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0. Summary. A locally asymptotically most powerful test for a composite
hypothesis H: § = & has been developed for the case where the observable random
variables {X,x,k = 1,2, - - - , n} are independently but not necessarily identically
distributed. However, their distributions depend on s + 1 parameters, one being
£ under test and the other being a vector 8 = (6;, - - - , 8,) of nuisance parameters.

The theory is illustrated with an example from the ‘ﬁeld of astronomy.

1. Introduction and specification of the problem. This paper extends Neyman’s
[1] theory of optimal asymptotic tests of composite statistical hypotheses to the
case where the observable random variables are independent but not necessarily
identically distributed. Whenever possible, we shall use the terminology, nota-
tion, and definitions of Neyman’s paper [1]. Also, we shall confine ourselves to
the case where all estimates 6;,,5 = 1,2, - - - , s, form a weakly root n consistent
system. Proofs of the theorems proceed in ways very similar to those in [1]
and therefore will be omitted.

Let = be an interval containing zero on the real line and ® an arbitrary open
set in the s-dimensional Euclidean space and let @ = & X ©. For each {¢ &,
and 0 = (61, 62, ---, 6;) ¢ ® we consider a double sequence of independent
random variables, X,+(% 6),k = 1,2, --- ,n;and n = 1,2, --- . The sample
space of X,;(£, 6), denoted by Wz, is assumed to be independent of (£, 8) ¢ Q.
Each variable X,.(£, ) is assumed to possess a probability density p..(z; & 6)
with respect to some o-finite measure v, which is independent of Q. In addition
we shall be concerned with vector random variables X,(£ 0) = [X,(§, 9),
Xno(E, 0), -+, Xua(§, 0)]. The corresponding sample space will be denoted by
Wy = W X Wye X --+ X Wy, . Integrals extending over the whole sample
space, either W, or W, , will be written without specifying the region of in-
tegration. :

The subject of this paper is an asymptotic optimal test of the hypotheses H,
asserting that £ = & ¢ . In order to simplify the notation, it will frequently be
assumed that & = 0. If & is an end point of a closed (or half open) interval &
then all derivatives with respect to £ at £ = & are assumed to be the appropriate
right hand or left hand derivatives. We shall also assume that for each x ¢ W,
and for all (£, 6), each of the density functions p.x(z; & 6) is at least twice dif-
fentiable with respect to all the (s + 1) parameters, and that these differentia-
tions are permissible under the sign of the integral extending over W,,. The
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symbols onre(x, 0) and @u(z, 8) will denote the partial derivatives of
log pui(z; &, 0) with respect to £and 6;,7 = 1,2, - -+, s, all evaluated at £ = &
and at an arbitrary point 6 ¢ ©. If p.. = 0, define oy = ey = 0,5 = 1, 2,
-+« , 8. Assume that Eloie{ Xoue(&o, 6),60}] < o« for every n and k. Our additional
assumption will be that, whatever be 6 ¢ ®, whatever be n and k, the quantities
O [ Xn($0, 0), 0] and @nii) [ Xnx(£0,0)0].7 = 1,2, - - -, s, are linearly independent
with positive probability.

We adopt the definitions of asymptotic tests and the optimality criterion as
given by Neyman [1]. Definition 1 given below is an extension of Definition 3 of
Neyman.

Drrinrrion 1. We shall say that {f.x(x, )} is a Cramér sequence, if it satisfies
the following conditions.

(i) Foreachn, fork = 1,2, --- , n, and for all £ and §, the integral

(1) wa(E, 0) = [fu(z, O)pu(z; £ 0) dym(z) = E{fulXu(§, 0), 0]}
exists and, at £ = & and arbitrary 0, is differentiable under its sign at least twice
with respect to £ and at least once with respect to 61, 85, --- , 0;.

(ii) For every 0, and forj = 1,2, ---, s,
(2) lim%—»w n—l le;l E{fnk(j)[Xnk(E’ 0)7 0]}

exists and is finite for all £ in some neighborhood V¢, of £ = & . Also forj = 1, 2,
.-+, s and for all 6, asn — oo,

(3) 17 Zkat B{furs| Xmi(£0 + un”, 6), 6]}

= 1iMpae 1" D et B fur [ X%, 0), 61}
and for a positive § = 1,
(4) @) i Elfun(Xae(fo + un, 0), 0)

— Elfur(Xm(o + un’, 0), 6] ™* — 0

both uniformly for all « such that «* < U for some finite U > 0.

(iii) Whatever be ¢ ¢ ©®, there exists a sequence of functions {Gaus(z)},
nonnegative for every n and k = 1,2, - - - , n, defined on { W} such that, for all
¢ e E and for every 4 and k

(5) | Guis(2)pmi(; £, 9) dyme()
exists, and that
(6) 7 Dbt [ Gurs(2)pur(2; £0 + un”?, 9) dyu(z)

converges to a finite limit as n — o uniformly for all » such that u’ < U for
some finite U > 0, and such that for all 6 in a neighborhood of 4,

A7) |farcin (2, 0)] < Grrs(tr)
fors,j=1,2,+---,sandk =1,2, ---,n.
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(iv) Let
(8) 8,4(%, 0) = 0" g Var (fulXu(§, 6), 6]).

For every 0 ¢ ©, and for all £in Vi, , limy.. Sa(£, 0) exists and is strictly positive.
Also for every 6, asn — o,

(9) Salko, 0 + on ™) /8u(k0,0) — 1
uniformly for allv = (v, vz, -+, v,) with > v < Uand
(10) Su(to + un?, 0)/8a(%0, 0) — 1

uniformly for all  with 4> < U for some finite U > 0.
(v) There exist two positive constants § and U, such that

(11) WSt + un™, O 2 BlfulXu(fo + un™, 0), 6]
— (b0 + un ™, 0) 7 > 0

uniformly in % with u® < U for some finite U > 0.

(vi) Let
(12) Ma(£, 0) = 1" 2 imt ui(§, 0).

We assume that m,(£ + un?, ) converges uniformly for all‘jum;with W< U
for some finite U > 0, to a finite limit for every fixed . We assume that the 1st
derivative of mn(&,0), at £ = & tends to a nonzero limit (in Neyman’s terminology
we say then that the sequence {f,x(z, 6)} is of index 1); and that d’m.(£, 6) /dE*
exists and is uniformly bounded for all n in the vicinity of ¢ = & and for all
6 £ O. Finally,

(13) i Doty €OV {futl X (£0, ), 6], @ake|Xme(£0,.60), 61}
exists and is finite.

We note that condition (v) implies that if fur(Xax(és, 0), 0) is expectation
centered, then

(14) Za(k0,0) = I8: (%0, O Lieafur( Xuin(a, 0), 6)
has a limiting normal distribution with zero mean and unit variance.

2. A preliminary result. To compute the value of Z,(% , 6) at some point, 6
must be known or estimated. To determine when the limiting distribution of
Z. (%0, 6,), where 8, is a suitable weakly root n consistent estimator of 6, is equiva-
lent to that of Z,(&, ) the following theorem is needed.

TuroreEM 1. If at £ = &, {far(z, 0)} is an expectation centered Cramér sequen ce
then in order that as n — «, the differences Z,(&o, 0n) — Zn(%0, 0) tend to zero in
probability, it s necessary and sufficient that

(15) 1My " D im1 Makiy(8) = 0
wdentically in 0, forj = 1,2, - -+ | s, where

(16) M (8) = coV {faurl Xur(£0, 0)], e[ Xue(£0, 0), 613
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There remains to define a family C(a) of asymptotic tests based on the func-
tion Z.(%0, 0), and to prove that it contains tests that are optimal with respect
to a certain class I' of sequences {£,} of points belonging to & and converging to
& and to develop a method of their construction.

3. Family C(a) of asymptotic tests and their asymptotic powers.
Let B(«a) be an arbitrary measurable set on the real line whose characteristic
function is continuous almost everywhere and such that

(17) (27) 7 s exp {—1/2} dt = a.

Let b1, 6on, -+, b form a weakly root n consistent system for parameters
61,05, - ,0,. Again let {fux(x, 0)} be an expectation centered Cramér sequence
such that forj = 1,2, --- s

(18)  limpawn " 221 OV {furl Xne(o, ), 6], Quecn[Xni(£0, 6), 0} = 0.
Thus {fu[Xax(£0, 0), 6]} satisfies (15) of Theorem 1 and it follows that
(19) Za(k0, 02) = [0 Sulto, 0] i furl Xoa(£0, 0), Bu]

has a limiting normal distribution with zero mean and unit variance. If w,
denotes a subset of W, . such that

(20) [Za(%0, 0a) € B(@)] & [X, € wa]
then {w,} would form a test of the hypothesis Hy : ¢ = & with
(21) limy,e P[X (%, 0) € ws] = a.

DerintTION 2. The family C(a) of asymptotic tests is defined to be composed
of all sequences of critical regions of the type {w,} defined by (20).

Let T, be a subclass of I' consisting of all sequences {£,} ¢ E such that
{n}(¢, — &)} remains bounded. We shall devote the rest of the paper to the
problem of selecting members of the family C(a) which are asymptotically
most powerful with reference to the subclass T .

Let {fu(z, 8)} be an arbitrary Cramér sequence which satisfies condition (15)
of Theorem 1. Let £* = {£,} be an arbitrary sequence of numbers belonging to
= which converges to & . In order to study the behavior of the probability
P{Z,(t, 6,) e B(a)}, as n — oo, we notice that this in turn depends on the
sequence of distribution functions of the form P{Z,(%., 6.) < x} where

(22) Za(En, b)) = [0}Su(t0, 0u)17" it fur(&n , ), 6ul.
Let ‘
(23) Zu(kn, 0) = [0}Su(ko, O] it furl Xi(£n, 0), 6a).

Under the conditions of Definition 1 it can be showP that Z,(&,, 0) is asymp-
_totically normally distributed with mean m,(£,, 6)n’ and unit variance where,
in this case

(24) mn(i:n ) 0) = n—l 27:;1 E{fnk[Xnk(En ) 0)’ 0]/Sn(£0 ) 0)}
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To show that Z,(£, , 6,) has the same asymptotic distribution as Z,(&, , 8) the
following theorem is required.

TueoreM 2. If the sequence £ = (£} e Ty, then Zy(%n , 0n) — Zn(tn, 0) con-
verges in probability to zero and hence, there exists for arbitrary ¢ > 0, an inle-
ger N such that forn > N.,

(25) |P{Zu(£n, 0) < 7} — B(x — ma(n, O)n)] < €

uniformly in x where ®(t) s the standard normal distribution function.

If the first derivative of M. (¢, , 6) tend to a non-zero limit and (¢, — £o)n’ re-
mains bounded, it follows from (vi) of Definition 1 and the above theorem that
Zn(£n , 0,) is asymptotically normal with mean u1,(8) (¢, — £)n! and unit vari-
ance, where

(26) pa(0) = dm,(&, 0)/dE |£=Eo .

This in turn yields the asymptotic power of a typical member {w,} of the family
Cla).

4. Optimal test of class C(a). Without loss of generality we assume & = 0 and
consider the case where it is desired to test the hypothesis Hy : ¢ = & = 0 against
alternatives specifying values of ¢ that are greater than zero. Other cases can be
dealt with in a similar manner (see [1]). Let 'y, denote the subclass of sequences
in T such that ¢, > 0.

Let a,(8) = (aia(0), a3.(0), - -+, as.(8)) be a vector which minimizes the
variance of

(27) Do eme [ Xar(£0, 0), 0] — 271 aue(8) 2110;1 ek Xni(&o , 0), 6],

for each n and for fixed . The symbol S,**(8) will denote this minimum variance.
Because of the assumption made in Section 1 to the effect that, for every 6 ¢ O,
for every n and k = 17 2 ... , N, ‘Pnk(‘é)[Xnk(EO: 0): 0] and ﬁonk(j)[Xnk(EO, 0): 0]:
j=1,2, .-+, s, are linearly independent with non-zero probability, the values
aln(8) are always determined and 8,*(6) is always positive. We note that
8,*(6) is positive if and only if the index ! (in the sense of Neyman [1]) of the
sequence {fax(, 6)} is equal to one.
Let us assume that

(28) & = (a, a2, -+, a0) = limpyae @y’

exists. We assume that the sequence {p..(2; & 0)} is regular enough so that the
sequence {fax(z, 0)} where

(29) Far(2,0) = oue(®, ) — 251 6 emin (g, 0)

form an expectation centered Cramér sequence which of course, satisfies (15) of
Theorem 1.

Using Neyman’s [1] optimality criterion the following theorem establishes the
optimality of the test based on the Cramér sequence { far(z, 0)}.

THEOREM 3. If the estimates b.x of the parameters 0;,j = 1,2, -+ , s, are all
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locally root n consistent then the test of the hypothesis Hy : £ = & = 0 against the
alternative Hy : Ty, based on the sequence {w,’}, where w, is defined by

(30) Zn*(EO) én) = [1/n%Sn*(én)] Zl?=l.ﬁ:k[Xnk(£0 ’ 0)’ én] > V(a)

s an optimal test of class C(co), with reference to the sequences of the family Ty .
Furthermore, its asymptotic power is given by

(31) 1 — ®{v(a) — 8,"(8)&m')
where v( ) satisfies
(32) d(v(a)) =1— o

Finally it should be remarked that for certain types of problems, it may not be
possible to determine the value of @’ = lim,., a,’. For such cases we suggest an
asymptotically equivalent optimal C(a) test, which may be constructed by re-
placing o’ by a»,7 = 1,2, - -+, s. The test function so obtained has the same

asymptotic properties as those of Z,*(&, 6.).

6. An example: Homogeneity of frequencies of Supernovae.

A problem in astronomy posed by Professor Neyman is to test whether
galaxies (perhaps of a restricted class) are homogeneous with respect to the
frequency of occurrence of supernovae. It is customary to assume that, if galaxies
are homogeneous, the number X of supernovae has a Poisson distribution. If
they are not, the number X; of supernovae observed during controlled time ¢; in
a randomly selected ¢th galaxy would be distributed as a mixture of Poisson
variables and its distribution may be described by

(33) PIX; = k] = (Aota)*/ks ! [2exp —hotie™ — k] dF (x)
ki=10,1,2,---; t=12--,n

where

number of galaxies observed,
average of the logarithms of frequencies of supernovae per unit

time.
¢ = variance of the logarithms of frequencies of supernovae over all

galaxies, with
(34) [izdF(z) = [ba*dF(z) = 0; [ed’dF(z) = [adF(z) = 1,

a < b being two arbitrary but appropriate finite constants. Furthermore, the
t’s are such that n Y i1 t; has a finite positive limit as n — « and that
max ¢; < C for some constant C > 0. Calculations yield fax(2, No’) = fi*(x, No) =

It can be demonstrated that {faw(x, No)} is a Cramér sequence satisfying the
conditions of Theorem 1.

n
In )\o

Il



w

OPTIMAL ASYMPTOTIC TESTS OF COMPOSITE STATISTICAL HYPOTHESES 1851

Furthermore
(35) Z.* o) = [ENS Doma 6T i (2 — Not)® — @),

where the test criterion (30) will be to reject the hypothesis Hy : § = 0. When-
ever Z,*(No) > v(a). The asymptotic power of the test is

(36) 1 — ®{r(a) — (2 t/2)Y).
Mo in (35) may be replaced by any root n consistent estimate, for example

{2 (0)} /1 D oms i}«

The test criterion (35) deduced on the assumption that the times {#;} during
which the galaxies are observed for supernovae are fixed constants, is closely re-
lated to the criterion deduced by Neyman [2] under the assumption that the
values {#;} form a sample from some unspecified distribution. This test has cer-
tain interesting properties described in the following remarks.

ReEmARK 1. One property is deseribed by Neyman as “robustness of opti-
mality”. This concept of robustness is to be clearly distinguished from the usual
concept of robustness, which may be labeled “robustness of distribution”.

It will be noticed that in deducing the test criterion (35) the class of hypothe-
ses alternative to the one tested is deseribed by a distribution function F(x) of
which it is only assumed that (34) holds. With reference to the expected number
N\ of supernovae per unit time for a single galaxy, this is equivalent to asserting
that, if N # N\ = constant, then it varies from galaxy to galaxy as
In\ = In\o + X#, where X is a random variable with distribution function F(z)
and { a positive constant. The interesting point is that (35) retains its optimal
property independently of what F(z) might be subject to (34). In particular, this
includes the possibility that all the galaxies fall into two categories with expected
numbers of supernovae \; < \q . Also, there is the possibility that the frequency
of galaxies with varying \ varies continuously from zero to some limit, ete. In all
these cases, the optimal criterion for testing the hypothesis of homogeneity is the
same, namely (35). Here, then, the optimality of the test criterion (35) is
“robust”. )

Remark 2. The evaluation of the asymptotic power is essentially based on
(36) which implies the following interesting conclusion regarding the design of a
survey of galaxies for supernovae. It refers to the question of the relative ad-
vantage or disadvantage of, say, doubling the number n of galaxies to be observed
and simultaneously of cutting by half the times ¢ over whicheach galaxy will be
observed.

As seen from (36) this operation will result in replacing the original noncen-
trality parameter

(2 67/2)F = Eno(nF/2)}

where I represents the mean square of the & , by &\ofni’/4]* which is equivalent
to dividing the number of observations by two, while the average of the &’ re-
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mains unchanged. Thus it is clear that, granted that the number of galaxies ob-
served is large, it is advantageous to diminish this number somewhat in order to
be able to prolong the observations for all these galaxies that will be observed.
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