < Br(v),
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where the 4.;(y) are integrable over (— o, «),
o Bro+ (1/0:)f((y — 61)/6:) dy < M,, and M,,

is independent of 6; and 6 .
Cs. The Fisher information matrix 6, % || I,.(p, )| is positive definite, where

62 "Lo(p, q) = [G2E-1(N10 log (1/62)f((y — 61)/62) /06,
-0 log (1/6:)f((y — 6:)/6:)/6.]-[(1/62)f((y — 01)/6s)] dy
+ /[ 2% P((1/62)F((y — 61)/62)/96,) dy
ST (0(1/0)f ((y — 61)/62)/96,) dy]
+ (1 = @) [ oar10+6.(3(1/6)f((y — 01)/62)/96,) dy
o140, (8(1/62)f((y — 61)/6)/06,) dy], r,s=1,2,

and F'(«) denotes the ath population quantile of F(zx).
Cs. For every (8, 6:) ¢ ©, there exist neighborhoods of §,F Yp) + 6.,

6:F(q) + 6, in which
dl(1/0:)f((y — 61)/62)]/dy,

and the 8™ log (1/6,)f((y — 61)/62)/96,°98," are continuous.

Cs. lim,., [2|°[1 — F(2) + F(—2)] = 0 for some ¢ > 0.

Ce. Let Hy(x) = F(x) and Hy(z) = 1 — F(z); then
[Cin(2)| = |d*(f/H,)/da"| < K[F(z)(1 — F(x))]™ forsome A >0,r=1,2,
and [Di(x)| = |d*(—dlogf(x)/dx)/da’| < K[F(z)(1 — F(2))]™ for some
Ao > 0, where K serves as a generic constant.

Explicit expressions for the elements in 6, * || I,.(p, ¢)|| (cf. Cs) can be found in
Table 2 of [6] if we replace all ¢, and ¢, in that table by F'(p) and F~ (q), re-

spectively.
The existence of ', and D follows from C; . From Cj, for sufficiently large z,
(2) Il = KIF(2)(1 — F(2))I™",
and from C;
(3) fz) >0 on {z|0< F(z) < 1}.
Cs and (2) imply that
(4) [Cor(@)| = |d*(af/H.)/da?| < K[F(1 — F)[Ye, r=1,2,
and

IDy(2)| = |d'[—1 — 2(d log f(z)/dx)]/da’| < K[F(1 — F)] — N — 1/e.

It is easily seen from (2) that if C1,(z)/|2/® and Dy(2)/|2|® are bounded for some
B> 0 and B, > 0 when 2 is sufficiently large, then Cs and (4) are satisfied. Cs and



1878 L. K. CHAN

(3) are weaker than the condition that D;, Dy, Cy, and C,, are bounded which
was imposed in [6].

Cs is essential since this condition and (3) are the necessary and sufficient
conditions for the existence of the first two moments E((y; — 61)/6:) and
E((yi — 61)/6:)% % = u,u + 1, - - - v, (cf. Bickel [1], Theorem 2.2a)), which will
be needed in our discussion.

2. The linear estimate. Let z; = (y; — 61)/0s, f(x) = dF(x)/dz, t; = Exs,
s = p izl . and let L, be the likelihood funetion of (1). It can be seen that
d log L,/d0, is a function of the form

9r((Yu — 01)/02, -+, (Yo — 01)/62) + he(61, 62).

Change the variables to x; = (y: — 6;)/6. and perform a Taylor’s expansion
around x, = t., -, & = t,. Then (cf. [6], (44), (45))

n 29 log Ln/00, = w4910 Ln/06,) -+ 00 + (n'6) L,
(5) — (20%) 7 (u — 1)((gu — 1)/ — 1.)"Cra(2.7)
+ (206)7 20 ((ys — 61) /62 — £:)°Du(2)
+ (20) 7 (n — ) ((y» — 6:1)/6: — ,)°Cra(w,™), 7 = 1,2,
where |z;* — t:| < s — 4,4 = w,u + 1, ---, v and
Lin = —(u — )((%u — 60)/6: — t.)(f/pu — 1."/ps)
— 22 ((ys — 60) /6 — ta)-(F" /fs — 17°/18)
(6) + (n = 0)((yo = 0:) /0 — &)(F' /0 + £.°/0.7),
Low = —(u — D)((gu — 00)/6 — t)(fu/Pu + tfs/pu — 6fi7/P7)
— 22 ((ys — 02)/0 — ) ~(t" /fs — tf7/F8 + £7/50)
+ (n = ) (4 — 0)/6 — t)(fo/ & + tf /00 + 6/07),
fi=f(t:),pu = F(tu), @ = L= F(t,), £ = f'(t:), £ = f'(t:),f () = df(x)/dx,

f"(z) = d*(x)/da’. (Our expansion is different from that of Plackett since we
consider the (6;, 6;) in (y; — 61)/6, of (5) as a constant while he considered it as
the maximum likelihood estimate.)

In this remark we prove the following theorem.

TuroreM. Consider a distribution F((y — 61)/6y) which satisfies the conditions
Cyto Cs . Let (6,°, 65") be the solution of the linear equations L, = 0,r = 1, 2. Then
(6, 65") 3s a strictly unbiased estimate of (8 , ) for every n and
9’ — 6 7 Ll
020 —_ 02 n—§ Lgn
converges in distribution to the bivariate normal distribution N((0, 0),
0 | Io(p, )|I™"), where —n ||J75(n)|| is the matriz whose elements are the coefficients
of 61 and 6, in the equations 6,L2, = 0.

H

n = ]| Jre(n) |
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The unbiasedness of (81, 6,") follows immediately because from (6) EL2, = 0,
r = 1, 2. For the remainder of this theorem we see that it is sufficient to prove
the followmg Lemmas.

Lemma 1. Under Cy to Ci, (W% log L,/36y , n 29 log L,/6:) converges in dis-
tribution to N((0, 0), 8, | I.(p; O) ).

Lemma 2. Under Cs , Cs and (3), each term involving ((ys — 61)/8; — t:)* in (5)
converges in probability to zero.

Lemma 3. Under Cy to Cs

limy, oo 78 log L./86,)s, .-z, = O, Cr=1,2
LemmA 4. Under Cy , Cs and Cs
lityocs [T5(0) | = 1, )]

Proor oF LEmMmA 1. This lemma is a direct extension to the two-parameter
and double censoring case of the expressmn (3.5.16) given by Halperm [4] (the
possibility of such an extension is given in §4 of [4]).

Proor or LEmMA 2. It follows from Theorem 2.2b by Bickel [1] that under
Cs and (3) we have for any given o, 0 < a < %,

(1) Bl — F'(i/(n + 1))l

= n P (i/n) (1 — i/n)f(F 7 (i/n) " + o(n™™), r = 1,2,
uniformly for en < 7 £ (1 — a)n when nis sufficiently large, where u, =
[Ze2'(1/ (21)) exp (—2°/2) dz. Now let us prove for illustration that when
r = 2 the fourth right-hand term of (5) converges in probability to zero. It is
sufficient to prove that
(8) im0 *EE (25 — 1:)* |Do(2:)[] = 0.

Let m = [N\ + 1/¢] + 1. It is easily seen that [F(1 — F)] ™ is symmetric about
F = 1, decreases in (0, 3) and attains its minimum value (3)™" when F =
Now let the ain (7) be less than min (p, 1 — ¢). Then when 7 is sufficiently large
we see that (¢ — 1) > m, (n — ¢) > m and from (7) (putting r = 1) that
tie (F o), F (1 — &) for< = u, u + 1,---, v. Let I, be the interval
[F(a), F'(1 — a)]. Then by (4)

n BB [(z — 4)” IDa(a:™)]] £ 27 HZn(IT) fma(x — t)’F7'(1 — F)" K
(a(l — a))™dF} + 0 Y {n(n — 1) -+ (n — 2m + 1)
qE=1)GE=2) - G=—m)][(n =) —i—1) - (0 —i—m +D]
“(n = 2m) (IS5 farr, Ml(z — F((6 — m)/(n — 2m + 1))’
+ (FY(Gi = m)/(n — 2m + 1)) — FXi/(n + 1)))*
+ (F'(i/(n + 1)) — t:))-K-F™(1 — F)*""™dF}.

If follows from (7) that the above two right-hand terms tend to zero and hence
(8) holds.
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Proor or Lemma 3. Under C; to C,, we have Ed log L,/36, = 0,7 = 1,2 (this
is an extension to the two—parameter and double censoring case of the expression
(3.3.1) in[4]). Note that EL}, = 0,7 = 1, 2. From an argument similar to that
in the proof of (8) the expectations of all the terms in (5) involving
((ys — 61)/8, — ;)* tend to zero as n — o. The lemma, follows by taking ex-
pectations on both sides of (5) and then letting n — <.

Proor or LEMma 4. Let us demonstrate that

litpse J25(n) = In(p, q).
We see from (6) that

—Ja(n) =07 Y () d/do(—1 — zdlog f(z)/dz)|acs,
(9) — w7 — 1)(6) d/do(af(2)/F(2))|oms,
+ 17 (n = 0)(t) d/dx(zf(2)/(1 — F(2))) o, -
Note from (4) that Cu(z), Cau(z), Dx(x) exist and are bounded when z ¢ I,
So we can substitute F'(¢/(n + 1)) + o(n™*) for t;in (9) (by putting r = 11in
(7)), expand —Jax(n) around (F '(u/(n + 1)), -+, FXv/(n + 1))) and
then obtain
I (n) = Ju(n) + o(n™Y,
where J33(n) is equal to Ja(n) with each ¢; being replaced by F~'(i/(n 4+ 1)).
By applying the Lemma, in [9]
]jlnn—»w J;k2(n) = I22(p7 Q)'

In addition to considering the (6, 6.) in (y; — 61)/6; of (5) as the maximum
hkehhood estimate, Plackett also divided the right-hand sides of (5) by n instead
of n! and showed that the square terms converge in probability to zero. But in
such a case the linear terms may also converge in probability to zero. So it is
difficult to say that the square terms are asymptotically negligible compared with

the linear terms. Rigorous results concerning asymptotic normality of the likeli-
hood function of a censored sample were obtained by LeCam [5] also.

3. A related estimate. Now expand n? (8 log L,./36,, r = 1, 2, around

= F“l(u/(n + 1)), ,2 = F'(v/(n + 1)) in the same manner as (5)

and let LY, be the lmear terms correspondmg to the Ly, in (6). Using the Lemma
in [9] it can be proved that

limn_m n_%(alog L;,/60r)p—1(u,(n+l)) o Fol(of(n4)) = 0 r = 1 2.

Then it follows from the same arguments as those of the preceding section that
(n LY., n7'LY,) converges in distribution to N((0, 0), I I:s(p, @)|) and

(10) EnLE, = 0(1), r=1,2, as n— o.
Let —n [|J7(n)|| be the matrix whose elements are thecoefficients of (6; , 6;) in

(11) 8oL, = 0, r=1,2.
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We replace n ||J75(n)|| in (11) by n ||I+(p, ¢)|| and denote the new equations by
0.L¥, = 0,7 = 1, 2. Then by using the Lemma of [9] again (see also [10], p. 127)
it can be shown that

(12) limp. n¥([T5(n) || — I Is(p, @) = 0.

By (12) we see that (n L%, , n*LE,) converges in distribution to N((0, 0),
ILns(p, Q)I)- Let (6:¥, 6,*) be the solution of Lf, = 0,7 = 1, 2. Then

(13) 1 il Lo(p, )™ L
n' = rs\D, ¢ _
02# — 0, ’ ’ n %Lgn

converges in distribution to N((0, 0), 65°||I..(p, ¢)||™"). If the expectation is
taken on both sides of (13), it follows from (10) and (12) that the biasedness
of (6%, 6%) is o(n™?). (6,%, 6,*) has the same form as the estimates in [10] and
[3].

It can be seen that we can extend (6, 6,") and (6%, 6.*) to the Type II
censored sample in which only the order statistics with ranks lying between and
including [np;] and [ng;] are available, where 0 < p1 < 1 < P2 < @@ < -~
< pr < @ < 1, k a fixed integer.

The computation of (6:°, 6,’) is more complicated than that of (6,*, 6.*), but
(6, 62’) has the superiority that it is strictly unbiased, which is important when
n is not large.
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