LINEAR LEAST SQUARES REGRESSION!

By GrorrreY S. WATSON

The Johns Hopkins University

0. Summary. The paper gives a self-contained account of linear least squares
regression when the errors have an arbitrary error covariance matrix. The finite
sample size case is treated algebraically by methods which are entirely analogous
to those used for the asymptotic study of the same problem by spectral analysis
when the errors are generated by a covariance stationary process. The algebraic
methods and results are of interest in themselves and may also be useful as an
introduction to the difficult analysis involved in the asymptotic treatment.

1. Introduction. The paper gives a self-contained account of linear least squares
when the errors have an arbitrary error covariance matrix, bringing together the
distinet literatures of analysis of variance and time series analysis.

Section 2 sets up the problem and the notation. Section 3 is concerned with
conditions for least squares estimates to be efficient and with a lower bound to
their efficiency when they are not. The condition used here had its origin in time
series work by T. W, Anderson (1948). The most general set up with a regression
matrix and an error covariance matrix possibly not of full rank is considered, as
is common in analysis of variance but not in time series analysis. While it is
comforting to know that one’s least squares estimates are, in some circumstances,
best linear unbiased estimates it will, in general, be impossible to estimate their
variance unless further assumptions are made. The problem of finding a good
lower bound to the efficiency remains an open problem.

From Section 4 onwards the full rank model is used to study the efficiency of
least squares estimates from the point of view of U. Grenander (1954) and U.
Grenander and M. Rosenblatt (1957). They made an asymptotic study using the
spectral analysis of the errors which were assumed to be from a covariance
stationary process. The present finite sample size approach with its purely alge-
braic methods is of interest in itself and may also be useful as an introduction
to the difficult analysis used in the asymptotic treatment. The correspondence of
their results to the simpler ones in Section 3 is shown. The residuals are examined
in Section 5 because only from their study can one learn empirically about the
error model. In Section 6, a brief correspondence is made between the earlier
sections and the literature and method of spectral analysis of regression problems.

2. Linear least squares. It will be supposed that the dependent variable y is a
linear function of % independent (or regression or regressor) variables i, - - , Zx
plus a random disturbance . If n values of y are given, this model may be written
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1680 GEOFFREY S. WATSON

in matrix notation as

where yisn X 1, Xisn X k,8is k% X 1 and uisn X 1. The X matrix will be
regarded as fixed; initially we will not assume that the rank of X is k. The error
vector u has the properties

(2.2) E(u) =0, Eu') =
where the prime denotes matrix transposition.

A least squares estimator b of @ is a value that makes (y — @X)'(y — 8X)
least. The geometrical solution of this problem is well known. If X is written as a

row vector whose elements are its columns xi, ---, X, called regression, or
regressor, vectors, we have
(2.3) X@ = glxl + PP + gkxk

as a point in the linear subspace 9 (X) of Euclidean n-space spanned by x, , - - -,
x; and often called the regression space. If a perpendicular is dropped from the
point in n-space with position y onto the regression space, the foot of the per-
pendicular is Xb, where b is a least squares estimate of 8. Let the perpendicular
be denoted by x. Then z lies in 91 (X)™*, the orthogonal complement of 91(X) and

(2.4) y = Xb + z

M(X)* is often called the error-space. The error u can be uniquely written
(2.5) u=1u 4+ u

where u; £ M(X), uy £ M(X)™. It is clear that

(2.6) X8 + uy = Xb, u = Z.

Thus in least squares z is used to estimate the errors in b which is, in fact, affected
not by u: but by ui.

When X is not of rank %, it is necessary to introduce the notion of linear esti-
mable functions. We now summarize and extend the results in e.g. Rao (Section
4a, 1965) for later uses. A linear combination p'8 is estimable if, and only if, there
exists an n vector L such that L'X = p’. Hence p must belong to 9m( X'), the
space spanned by the rows of X. Further an(X’) = M(X'X), so that P= X'L =
X X3 for some k-vector A. The least squares estimate (LSE) of p'g is p'b where

X'y = X'Xb. When rank (X) = rank(X'X) = r < k, only the part of b e
M(X'X) is determined. Any component of b in (X X) 1s annihilated by
p e M(X'X) so that P ‘b = 2'X'y is the (detemmnate) LSE of p'8. Any part of &
orthogonal to (X’ ) does not contribute to p'b so we may assume 2 & MM(X').
But (X)) = am(X'X) is spanned by the eigenvectors of X’X not associated with
Zero elgenvalues So if there were two ways of writing the (unblased) LSE
le, wX'y with &, wen(X), then it would follow that X'X(% — g)
Whlch implies & = wy. Hence the LSE may be uniquely written as & 'X'y, 9» £
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M (X'). Any linear unbiased estimator L'y of p'8 may be written as L'y =
Ly + L)y, Ly e m(X), L, IM(X)*. The requirement X'L = p leaves L, free but
fixes L. For if Ly, Li* ¢ M(X) and X'Ly = X'Ly* = p, then X'(L; — Li*) = 0
implies L; = Ly*. Finally if we have a linear unbiased estimator L'y, with L ¢
IM(X), for any estimable functions p'8, L'y must be identical to the LSE, p'b =
2'X'y since X2 £ M (X) i.e. L = XA. This last result will be referred to as Lemma
1 several times in proof of Theorem 1.

The background is completed by a spectral resolution of the error vector u. If
the eigenvectors and values of the n X n non-negative symmetric matrix I' are
denoted, respectively, by g1, - -+ , g, and fi, - - - , f, then we may write

(2.7) r= foigigil-

There is no loss of generality in supposing that 0 < f1 < fo < -+ < f. . When
the f; are not all unequal, the g; are not all uniquély defined. It will often be
enough to suppose that some orthonormal choice has been made. In Section 4 it
is essential to write T" uniquely in terms of orthogonal projectors onto its spectral
subspaces; the treatment then becomes less intuitive. The resolution of u,
corresponding to (2.7), is

(2.8) U= g+ g+ -+ 78
where 51, - -+, 7, are uncorrelated random variables with zero means and vari-
ances fi, - - , f respectively. For any vector ¢ of unit length, var (cu) could

be called the variance (or power) of u in the direction ¢. Then f; is the variance

of u in the direction g; .
When X has full rank &, b = (X'X)7'X'y so that we may write

(2.9) b— 8 = D0 n(XX)" X",
and
(2.10) z= 2 vn(l — X(XX)'X)g;.

3. The efficiency of least squares estimates. When rank X = k and rank T' =
n, the problem may be stated very briefly. The best linear estimator § in (2.1)
is given by

(3.1) 8 = X'T'X)7"X'ry,
with

(3.2) var (8) = (X'T7'X)"
These must be compared with b = (X'X)™'X'y and
(3.3) var (b) = (X'X)7'X'TX(X'X)™"

Conditions for var (b) = var (3) (or equivalently, b = § almost surely) are
required on X given T or, on T" given X. When var (b) > var (§), it is of interest
to have an inequality on the ratio of generalized variances |var (§)|/|var (b)].
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In the full rank case, sufficient conditions arose in a paper by T. W. Anderson
(1948) of most powerful tests for serial correlation in the errors u of (2.1).
Anderson was only able to find such tests when the k regression vectors were
eigenvectors of I'. The result was used in R. L. Anderson and T. W. Anderson
(1950) to test for circular serial .correlation when a Fourier Series is fitted. It
was also the starting point for the papers of J. Durbin and G. S. Watson (1950),
(1951) on testing for serial correlation in the general regression model. The
papers by G. S. Watson (1952), (1955), G. S. Watson and E. J. Hannan (1956)
discuss the behavior and efficiency of least squares; the inequality given in the
first two papers shows the necessity of the condition for & = 1. Anderson’s
condition was rediscovered by T. A. Magness and J. B. McGuire (1962) who
showed it to be sufficient in the full rank case with general k. As will be shown in
Section 4, U. Grenander (1954) and U. Grenander and M. Rosenblatt (1957)
had, in effect, proved earlier an equivalent result. All these papers are concerned
with conditions on X, given I'. Rao (1965) found conditions on I, given X, by
agking (see (3.2), (3.3)) for a solution of

(X'r'x)" = XXX rXXx)"
for I'. He found that one must have
(3.4) r=X=X"+ 2602 + 1

where Z is h X 1 such that Z'X = 0, X, 6, " arbitrary. The sufficiency of (3.4)
is implied, not proved.

When X is not of full rank, Muller and Watson (1959) showed the sufficiency
and went on to consider the difficulties in error estimation. The application in
this paper was to experimental design. In some 1962 correspondence with Dr.
M. E. Muller and the author, Professor W. Kruskal indicated a coordinate-free
proof of the necessity and sufficiency when X, but not I', is possibly not of full
rank. This result is particularly simple to prove because, instead of working with
8 and b he uses § = X8 and § = Xb. He states that “4 = # if and only if
raX) = m(X).” The author hopes that Professor Kruskal’s result will
appear in the near future. Zyskind (1962) announced a theorem with I' non-
singular and Zyskind (1967) gives the first general theorem with I' possibly
singular. In our notation it reads: ‘A necessary and sufficient condition for all
simple least squares linear estimators to be also best linear unbiased estimators
of the corresponding estimable parametric functions p’g in the model (2.1) is
that there exist a subset of r orthogonal eigenvectors of I' which form a basis for
Mm(X).” Rao (1965) remarks that his result is true for I' singular and rank
X = r < k. (Then rank Z = r = n—n is implied.) Some skill with generalized
inverses might show the proof is still valid. Neither Zyskind or Rao go on to
discuss error estimation or are fully aware of the times series literature on this
problem. Zyskind goes onto the example of randomized blocks, given earlier by
Muller and Watson (1959). The essence of the four theorems and their three
dorollaries given by Zyskind are contained in the remarks in Section 2 on linear
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estimable functions and the following:

THEOREM 1. Let p'B be an estimable function for the linear model y = X3 + u,
E(u) = 0, E(uu’) = T. Then TO(X) = M(X) implies that the BLUE and
LSE’s of p'8 are identical. If the LSE p'b = 2'X'y, is a BLUE of p', then TX. ¢
M (X); in particular if the LSE is’a BLUE for all estimable functions, TM(X) =
m(X).

Proor. Given an estimable function p'8, assume that 91 (X) is spanned by r
eigenvectors of I', where r = rank (X) ie. assume that T9N(X) = M(X).
Write any unbiased linear estimator L'y as Li'y 4 L,'y where, by Lemma 1,
L, is the (unique) part of L in 91(X) and L, is the part in 91(X)*. Then

var (L'y) = var (Liu) + 2 cov (Li'u, L;u) + var (Lyu).

But cov (Li'u, Lu) = L/TL; = 0 since I'L; ¢ M (X) and L, ¢ ,M(X)*. Hence
var (L'y) = var (Li'y). Hence L,y is the BLUE of p’g. But L; is unique in
IM(X) so that L'y must be identical with the LSE estimator p'b = &'X'y since
X2 e M(X). This proves the first part of the theorem.

To prove the converse we consider first a given estimable function p'g and
assume that the LSE, 2'X'y, has the same variance as the BLUE. Then for any
unbiased estimator L'y, with L'X = p’, we may assume that

(3.5) ZX'rXa = L'TL.

Writing as before L = L; + L., we know further by Lemma 1 that L; = X so
that L = X2 + L, . Thus for all L e m(X)*,

L'rL = ’X'rxo + 2'X'rL, + L,rL,

which, in conjunction with (3.5) implies that 2’X'TL, = 0. For suppose e.g.
3X'TL, = a > 0. Then using —eL, instead of Ly, we could make L'TL <
A'X'TX) for sufficiently small e. But L/ TXA = 0 for all Ly e 91(X)* implies
that TX)A = 0 or I'XJ ¢ 9(X). This proves the second part of the theorem.
The third part is immediate since the last condition must hold for all a.

We turn now to a brief study of what may be learned from the least squares
residuals z about the variability of least squares estimates—the subject will be
taken up in a different way in Section 5. It was clear in (2.9), that even if these
estimates were optimal, their variance might not be estimable from z. Of course,
when I is singular, some optimal estimates have zero variance and the problem
does not arise with them! To show the problem it is best to take the simple case
of rank X = k. Then for all p, p'b is optimal if and only if the columns of X

are linear combinations of k eigenvectors of I'say g1, -+ , g -
CoroLLARY 1. If X = [g1, - -+, 8P, Pk X k non-singular, b — 3 depends on
N1, -, Mk ond Z depends on pi1, N -

Proor. From (2.6)

, g1/ gi
§ b—6=2rnuPP)P| : |

g g
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0
= 2 rn(PP)P| 1,
0
the first assertion. In (2.10), I — X(X'X)™'X’ is well-known to be the orthogonal
projector onto the regression space which is here spanned by gi, - - -, g. Hence
zZ= Zz?ﬂ 18 -
It follows that z can tell us nothing about the random variables in b, and hence

its variance. If some further assumptions are made relating fi, ---, fi to
fog1, ++, fa, it may be possible. We could say in this case that

(3.6) var (z) in directions gy, - -+ , g is zero;
var (z) in directions gri1, **+ , 8 18 frg1, *+* , fa -

In general this will not be so and b 5 § since each x; will have a component on
every eigenvector. We return to this point in Section 5.

For the rest of the paper we will assume that rank (X) = k, rank (I") =

In Watson (1952), (1955), the argument was continued by finding the bias in
the usual estimate of the error variance, the disturbances in the usual tests of
linear hypotheses about the regression coefficients, and a study of how ineffi-
cient b could be by finding a lower bound to the efficiency of b. We take up again
here only this latter point.

The natural measure of the efficiency of b is

Eff (b) = |var (8)|/|var (b)],
which from (3.2) and (3.3) is
(3.7) Eff (b) = |X'X[”/|X'TX]| |X'T7'X|.

Clearly 0 < Eff (b) < 1. For Eff (b) = 0 by definition and Eff (b) = 1 by a
Cauchy mequahty for determinants. To  prove the latter conSIder n X k matrices
A, B where B'B is non-smgular Then A’'(I, — B(B'B)7'B')A is non-nega,tlve or,
in a familiar notation, A’A = A’B(B'B)7'B'A. It follows that [A’A| =
|A’B(B'B)'BA| i.e. that
|A’B|* < |A'A| |B'B|.

Setting A = I''X, B = I'*X shows that Eff (b) in (3.7) does not exceed unity,
as claimed. Theorem 1 shows when the upper bound may be attained. To find
the lower bound, use was made of a converse of Cauchy’s inequality to be found
in Theorem 71 of Hardy, Littlewood and Polya (1934), that is now often at-

tributed to a later writer, Kantorovich (1948). f0 < fi < -+ Zfs andwi, -- -,
w, = 0, 2¢ w; = 1, the inequality in question is

(38) 1= (X faw)(X fiTws) £ F(/F)P + G/ = (i 1)/ 4 1o

The simplest proofs of (3.8) draw on convexity results. The upper bound is only
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attained when wy = w, = 1, wp = -+- = w1 = 0; the lower bound is attained
only when f; constant for non-zero w; . Its use for (3.7) with k¥ = 1 1s 1mme-
diate, when it is realized that there is no loss of generality in assuming X'X =

For, if H is an n X 7 non-singular matrix,

Eff (b) = |H'X'XH[’/|H'X'TXH| [H'X'T~'XH]|
because |H| may be cancelled. Since X has rank &, H _may be chosen so that

E = XH is composed of k orthonormal columns i.e. 22 '@ = I,. When k = 1,
E = .7 &g: where > r &l = 1. Thus

(3.9) Eff (b) = 1/( 2 f&) (2278
By identifying £ with w;, (3.8) immediately gives
(3.10) 4/[(f/fa)t + (/f)'F < B (b) < 1

the lower bound being attained when z = 2% (g1 + ). The upper bound is
attained only when all f; associated with non-zero £; are equal. If Eff (b) is to be
unity for all I, we have the case where the eigenvalues fi, -, fa may not be
equal and the only way to guarantee Eff (b) = 1 is to have only one g2 # Oie.
for x to be eigenvector of I'. Hence we have

TurOREM 2. A necessary and sufficient condition when k = 1 that Eff (b) = 1,
for all regression vectors X, is that all eigenvalues of T be equal i.e. that T' = oL

A necessary and sufficient condition that Eff (b) = 1 for a given regression
vector x and for all I with eigenvectors g1, - -+ , g is that the regression vector
be an eigenvector of I'.

The lefthand side of (3.10) is the minimum, for all x, of Eff (b) when the least
and greatest eigenvalues of I" are fi and f, . It is clear from the derivation that if
x is restricted to a subspace spanned g;, , - - , 8, %1 < %2, -+ < 71, then the
minimum of Eff (b) will increase to

4/I(f/F) + (F/DT

where f = min (fi;, - » fa) = fiF = max (fiy - ,fil) = fi, . It will be con-
venient to refer to the (invariant) subspace spanned by g:,, -+, g as the
eigen subspace s(71, - -+ , %1). Thus we have shown

(3.11) mingescsy,---,ip BfE (b) = 4/1(/F) + (F/f)T.

The eigen values f and F are the least and greatest variances of u for dlrectlons
¢ in the elgen subspace s(1, - -+ , %1). For ¢ = cigiz + - + cig;, and cdc=1

implies Y 1 ¢ fi, , We ha.ve, as asserted that f < var (¢’ u) < F.

TABLE I
I/F A 2 3 4 5 .6 i 8 9
min Eff(b) .364  .556  .710 .816  .889  .938  .969  .989  .997

&

For a single regressor restricted to an eigen subspace, min Eff (b) is given for various
values of the ratio of the least to greatest error variances in this subspace.
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CoROLLARY 2. A necessary and sufficient condition that, for k = 1, Eff (b) = 1
for all x in the eigen subspace (i1, -+« , 11) s that the variance of u for all directions
in this subspace be constant.

Theorem 1 for k¥ = 1 is an immediate consequence of both Theorem 2 and
Corollary 2 since x must, in this situation, be an eigen vector of I'. Some numeri-
cal values of the righthand side of (3.11) are given in Table 1. Thus we see for
example that even with a two to one ratio of f to F the efficiency of b cannot drop
by more than 10%.

Equation (3.11) is thus useful for an evaluation of the robustness of the least
squares estimate.

Fork > 1 and n > 2k — 1, Watson (1952), (1955) gave the inequality, for
all X of rank £,

(3.12) Eff (b) = [4fsfu/(fr + fa) l4f2fur/ (fo + fa1)]
coo [ afuirr/ Fo A+ Frosr)’]e

The proof however contains a flaw and the writer has been unable to establish
or disprove (3.12). True weaker inequalities will be given below. Eff (b) is
certainly equal to the righthand side of (3.12) when

(313) xi=2X g+ &), %o =278+ g1, X = 27(& + guir1)-
While searching for proofs of (3.12), two Monte Carlo experiments were run with
k=2n=10andfi = 1,fo = 2, -+ ,fio = 10. The elements of z in this first

experiment were independent standard normal variables and in the second were
chosen independently as 41 and —1 with equal probability. 5000 repetitions
were made in each case. In no case did the efficiency attain or fall below the
bound given by (3.12). In attempting to find a fresh approach, the following
different interpretation of Eff (b) was noticed—it is probably “well known.”

The canonical correlations p1, -+, p, of the two vectors b and § are easily
defined since we know that var (b) = (X'X)7'X'TX(X'X)™, cov (b, §) =
(X'T7'X)7™, var () = (X'r?X)~". The determinantal equation with roots
pt, -+, ;i immediately leads to

(3.14) Eff (b) = JTin2
where the righthand side of (3.14) is a product of k factors like (3.12). When
(3.13) is true, the factors in (3.14) are, in fact, the values of pi%, - - - , pi’.

G. H. Golub (1963) rediscovered (3.10) and went on to the general case to
obtain (3.18), an alternative proof of which (due to I. Olkin) will now be given.
If A% stands for the kth compound of a matrix A (its elements are the & X k&
minors of A arranged in lexicographical order: See MacDuffee (1946) p. 86
where A% is called the kth adjugate of A and its main properties are stated),
then it may be shown that

(3.15) (X'TX)® = X®' p®x®

where X® is a row vector of (#) elements and, since X'TX isak X k matrix
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(3.16) (X'rx)® = |X'rx|.
Thus (3.7) may be written
(3.17) Eff (b) = (X(k)'x(k))2/x(k)'F(k)x(k)'r(k)“lx(k)‘

The eigen values of T'® are f,h‘; (¥) products of the roots of I', k& at a time.
Applying (3.8) to (3.17) completes the proof that

(3.18) Eff (b) = 4fife - fu-fatrr - fo/ (Fifa oo+ i+ Fakgr =+ fu)

since it is assumed that fy < fo < --- < fa.

Inequalities (3.12) and (3.18) are the same for £ = 1 but for & = 2, the bound
in (3.18) is smaller than the bound in (3.12) by elementary inequalities.

If the bound in (3.18) were attainable, it would represent the solution to our
problem. To show that it is not we first derive another bound. Applying Hada-
mard’s inequality to (3.7), in which no generality is lost by assuming X'X = I,
we see that

Eff (b) = 1/(x/'Txixi T7x1) -+ (% Tx) (% T7%x).
Putting every factor in the denominator at its absolute maximum, we have

(3.19) Eff (b) = (4f1fa/ (fr + fa)B)".
A numerical example with k = 2,n = 10, fi = 1,f, = 2, - -+ , fio = 10, gives the
righthand side of (3.18) equal to 0.0157 which is less than the righthand side of
(3.19), 0.1093. (3.12) is 0.1967. Thus (3.18) cannot be attained in this case. In
other cases the relationship of the bounds (3.18) and (3.19) is reversed, e.g. for
n=10,k=2fi= - = fy = 1, fin = 10. Of course (3.19) is always smaller
than (3.12). To see the reason why (3.18) is not in general attainable, consider
the case k = 2 and n = 4 and write X = [X{, Xy, X¢, X/']. Then X% is a row
of 2 X 2 determinants,

x®" _ [ | |%] (X (X [ XX ]

X, X3 X, X; X, X

The condition for attaining the bound in (3.8) is that the first and last elements
of this vector all equal and non-zero and that the rest are zero. The last condition
requires all the rows of X to be proportional and so the first and last elements
cannot be non-zero. This argument holds for » = 4; for n = 3 the bound is
attainable. Similar difficulties presumably occur for & > 2.

Thus the problem of finding an attainable lower bound for Eff (b) when k& > 1
remains open. We conclude this discussion with the remark that both (3.18)
and (3.19) may be improved to match (3.11) if the columns of X are restricted
to lie in s(%1, « -+, 71).

To conclude this section we note an interesting sidelight of this study. Sup-
pose that we were able to predetermine the values of x; - - - x, before observing y.
How then should X be chosen to obtain the most precise least squares estimate of

\

" 8, assuming T is known?

) ) ) ) )




1688 GEOFFREY 8. WATSON

The obvious strategy is to make the choices so that the
x; = (g; corresponding to the least var (n;) = f;).
Since f1i £ fo < -+ = fa, this means X = [g1, -+, gl. Then
b—8=2tng, z= 2inng,
from (2.9), (2.10) on noting that X'X = I, and X'g; = 0if j > k. In communi-
cation theory language, we must put in the “‘signal”” where there is least ‘“noise,”

as is intuitively evident. However, as we observed in (3.6) the residuals are
not, without further assumption, useful for constructing an estimate of var (b).

4. The regression spectrum. In Section 3, the argument frequently called for
the expression of the regressor vectors as linear combinations of the eigen vectors
of I'. In this section, this technique will be formalized and be the center of
attention. This approach was initiated by Grenander (1954) for the asymptotic
study of regression analysis when the error u is generated by a stationary process.
A finite dimensional version, for an arbitrary error covariance matrix I, of the
results in that paper and in Chapter 7 of the book by Grenander and Rosenblatt
(1957) will now be developed. This may serve the secondary purpose of making
their difficult asymptotic results more accessible. In this version, their main
result is an immediate consequence of Theorem 1. The treatment would be much
simpler if we used before the resolution I' = >t fgg, as we did above. It
does however raise uniqueness problems so that we will work with the invariant
subspaces of T.

Suppose that the spectral resolution of I is given by

(4.1) r= 2 "1faE:
where
(42) E%EJ = aijEi; 7’7.7 = 1) cee, M,

STE;=1..

Denote by T; the spectral subspace of dimension ¢; onto which E; projects,

i=1,---,m, and Y 1t = n. Then the n X k regression matrix X of rank k
may be written uniquely
(4.3) X=2,EX

so that E;X is the part of the columns of X lying in T;. Then, if (X'X)~ de-
notes the unique positive definite square root of (X'x)7,

X'X = > rX'E'X,
L = L {(XX)IXENEXX)XEY,
so that, defining the k& X n matrix W; by
(44) W: = (X’X)"X'Es, i=1,-,m,
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we have
(4.5) WW, = 5,;W.W/,
L= 2T WW/.
Then the least squares estimat(.)r of 8 is given by
(4.6) b = (X'X)"'Xy = (XX)"X'(XrE)y, ie

b= (XX)7 21 Wy,

where we note that (X'X)™ D7 W.X = I since E(b) = B. Also
(4.7 var (b) = (X'X)™ 27 W.rw/(X'’X)7,

var (b) = (X'X)™ 2.0 £, W,W/(X'X) 7,
by (4.1), (4.2). The least square residual vector z is given by

z = (I — X(XX)"'X )y,

or
(4.8) z = (I— (27 W) W))u
Finally the best linear unbiased estimator is given by

8= XTr'X)XT, e

(4.9) 8= (XX)HTfmWW )™ 20 W,
and
(4.10) Cov (§) = (X'X) (X0 o, WW,)(X'X)

The treatment which follows of necessary and sufficient conditions for b = §
is directly analogous to that of Grenander and Rosenblatt (1957).
DerFmviTion. For the regression matrix X = 2.7 W, (X'X)}, the spectral

distribution of X is {WiWy, - -+, W,W,.'}. The spectrum S of X is the set of
subscripts for which W is non-null.

Since
(4.11) EX = W/(X'X)},

the spectrum of X may be identified with spectral subspaces of T' in which the
columns of X have components. Off the spectrum, the W; are null matrices.
Hence the summations in (4.6) (4.7) (4.8) (4.9) (4.10) need only be over S;
we will make this change now and all W; appearing subsequently will be non-null.
Now since we wish to arrange the k X n matrices W; into [ subsets Sy, ---, Sz,
with [ as large as possible, so that if W; comes from one subset and W; from an-
other, W/, W; is a null-matrix, i.e. the subsets are to be orthogonal, or to put it
, another way, all the columns of all W’s in one subset are to be orthogonal to all
the columns of all the W.’s in other subsets. There may only be one subset
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(i.e. all the W;) or there may be more but certainly ! < k because the columns
are vectors in k-space. This mazimal subdivision of S into subsets of S;, ---, S:
of subscripts of W.’s belonging to the sets is unique. For suppose there is a dis-
tinet subdivision Si*, - -, S;*. Then distinct means that there exists a set S;
and two sets S,*, S;* (p # ¢) such that some of the members of S; belong to
S,*, and some to S,*. By the orthogonal construction of these subsets, the re-
maining elements of S; are neither in S,* or S,* and the members of S; fall into
their orthogonal classes and are orthogonal to the elements of all other sets
S: (¢ ¥ 7). Hence S; may be subdivided into 3 sets so [ is not maximal—this
contradiction proves the uniqueness.

This subdivision of S corresponds to a subdivision of k space into ! orthogonal
subspaces S;(k) where S;(k) is the space spanned by the columns of the W;
belonging to S;, 4 = 1, - -+, I. The union of these subspaces is all of k-space—
this follows from (4.5) and rank (X) = k. The k£ X k orthogonal projectors onto
these subspaces are defined by

(4.12) Nj = D is; WiW/.
From the construction of the subdivision N;N; = null matrix, ¢ # j, and from
(4.5)

ZT WiWi’ =1 = Z;‘=1 Nj.
Thus NI, = N; = 2. ,N.N, = N ie. the N; are idempotent. Hence
N, -+, N; are symmetric orthogonal idempotents i.e.
(4.13) N; = N/, NN; = ;N;, 2N, = L.

Corresponding to the subspaces S;(k) of k-space, there are orthogonal sub-
spaces S;(n) in n-space. For to each W;, there is an invariant subspace T; in
n-space. Hence

(4.14) Si(n) = {uTi|ieS, j=1 -,
The projectors onto S;(n) is given by

(4.15) i =L = JLies;(I. — Ey), =1,
These projectors in n-space are related to the projectors in k-space by the formula
(4.16) GX = X(X'X)7'N;(X'X)

To establish (4.16), (4.15) applied to (4.3) gives
(4.17) GX =Gy i EX = D ieo; BX = Do, Wi/ (X'X)%.
But
X(X'X)7N(X'X) = TP EX(XX)TN(X'X)!
(4.18) = > s W/N;(X'X)}
= D i Wi (X'X)!
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since N; projects orthogonally onto the space spanned by {W.|7eS,}. The
equality of (4.18) and (4.17) is (4.16).
Finally if we define

(4.19) M; = (X'X)'Ny(X'X)*
then
(4.20) G;X = XM;, MM, = §;M;, >iM;=1,;

however the M; are not necessarily symmetric.

Thus many results follow from the constructions based upon the maximal
subdivision Si, ---, S; of the regression spectrum S, and we make the fol-
lowing:

Dzrinrrion. The subsets Si, -« -, S; of the regression spectrum used in (4.12)
to define the orthogonal idempotents are called the elements of the regression
spectrum.

The analogue of the main theorem of Grenander and Rosenblatt (Chapter
7, 1957) may now be proved.

TarEoREM 3. For a given X and T of full rank a necessary and sufficient condition
for b = B for all observations y is that the eigen values of T be constant on the ele-
ments of the regression spectrum.

ProoF. Since b = § implies var (b) = var (§), the necessity part of the
theorem may use the consequences of equating (4.7) and (4.10) which yields

(4.21) D5 feWW, = (Xsfz WW/),
or
(4.22) (XsfeWW ) (s fm; WiW:) = L.

From (4.21), there exists an orthogonal transformation H diagonalizing both
factors on the lefthand side of (4.22). Each of these factors may be written as a

sum,

(4.23) 25 s WW, = 20hy D s, fu WiW/,
(4.24) 2 faWW, = Dl D s faWW,.
The matrices D _s; fa,; WiW, = Bj, Do, feiW:W, = C;, j = 1, -+, I, satisfy

B, = B/, B;B; = null matrix = B;B; (¢ # j), C; = C,, C:.C; = null-matrix =
C,C; (¢ # j), by the orthogonality of the W, in the elements of the spectrum.
For the same reason B,C; = C,;B; = null matrix, (¢ # j). But symmetric matrices
which commute may be simultaneously diagonalized by the same orthogonal
transformation. Thus each sum is separately diagonalized by the same matrix
which we know to be H. Moreover the orthogonality of the B; and C; implies
that of HB;H' and HC;H', ¢  j. Hence (4.22) becomes

(4.25) it (s, e HWW/H ) (2, fr HWW/H') = 1,
where D s, e HW.W,/H' and D s;fs HW.W,/H are diagonal, all j, and
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each diagonal product (Zsi fE,.HW1~W,-'H')(ZSJE:HW¢W/H') is orthogonal
to every other. Hence thcse products have zeros and unities on their diagonal and
the unities of one product correspond to the zeros of all others. For each j there
will be an r such that the (r, 7) element of D _s; fs, HW,W/H' > s, fz;HW,W,/H’
is unity. Then orthogonality requires the (using (A)rr for the (r, r)th element
of A)

(4.26) Z'i&ﬂj fE,’(HWiWi,H,)rr Ziesi fE_’:(HWiWi,H,)TT =1L

Since all W,, 2&8;, are non-null, the same is true of HW;, 7 ¢ S;so that
(HW,W./H'),, is positive for every ¢ e S;. Now D_s W.W, = I so

2s (HW.W,H),, = 1, r=1--,k
But directly from (4.22) we have foreachr =1, --- , k
(427) 2 2= Xs,(HWW/H ) ) (s, [ HWW/H )y = L.
Combining (4.27) and (4.26) for the particular r for which (4.26) is true we have
(428) 22 Dbt Gantii) (208, o (HWW/H ))
(s, fe:(HW:W/H)) = 0,

where all the factors on the lefthand side of (4.28) are positive. Hence for an r
for which (4.26) is true,

(4.29) D s, fe(HWW/H),, = 2 s, fay(HW.W/H'),, = 0 (p = J)
which implies that

(4.30) 2 s,(HW,W/H'),, = 0, p #J.
Hence for j and r such that (4.26) is true
(4.31) S s(HWW/H), = 1= (HW,W/H),

so that (4.26) may be written
(432) ZijEi(HWiWi,H)rr Zsj f}_z.:(HWszlHl)rr = Zg(HW;W,HI)r,. .

The condition for equality in Cauchy’s inequality then gives us that fz; and fz;
are proportional for 7 & S;, i.e. that fg, is constant on the element of S; of the
regression spectrum. This proves the necessity. To prove sufficiency, we have
only to show that if fz, is constant, f; say, fori ¢ S;, b = § or, equivalently, that
(4.22) is true. But (4.22) then reads

fj—NjZSjWi=fj—IZ’ngi, j..—_]_’...,l’

which is obviously true since N;W; = W;,7¢S;.

DiscussioN. The conditions of Theorem 3 are not as easy to understand as
those of Theorem 1 so it is helpful to see how each set implies the other.

If the conditions of Theorem 1 are satisfied, the k& columns of X are all linear
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combinations of g;, , +* , 8 , some k eigen vectors of I'. From (4.4),

W, = (X'X)X'E;, i=1,---,m,
can be non-null for at most min (&, m) values of 7. Write

X =gy, - ,8glC
where C is a & X & non-singular matrix so that X'X = C’C and

!

g: E;
w,-=<c’C)'*C'[ E J

g Ei

where the rows in the last factor are only non-null when the eigenvector is in
T; . Thus the last factors in any two distinet W,’s cah have no non-null rows in

common because T-subspaces are orthogonal. Hence
!

, i gil.Ej
W.W; = [E:g:,, -+, E:g,JC(CC)"C :

g:‘k EJ'
g:'1 EJ'
= [Eigil, cee ,Eigik] , :

8ix EJ'
= E,’ PE,

where Pis an idempotent that projects onto the regression subspace. For any
vector v in 7 space, v; = E;v is its component in T;, Pv; is the component of v;
in the regression space but is still in T; . Therefore E,PE;v is the null vector when
i 5% j. Hence W;/W; = null matrix. Hence the I = min (k, m) matrices W; are
individually the elements of the spectrum Si, ---, S;. The eigen values are
trivially constant on these elements. Thus Grenander’s conditions are satisfied.

The conditions of Theorem 3 will imply those of Theorem 1 if we can show that
k eigenvectors can be chosen out of the [ subspaces Sj(n),j = 1, -+, I, so that
the columns of X are linear functions of these k eigenvectors. Consider the part
of X in S;(n), G;X whose columns span a space whose dimension is rank (G;S).
By (4.16) and a standard result on the rank of a produect, rank (G;X) =< rank
(N;). Any set of rank (N;) orthogonal vectors in S;(n) are eigen vectors of T’
for root fs; (since fz; = fs; , © € S;) by Theorem 3. This is true forj = 1, --- , 1
so that the columns of X may be expressed as linear functions of at most >
rank (N;) = k eigen vectors of T'. In fact k& are needed because X must be of
rank k. This proves the condition of Theorem 1.

Theorem 3 considers a given X and a given T'. Suppose we have a given X and
consider a class of positive definite matrices T' each member of which has the
same eigen vectors (i.e. spectral subspaces) but may have any positive eigen
walues. For least squares to be efficient, or b = § for every member of the class,
the eigen values of T" must be constant on each element of the regression spec-



1694 GEOFFREY S. WATSON

trum, the latter being uniquely defined for X and the class of I's considered.
Since fz, , - * fr,, may be any positive numbers, this will be so only if one fz,
is involved in each element. Hence the spectrum must consist of I elements, each
with only one W; in it—the remaining W; being null. The non-null W, are then
orthogonal. Thus the spectrum must consist of I 5 k points. Hence we have the
analogue to another theorem of Grenander and Rosenblatt (1957) which may be
stated as follows.

TeEOREM 4. For a gwen X, E,,---, E, and a class of matrices T,
(|0 = 20 feEi,fu, >0, -, fz, > 0}, a necessary and sufficient condition
that b = § for every T in the class is that the spectrum of X consists of | < k points.

Discussion. This theorem is a trivial consequence of Theorem 1 as may be
seen from the discussion of Theorem 1.

b. The residuals. The residuals are used to find out the properties of the error
distribution. The covariance matrix T'" of u is of most interest. For some unit
vector ¢ we will thus be interested in the relationship of var (c'z) to var (c'u).
When the eigen vectors g; of T' are known, interest will largely be limited to
comparisons of cov (g;z, g,z) with cov (g/u, g;/u). Formulae for these pur-
poses will now be derived.

When least squares is efficient and the k columns of X are linear functions of k

eigen vectors, g1, - - - , g say, of T, it was seen in (3.5) that the variance of the
residual vector z in the directions gi, ---, g was zero and in the direction
gi(i=k+1,---,n) wasf;. To discuss the general case when the columns of X

have components on more than & eigen vectors, we have the general formula
(4.8) for z. The most revealing way to study (4.8) is to assume that the eigen
vectors of T are uniquely defined, as was done in Sections 2 and 3.

Thus in the results of Section 4, E; will be replaced by g.g: and m by n and
(2.5) used to represent u. Since the k X n matrix W; now has the form W; =
(X'X)*X'g.g/, W.g; is null if ¢ 5 j and the expression (4.8) for the residual
vector z becomes

(5.1) z= 2 tan(l — (25 W)Wig:.

Now 8, the spectrum of X, is the set of subseripts for which W is non-null so
(5.1) can be written

(5.2) Z = D i n@i + Dies 1i(1 — (D jes Wi )Wi)gi .

Hence if ¢ is a direction belonging to the spectral subspace spanned by {g./7 £ S},
the variance of z in the direction ¢, var (¢z), is identical with var (c'u) i.e. it is
unaffected by the regression. Introducing the elements Si, ---, S; of the
regression spectrum, the second term in (5.2) may be rewritten so that

(5.3) Z= D s + Dgemr Desye ni(1 — (D jesy WI)Wo)gs.

Thus the variance of z in any direction in the spectral subspace spanned by
{g:/1 ¢ S;} depends only on the eigenvalues f;/7 ¢ S;. In particular the variance
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of z in the direction ¢*, when ¢* ¢ S+, is given by
(54) var (8/2) = fis — 2 fuisWisWegse
+ Zz‘egi* FiWin(Wigigd W, ) Wisgin .
If the condition of Theorem 3 ié true i.e. f; = fs;+, 168+,

(5.5) var (gi«z)

= fofl — 280 WisWasgie + gieWin( Xies;r Wigigs W) Winga).
If further we define
(5.6) X, =Xg, X=2rgX/

W = (XX)7K = Vi, say

then X'X = D1 XX/ or I, = D¢ V.V, and it may be shown, as in the deriva-
tion of (4.13), that
(5.7) 0j = D ies; VV/
also obey (4.13). Hence (5.5) becomes, when least squares is efficient,

var (g:-:z) = fsjal{l - 2V§*V,-. + V§~O,-*V¢~},

ie.

(58) var (gﬁtz) = fsjs{l - V:.V¢}

It will now be shown that 0 £ ViV, < 1 so that

(5.9) var (giz) < fs;« = var (giar), all ¢*e&Sje.

From (5.6), consider the £ X n matrix
V=[Vi, o, Vol = (X)) 7Kg, -, gl

Clearly VV' = I, so that V is the first & rows of an orthogonal n X n matrix
with real elements. If it were completed, the sum of squares of the elements in
each column would be unity. Hence the sum of squares of the first k elements in
any column, which is V'V, lies in (0, 1). Because of the identity of Theorems 1
and 3, it follows from (3.5) that the eigenvectors may in this case be chosen to
make var (gi«z) = 0, g being an eigen vector in spectral subspace associated
with S g% .

When least squares is not necessarily efficient, var (g;'z) for ¢ ¢ S may be
greater or less than var (g;/u) = f; . The formula (5.4) suggests that, as a general
rule, if f; is high, var (g:'z) < f: and if f; is low, var (g:'z;) > f:. For suppose
f* and F* are the least and greatest roots in the set {f; T ¢ & S;s}. Then since
(5.4) gives, if 7* corresponds to F*

var (giz) = F¥(1 — 2ViVis) 4+ Do fil(VisVa),, e
(5.10) var (ghz) < F*(1 — ViaVis) < F* = var (giou).
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However if * corresponds to f*, the same argument only gives
var (gisz) = (1 — VisVi).

There is an overall tendency to lose variance because

Zi*gsj. var (gﬁtz) = Zi*eSj*fi‘ -2 Zpesj* wVisVir
t Diesy SV (D ines e VasVin) Vi
= Dspfir = DspfiViVie,  ie.
(5.11) D iresye var (giez) < s fie = Divess var (gisu).

This is attributable to the linear restrictions X'z = 0 on the residual vector.
The covariances of the compounds g;'z may be examined in the same way, thus

(5.12) cov (g.'z, g/z) = 0, h, % not both in S; ,
= Vi/'(=fi = fi + e fVVIVi, hyie Spm.
By comparison, cov (g, u, gu) = .fs .

6. Application to time series data. In 1950, when the present writer became
interested in regression analysis in economics, the reasons for assuming that the
error process in economic time series regression was stationary were less than
compelling. For example there seemed no reason why the variance should not
alter. Little information could then be gained empirically because of short series
and limited computing facilities. Thus this writer was unwilling to assume T’
had much structure and lead to develop a more general theory. Furthermore the
X vectors were often time series of complex form and so it seemed unlikely that
they would be simply related to the eigen vectors of I', whatever they might be.
Hence the conditions for Eff (b) to be very low might often be met and, as also
shown in Watson (1955), the standard errors and tests might be very misleading.
(One would rarely know this because I is rarely known.) Thus the use of least
squares in these circumstances seemed to rest on optimism and convenience.

If the error process is assumed to be stationary in time, the exact eigen vectors
of I" vary from process to process, in general. However, with an approximation
that improves with sample size, it is possible to think of I" for stationary processes
as having fixed eigen vectors and varying roots, equal in pairs, which correspond
to the values of the spectral density at multiples of 2r/n (Whittle, (1951)).
The finite analysis may then be made fairly satisfactorily. A slight variant of this
was used in Watson (1952)—approximations to simple autoregressive and mov-
ing average processes were devised with covariance matrices with known roots
and vectors. Grenander (loc. cit.) took the other way out of this dilemma—
rigorous asymptotic treatment. For practical purposes each is approrimate. The
finite treatment is easier to understand in relation to least squares and analysis
of variance. The asymptotic treatment is more naturally related to covariance
stationary processes: the many uses made by Hannan (1957), (1963a), (1963b),
(1965)) indicate it is perhaps the most profitable approach in the long run.
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The approximate eigen vectors of the last paragraph are the Fourier or har-
monic vectors defined by

zg: ZZZZ h =01, ,n/2, n even,
; =0,1, -, (n—1)/2,no0dd,
(6.1) | cos 27|:nk/nJ root = f(2wh/n);
. ’ —_
’—:;II: 42[.77:?[,,?:, h' e 1, 2’ cee (’n —_ 2)/2’ n even,
: 1,2, (n—1)/2,n 0dd,
sin 21r'h'n/n_] root = f(2xh’/n).

The result (6.1) follows from the fact that I' is, approximately, a linear combina-
tion of » X 7 circulants. The roots are equal in pairs except that corresponding
to h = 0 (whose vector is associated with the mean) and to & = n/2 for n even
(whose vector oscillates faster than any other).

It is vital to notice that the ordinates of f(8) for 6 = low multiples of 2r/n
are associated with Fourier vectors that oscillate slowly. For example if 6, =
2wh/n, the elements of the vector form the sequence cos 6,’, cos 20, , - -+ , cos
n8, . The sign of the cosine changes as its argument passes through =/2 and 3x/2.
Multiples of 6, “go round the clock” faster, the larger 6, is i.e. for larger 4. Thus
for small &, %', the oscillation in sign is relatively slow.

The consequence of Grenander’s work that has received the greatest attention
is the following: if the columns of X are slowly varying and the spectral density ()
s almost flat for 6 near zero, least squares is nearly 100% efficient. This may be
deduced from our arguments as follows. The assumption on X really requires
that the columns of X be expressible in terms of the vectors in (6.1) that use
small & and 4. These correspond to roots almost equal to values of f(8) for small
6—say for values of 6 on (0, c).

By the appropriate form (3.19) (i.e. the kth power of the bound in (3.11))

(6.2) f=mingce<.f(0), F = maxozcez.f(6),

we see that the assumption of f(6) (that it be almost constant for 0 < 6 =< ¢)
implies that Eff(b) is bounded below by a number only a little less than unity.
The key fact is that the latent vectors at low frequencies here correspond to
nearly equal roots.

Our analysis in Section 5 gives us more than this. We see that the W; and V;
matrices are null unless they are associated with low frequency eigen vectors that
define the regression spectrum. From (5.2) it now follows that the power or
variance of the residuals is the same as the error process in the direction of the
higher frequency eigen vectors (i.e. off the regression spectrum) but are generally
reduced in the direction of the low frequency vectors. Hence a study of the
residuals will give a biased picture of the power distribution—in particular an
underestimate of the relevant power for the sampling variation of the esti-
mates—unless this regression effect is corrected.
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The study of the residuals for the purpose of estimating the spectral density
f(8) is usually made via the periodogram. It is now computationally feasible
(Jones, (1965)) to transform the model (2.1) by premultiplication by the orthog-
onal matrix [g, - - - , g with the g’s defined as in (6.1). Since g/u = n; has
variance f; , the square of each term is related to an f; . If they are assumed to
follow a regular pattern, suitable simple averaging will lead to good estimates.
Formula (5.4) suggests that the regression bias may be eliminated. This is
discussed in Hannan (1960). More simply, if f(6) is estimated this way for 6
away from the origin it may sometimes be safe to extrapolate back to 0. Devices
of this kind are discussed with examples in Duncan and Jones (1966), who
attempt to utilize the estimates of f(6) to improve on the least squares estimates.
Their examples are however very favorable to their method.

More generally the case of X made of low frequency vectors is seen as a case
where the spectral distribution of the regressors is concentrated near zero.
Clearly it is not essential that the region be near zero but simply that it be con-
centrated in a region where f(8) is varying slowly. And furthermore the region
of concentration need not be a simply-connected interval—it may be the union
of up to k narrow intervals, or frequency bands (this is the simplest case of
Theorem 1). Of course it is less likely in this case that f(#) will have similar
values for widely different values of 8 but it is only required that f(6) be nearly
constant within these different intervals. This leads to the ideas in Hannan
(1963a).

Another point in the literature that may be easily explained in the above terms
is Hannan’s (1957) observation that the upper bounding significance point given
the Durbin and Watson ((1950), (1951)) statistic for testing for serial correla-
tion is almost exact for low frequency regressors. For the upper bound is ob-
tained by replacing the actual regressors by the more slowly moving latent
vectors which here correspond to the least roots of the matrix A.

7. Acknowledgment. I am grateful to Professor James Durbin for many
discussions and to Dr. A. S. Householder and Professor I. Olkin for suggesting
the inequality (3.18).
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