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WHEN ARE GAUSS-MARKOV AND LEAST SQUARES ESTIMATORS
IDENTICAL? A COORDINATE-FREE APPROACH'

By WiLLiam KRUSKAL
University of Chicago

1. Introduction. In the framework of the general linear hypothesis, it is well
known that the Gauss-Markov (minimum variance linear unbiased) and least
squares estimators may be the same even when the underlying covariance struc-
ture is not a multiple of the identity. The main purpose of this note is to develop
a (known) condition for this phenomenon simply in terms of the coordinate-
free approach to the subject.

For general background and bibliography see Zyskind (1967) and Watson
(1967). Much of the present paper is effectively a simpler form of part of the
material in the Zyskind and Watson papers. For discussion of the coordinate-
free approach see Kruskal (1961). Two very simple examples may be useful at
the outset.

ExampLE 1. One-way layout with unequal variances in known ratios. The ob-
servations correspond to uncorrelated random variables Yy (¢ = 1, .-, I;
j=1,--+,J), EY; = Bi, and Var Y;; = \’s". Here the 8; are unrestricted,
unknown numbers; ¢” is an unknown positive number; and the A\ are known
positive numbers. It is readily seen that the Gauss-Markov and least square
estimators of B; are both ¥;. = J; ' >_; ¥i;. The corresponding conventional
estimators of ¢® are, however, not the same, unless all the A\ are one. These
conventional estimators are [, (J; — 1)]™" times

> (Vi — ¥i)®  (for Least Squares),
2 (Y — TS (for Gauss-Markov).

(Of course if the A/ are equal, the two expressions are proportional, and if all
A& = 1, the expressions are identical. To obtain unbiased estimators of ¢*, the
first expression must be divided by D [(J: — 1)A’] and the second by

(J: — 1))

ExampLe 2. Single sample with permutation-invariant covariance structure. The
observations correspond to random variables Y; (¢ = 1,---, n), EY; = B,
Var Y; = ¢°, and Cov (Y;, Yi) = o’y for ¢ # 4. Here 8 is an unrestricted un-
known number, ¢* is an unknown positive number, and v is a known number
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satisfying (for positive definiteness) the condition 1 > v > —1/(n — 1). It is
readily seen here also that the Gauss-Markov and least squares estimators of 8
both are Y., the sample average. The conventional corresponding estimators of
o are (n — 1) times

S (Y:— ¥.)  (for Least Squares),
(1 =) (Y= 7)) (for Gauss-Markov).
While these are proportional, they are the same if and only if vy = 0.

2. Identity of estimators if and only if regression manifold is invariant. In
general, let Y be a random vector in an n-dimensional inner product space.
Without essential loss of generality, the space may be taken as ordinary n-di-
mensional coordinate space with the conventional inner product, but it is simpler
to proceed without specific coordinates. The inner product of vectors z, 2 is de-
noted by (z, 2). Let p be the expectation of ¥ and ¥ its covariance operator. This
is equivalent to saying that E(x, Y) = (z, p) and that Cov [(z, V), (2, Y)] =
(z, ¥2) for all vectors x, 2 in the space. Of course the moments are assumed to
exist.

Now suppose that u is assumed to lie in a given linear manifold, 2, and that I
is taken as known up to an unknown positive scalar constant, ¥ = o’V say, where
o is the unknown scalar and V is a given symmetric positive definite linear trans-
formation. (Positive definiteness will later be relaxed.)

The least squares estimator of u, u*, is given by the orthogonality condition
that p* is the unique member of @ satisfying

(Y —pu*2) =0 for all zeq.

The Gauss-Markov estimator, f, is given by the corresponding orthogonality con-
dition in terms of the new inner product

((z,2)) = (x, V'2).
The condition is that fi is the unique vector in @ satisfying
(Y —4,2)) =0 for all zeQ.

In this setting, we have

TraeoreM 1. The two estimators, u* and £, are the same if and only if Q is in-
variant under V.

Proor. To say that @ is invariant under V is to say that Vi £ Q for all x £ Q.
By non-singularity of V, this is equivalent to VQ = Q, and this in turn is equiva-
lent to V'@ = Q and to V'z £ Q for all z £ Q. Now write the two defining con-
ditions as

(Y —p*2)=(Y =4, V%) =0 forall zeQ

If ¢ is invariant under V (or V), then the two defining conditions are the same,
so that, by uniqueness, p* = 4. On the other hand, if u* = £, then ¥ — ™ must
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always be orthogonal (in terms of the original inner product) to both @ and
V7. Unless @ = V7'Q this leads to a contradiction. This completes the proof;
a second proof will be given later.

As an illustration, consider Example 2, for which Q is the equiangular line,
spanned by the column vector e = (1,1, -+, 1)". The matrix corresponding to
V has 7, 7 component 8;:(1 — v) + +, where 8;; is the Kronecker delta. Multi-
plying this matrix into e gives (1 + (n — 1)v)ee Q.

Note that 4 = u* means that, for all estimable linear functionals of p, the
Gauss-Markov and least squares estimators are the same. In other words, i = p*
if and only if (z, #) = (x, u™*) forall z £ Q.

Note also that to say V2 = Q is to say that @ is spanned by dim Q character-
istic vectors of V. For if VQ = Q, consider V as a linear transform on © alone. It
must have dim Q@ mutually orthogonal non-zero characteristic vectors in €, since
it is symmetric positive definite. Yet these remain characteristic vectors for V as
a transformation in the whole space by the assumed invariance. On the other
hand, if @ is spanned by dim © characteristic vectors (necessarily non-zero) of Q,
then clearly V@ = Q.

3. Another proof in terms of an intrinsic characterization of ji. The follow-
ing characterization of /i has intuitive appeal and is often useful.

THEOREM 2. Assume that V is non-singular. A linear transform AY of Y is the
Gauss-Markov estimator fi of u, if and only if these three conditions hold,

1. AY €,
2. Az = x for all x £ Q,
3. AY and Y — AY are uncorrelated.

Proor. Condition 3 means that the covariance between any linear functional
of AY and any linear functional of ¥ — AY is zero. Let {z, 2) be an inner product
for which the covariance operation of Y is the identity. Such an inner product
must always exist by non-singularity of Y. If AY = f, then AY is the orthogonal
projection of ¥ onto 2 with respect to ( , ) and the three conditions are immedi-
ately verified.

If the conditions are satisfied by A, then, by condition 3, for all vectors z, z

0 = Cov [<x7 AY)) <z7 (I - A)Y)]
= Cov [(4'z, Y), (I — A)'2, V)]
= (&, A(I — A)")

sothat A = AA’, whence A’ = AA" = A and A = A’ Hence A is symmetric
and idempotent, and thus an orthogonal projection. By condition 1, 4 is into Q;
by condition 2, A is onto 2. Hence A gives orthogonal projection onto 2, and
AY = f.

In terms of Theorem 2, a second proof of Theorem 1 may be given. One wants
to show that V@ c Q if and only if (1) p* e, (2) Ex* = p, and (3) p* and
Y’ — u* are uncorrelated. But (1) and (2) always hold for u*. For convenience,
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denote by Pgq orthogonal projection onto @ with respect to ( , ), and set
Qo =1 — Pg;thusp™ = PV and ¥ — p* = QqY. It is readily computed that
condition (3) is equivalent to QoVPg = 0. Now if V@ C Q, VPor € Q for all z and
hence Qa(VPgr) = 0 since Qo = 0. In the other direction, if QaVPgx = 0 for
all z, then (Qqgz, VPgz) = 0 for all x and 2. This says that ¥V Pgz is orthogonal to
the orthogonal complement of @, or that VPgx is in Q.

4. Equality of residual sums of squares. If V were the identity, the conven-
tional estimator of u would be PoY = u* = f, and the conventional estimator of
o* would be (n-dim @)™ times ||[Y — PoY|* = ||QoY]’, where |2|* = (z, ).
For arbitrary non-singular V, the conventional estimator of u is fi and the con-
ventional estimator of ¢® is (n-dim Q)™ times |||Y — 4|/}, where |||l2|]® =
((z, )) = (x, V'z). The following question arises: suppose that p* = £ (i.e.,
that V@ = Q); under what circumstances are the two residual sums of squares
also equal? That is, given i = p*, when do we also have

1Y — I = [IlY — I

The answer is given by

TuroreM 3. If u* = 4, then ||Y — u*||” = |[|Y — &l||* if and only if V is the
identity operator on the orthogonal complement Q* of Q.

Proor. Orthogonal complementation here is with respect to ( , ). Write the
desired necessary and sufficient condition as

(Quy, Quy) = (Qay, V'Qay),  all y,
or as
(z,z) = (z, V&), all z e Q"
By the standard identity 4(z, z) = ||z + 2||° — ||z — 2|[*, this is equivalent to
(z,2) = ((z,2)) = (2, V%), allzzeQ"

orto V2 = zforall z e @*. That is, V" (and V) is the identity operator on Q*.
This completes the proof.

By virtually the same argument, if u* = 4, then ||[Y — u*|* = ¢||Y — AlI]”
for a scalar ¢ if and only if V as an operator on Q" is ¢ times the identity.

Consider Example 1. A generic vector in Q" has %, j coordinates y;; — 7. . for
some set of y;;. The 4, j; 7, 7 element of V, regarded as a matrix, is zero unless
i = 14,7 = 7; then it is A\ *:8:78;;\/". Thus the 7, j element of the product of V
and the generic vector in Q" is

D 8N (Yo — i)

Hence V is the identity on @* just when all A\’ = 1, and V is proportional to the
identity on @* just when all A/ are equal.

The condition that V be the identity on 2* may of course be restated thus: the
characteristic roots corresponding to characteristic vectors of ¥ in @* must all be



74 WILLIAM KRUSKAL

unity. (There must be at least n-dim @ such characteristic vectors because of the
assumed invariance of Q.)

6. The case in which V is singular. Suppose now that V is singular, but still,
of course, symmetric and positive semi-definite. Let B and N be, respectively,
the range and the null space of V. Because of symmetry of ¥V, R and N are
orthogonal and their direct sum is the entire space. With probability one, Y lies
in R + Pyp.

Thus P v is estimated without error by PyY. Actually part of the component
of p in R may in general also be estimated without error, but we do not require
this detail for present purposes.

It is simpler to work with linear manifolds than with flats (translated mani-
folds). Accordingly, let » be any vector in @ that satisfies Pyv = Pyu = PyY.
Such a » must exist, since EY itself satisfies the condition, and in practice one may
pick a convenient »; which » is immaterial so long as it satisfies the condition.
Then let Z = Y — ». Clearly Z ¢ R with probability one, and EZ ranges over
© n R; further, Z as a random vector in R alone is nonsingular, with covariance
transformation ¢’ V, regarded as a (nonsingular) transformation from R onto R.
Of course PyZ = 0. The Gauss-Markov estimator of EZ is i(Z) ¢ Qn R, a well-
defined quantity, and the Gauss-Markov estimator of EY is i(Y) = i(Z) + ».
By Theorem 1, i(Z) = PganzrZ if and only if V(2n R) = @n E. We now sketch
a proof that Theorem 1 holds even if V is singular.

Suppose first that 4(Y) = Po(Y). Then fi(Z) = PoY — » = PgZ. Projecting
onto N, Pya(Z) = 0 = PyPoZ. Hence PoZ ¢ 2 n R. By making the orthogonal
decomposition @ = (2n R) + (2 — (2 n R)), where the notation in the second
summand means the orthogonal complement of @ n R relative to 2, we find that
Q — (2nR) C N, orthat @ = (2n R) + PxQ with summands orthogonal. It
follows that PoZ = PganrZ, whence, by Theorem 1, V(2nR) = @ n R. For
peQ, p = + pe with 3 e2n R and use N; hence Vp = Viue @ nR C Q.
Thus V@ C Q and we have invariance.

In the other direction, suppose that V@ c Q. Then V(2 n R) < Q and of course
V(@nR) C R; hence V(2nR) C @n R, and in fact V(2 n R) = @n R by
nonsingularity of V in R. By Theorem 1, i(Z) = PanzZ, and it remains to show
that PanzZ = PoZ. To this end make another orthogonal decomposition so that

for u £ Q,
¢ = Pongp + Pr—@nryp + Pap.

Since V(2n R) = @ N R and V is nonsingular in R, the second summand on the
right cannot, if non-zero, be in @nR, but clearly it is in B and (since
VPr_@nemu =Vu — VPangpeQ) it is also in Q. Hence the second summand
iszero and @ = (2nR) 4+ PxQ. Thus PonrZ = PgoZ. The proof is complete

and we have
TaeoreM 3. Theorem 1 holds even if V is singular.
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