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MINIMAX ESTIMATION OF A RANDOM PROBABILITY WHOSE
FIRST N MOMENTS ARE KNOWN'

By MORRIS SKIBINSKY

Brookhaven National Laboratory

1. Summary. Let N be a positive integer. In Section 2 an expository account
in terms of moment space dependence is given of the Bayes estimate of a random
probability ©, relative to squared difference loss, from an observable X which
given O is conditionally binomial (N, ®). The risk and Bayes envelope functional
are also considered in these terms. In Section 3 an explicit formulation is given
for the minimax estimate of ® when its first N moments are known. Theorem 2
characterizes the condition that a Bayes estimate have constant risk over the
class of all “priors” which yield these moments. In Section 4, a transformation is
introduced which puts the interior of the space of the first N moments for dis-
tributions on [0, 1] in one—one correspondence with the interior of the N-dimen-
sional unit cube. This transformation is used to show that the supremum of the
difference between minimax and Bayes risks over the class of all prior distribu-
tions is bounded above by 27". Examples for N = 1, 2, and 3 in terms of the
above transformation are considered in Section 5.

2. Introduction. Let ® and X be random variables defined on a measurable
space (€, @); the former distributed on the unit interval [0, 1], the latter on the
integers 0, 1, - - -, N, where N is fixed. Let ® denote the class of all probability
measures on @ which yield the above structure and are such that the conditional
distribution of X given ® = 0 is binomial with parameters N and 6. Let

mi(P) = E;0° = [¢®°dP, i=0,1,---, Pe@,
and take
m = (m,ms, -, mn), b= Myy1.
Let ry denote the class of all functions on {0, 1, - - - , N} to [0, 1]. The elements

of 7y (also their composite with X) will be referred to as estimates of ©. We
define the risk of an estimate ¢ in 74 under a probability measure P in @ by

" Ra(t, P) = Ex(iX — ©)~.

Note that the risk depends upon P only through the distribution of ® that is
induced by P. Preliminary to consideration of the results of main concern to this
paper, to motivate their development and introduce an appropriate notation,
we make a series of seven expository remarks concerning some known properties
of this risk and related functionals. The substance of Remarks 1, 2, 3, and 6
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MINIMAX ESTIMATION OF A RANDOM PROBABILITY 493

together with proofs thereof (albeit in somewhat different notation and context)
may be found in either [2] or [3].
Let @ denote the class of all probability measures on the Borel subsets of [0, 1].
For each positive integer =, let
M, = {(01’02’ e ’cn):ci = f[o:llxidQ(x),?: = 1)2a e ’n>Q8Q}~

RemARK 1. For each positive integer n, M, is convex, closed, bounded, and
n-dimensional; the convex hull of {(a, a’, ---, a”):0 £ a < 1}. Moreover, a
point (¢1, ¢z, -, €,) is interior to M, if and only if (¢, ¢z, - -+, ¢;) is interior
toM;,1=1,2,---,n.

Forj=0,1,:---,n,andn = 1,2, - - - , define &,; on M, by
(1) Enj(cl, Coy =, cﬂ) = Zl?=j(_1)j+k(::£)ck'

REMARK 2.

P(X =.7) = (;V)SN](m(P)): ]= 0717 >N’ Peo.
Thus the distribution of X depends upon P precisely through the first N moments

of ® under P.
REMARK 3.

(2) Ex((D)/@), @)/, -+, 3)/ (W) = m(P), Peo.

If we let Sy denote the N-dimensional simplex generated by the N + 1 possible
realizations of the random vector whose expectation is taken on the left-hand
side of (2), we have that My C Sy. Moreover, the barycentric coordinates of a
point ¢ = (¢1, ¢, -+ -, cy) in My relative to the simplex Sy are given by

(()wo(e), (Emle), -+, (¥)Ewn(c)).
It follows that
(3) £yi(c) >0, j=0,1,--- N, Yc¢ interior to My .
REMARK 4.
Rx(4, P) = fu(t; m(P), u(P)), terw, Pe@
where for all { in 7y and all (¢, d) in My,
Iu(t; ¢, d) = & + 250 (D)) — 2wanle, D).

Hence, for each ¢ in 7y, the risk depends upon P precisely through the first

N 4+ 1 moments of ® under P.
We shall say that { in 7y is a Bayes estimate of © relative to a probability

measure P in @ if
Ry(f, P) = infury Ru(t, P) = Ru(P),  say.
The right-hand side above is the value at P of the Bayes envelope functional.
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For each point (¢, d) in Myy1and forj = 0,1, --- | N, define

(4) tea(j) = Evnin(c, d)/Eni(c),  Eni(c) > 0,
= 0, fNj(C) = 0.,
(By Remark 2, £x;(c) cannot be negative).

REMARK 5. tn(p)uep) is in 74 for each P in ® and is a Bayes estimate of ©
relative to P. If m(P) is interior to Sy—hence if m(P) is interior to My—
tm(» (e 18 the unique Bayes estimate of © relative to P.

Using the above remark, the Bayes envelope functional at P in ® may be
written

(5) Rx(P) = gy(m(P), p(P)),
where
(6) gN(c7 d) = fN(tc,d 5 C d)

= & — 2 tea(f) (Dns(c)
for each (¢, d) in My, .

A probability measure P* in a subclass 91 of ® will be called least favorable in
9 if the Bayes envelope functional attains its supremum over 91 at P*. We say
that an estlma,te t* in 7y is minimaz in O if Suppey Ru(t, P) attains its infimum
att = t*. Robbins in [5] was the first to apply (in broader context) this “general-
ized” minimax concept. It has been applied in [7], for N = 1 in the present con-
text, to the class {P ¢ ®:P(a < ® < b) = 1 — a} for arbitrary a, b, a. We shall
be concerned here with subcollections of ® indexed by points ¢ in My and defined
by

Mu(c) = {Pe®:m(P) = c}.

REMARK 6. ¢ is on the boundary of My if and only if the class of distributions
of ® induced by P, as P varies over 9y(c), contains precisely one member.
(See Theorem 20.1, p. 64 of [2]).

ReMark 7. To each ¢ in My, there corresponds an estimate which is minimax,
and a probability measure which is least favorable in 91ty(c). Moreover

SUppanye Ba(t*, P) = Ry(P*)

whenever t* is minimax, and P* is least favorable in Mx(c).

Remark 7 is an immediate consequence of standard game theoretic results
(e.g. see [1], Theorem 2.51, p. 51 and Corollary 2, p. 53), and obvious properties
of 7y, My(c), and the risk.

It follows by Remarks 5 and 7 for ¢ interior to My that the Bayes estimate of
O relative to a least favorable probability measure in 9My(¢) is minimax in

. My(c). For ¢ on the boundary of My the situation is made trivial by Remark 6.
For in this case any Bayes estimate relative to a probability measure in My(c) is
of necessity minimax in 9My(c).
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3. The minimax estimate of ® in 9My(c). To isolate the dependence of the
Bayes envelope functional on the (N + 1)st moment of ® under P, we may
write
(7) £N+1,i+1(c7 d) = 'YNJ’(C) + (_I)N-H d) j = 0) 1) e )N) (C, d) & MN+1’
where by (1)

'YNi(c) = ZkN=]’+1 (_I)H-H-k(Nil_ik)ck) j = 0) 1) ttty N — 1; 'YNN(C) = 0.

Then by (6) and (4), we have for N = 1,2, --- , and all points (¢, d) in My
such that c is interior to M y that

(8) gn(c, d) = By(c) — Ax(c)(d — txi(c))?
where )
(9) Ay = 2250 (3)/tni,
vy = AN—l 1}:&)1 (_1)N+1+j(IJY)’YN]'/£Nf ’ N=23,--

and also By is a function of ¢ only. When N = 1, we have
(10)  gle,d) = 3a(l —a) — (a(l —a)™(d — 3a(l + a))’,

from which the definitions of 4, , B1 and 9, may be abstracted.
Now define v£,; on My by taking

(11) vgn(e) = min {d:(c, d) € Mun}, vyn(c) = max{di(c, d) ¢ Mun}.

These minima and maxima exist in view of Remark 1, and may be computed
from well known ‘“Hankel” determinants. For example, see Sections 17 and 18
of [2]. Denote by vj;1 the function on My whose value at ¢ is vy41(c), va(c), or
sw1(c), according as Px41(c) is less than vy4a(c), greater than vyyi(c), or other-
wise. By (5), (8), and Remarks 3, 5 and 7, we then have

TureoreM 1. Let ¢ be an arbitrary point in My. Then P* in 9y(c) s least
Savorable in My(c) if and only if

mya(P*) = vyu(c).

The estimate e}, 1) s minimax in My(c) It is the unique minimax estimate of
0 in My(c), if and only if ¢ is interior to Sy—hence, whenever ¢ is interior to My .
The supremum:of its risk over My(c) is gn(c, vas1(c)).

An analogue for a standard device by means of which estimates minimax in a
class 9 are often derived is to find a P in 9 such that the Bayes estimate of ®
relative to P has constant risk over 91, e.g. see [5], Section 5. Such an estimate is
of course automatically minimax in 9. It is of interest to know for which P in
My(c) if any, the Bayes estimate relative to P has constant risk over 9My(c).

THEOREM 2. Let ¢ be an arbitrary point interior to My and let P be in 9My(c).
Then the Bayes estimate of © relative to P has constant risk over My(c) if and only if

mua(P) = owpa(c).
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Hence whenever ¢ is such that either
(12) nsa(€) < vypa(c) or  Swap(c)
there can exist no P in 9My(c) such that the Bayes estima te of © relative to P has

constant risk over My(c).
Proor. By (7) and Remark 4,

Ity ¢ d) = & + 2255 (D)) — 2ywi(e)()] — 2ha(t) d,

where
(13) ha(t) = 2230 (= 1) ()1().
Hence an estimate ¢ in 7y has constant risk over 9My(c) if and only if Ay(f) = 0.
Let d = mya(P), then the Bayes estimate of © relative to P, namely ¢, i , has
constant risk over 9My(c) if and only if hn(t.,2) = 0. But the left-hand side,
after simple manipulation, may be written Ay(c)(d — #y41(c)). Q.E.D.

That the set determined by (12) need not be vacuous (it is vacuous for N = 1
and 2) is shown by example in Section 5.

4. The difference in risk between Bayes and minimax estimates. The empiri-
cal Bayes approach to statistical decision problems introduced and developed by
Herbert Robbins [4], [5] considers a sequence (X;, 1), (Xs, @;), - -+ of inde-
pendent pairs of random variables with common distribution identical to that
of (X, ©). Only the first member of each pair is observable. The problem is to
estimate 0,4, from the corresponding value of X,; using an “adaptive’” sequence
of estimates which in some optimal and/or consistent sense approximate to the
Bayes estimate of ® or are otherwise optimal relative to the Bayes envelope
functional.

In the case presently under consideration, the distribution of X depends upon
P only through m(P), the first N moments of ® under P. It follows that no
adaptive sequence of estimates of ® can exist which consistently and uniformly
for all P in ® approximates any estimate of ® that depends upon P other than
through m(P). In particular, a Bayes estimate cannot be so approximated since
it depends upon P through the first N 4+ 1 moments of ®. Thus as pointed out in
Section 5 of [5] for the case N = 1, an “asymptotically optimal” sequence of
estimates does not exist. In the absence of prior information, the most we can
ultimately hope to learn about P by experience (i.e. observing X;, X,, ---) is
the class 9My(m(P)) to which it belongs. We may in fact consistently and uni-
formly for all P in ® approximate the minimax estimate in this class in such a
way that the supremum over 9My(m(P)) of the risks of the approximating esti-
mates tend in probability (uniformly for all P in ®) to the corresponding su-
premum for the risk of the estimate minimax in My(m(P)). By Theorem 1 and
Remark 3, the sequence of estimates
= 1: 2, .- )

téj-"l.v-}-l(éj) ’ J

& = 2dar (E)/), GV/CEDy -, GGy d

is just such an adaptable sequence.

Wwhere
1,2, -,
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Thus for each P in @, the quantity
(14) infiery SUPP sy ey, Ba(t, P,) — Ry(P) = Wx(P), say,

represents the difference between a minimax risk ultimately uniformly attainable
in probability (e.g. by means of observations on X;, X,, --- in an empirical
Bayes framework), and the value of the Bayes envelope functional at P which
is not so attainable. The risk associated with the standard estimate X/N is
easily seen to be bounded above by 1/4N for all P in ® and as an immediate
consequence, Wx(P) which is of course non-negative, has this bound as well. It
therefore tends to zero uniformly in P as N tends to infinity. In fact, it tends to
zero as N tends to infinity much more rapidly than 1/4N as the following theorem
indicates.
TueorREM 3. For each positive integer N,

supr.e Wa(P) < 27V,
Proor. By (5), (6), (14), and Theorem 1,
Wx(P) = Dy(m(P), mpu(P)), VPee@,
where
(15) Dy(c, d) = gn(c, vua(c)) — gu(c, d), Y(c,d)e My,

By Remark 6, this is equal to zero whenever ¢ is on the boundary of My . Suppose
now that ¢ is interior to M. By (6),

Dy(c,d) = 2250 (Nltea(d) — testri@(@)eni(e).
By (3), (4), and (7)

te.a(§) — tewh@() = (=1)Y(d — vyu(c))/Eni(c).
Hence

(16) DN (C, d) = (d — V¥ (C)) ZIJLO (—1)N+j(fiv‘)‘[tc,d (.7) + tc,v’lkv+1(c) (])]
< (Wl (€) = vvn (€)) 2o (D 1 + (= 1)

Elsewhere [6], we have shown that everywhere interior to My

(17) ‘ V;+1 — Vyp = Hl};l Piq; = T~, say,
where
(18) pi=1—gqi= (v;— v )/ =),

v; is a function which assigns to any moment sequence, its jth coordinate; and
»;* are defined as in (11) with N replaced by — land ¢ = (e1, €2, -+ + , Cj1).
(If we define the right-hand side of (17) to be zero on the boundary of My , then
(17) holds there as well). It follows from (17) that

V—;_H_(C) - V;_;.l(c) = 2_2N, chMN,

which bound is attained when p; = %,7 = 1,2, --- , N. That the width of M, in
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the ¢, direction is 272" was first discovered by Karlin and Shapely [2]. On the
o}téher hand, the sum which appears on the right-hand side of (16) is precisely
2". Q.E.D.

The transformations (18) which put the interior of My in one-one cor-
respondence with the interior of the N-dimensional unit cube may be used to
obtain further insight into the nature of the Bayes envelope functional and the
“least favorable” (N + 1)st moment. Define

(19) = tppae,  g(e) = gu(c, ivn(c)), YceMy.
THEOREM 4. On the interior of My , let
(20) Prir = 1 — G = (Pws1 — vwp1)/(van — vw11)
then pa , ¢z are identically %; ‘
(21) Py = —he(t)/Awrw,  dvn = h(t5)/Awry, N =23,
(hy defined by (13); Awx, by (9)); and
(22) gy = g + Avrw' Py — (Pwn — Bra)’],
=gy + Awr’live — (gvp — dva)’l,

at each point (¢, d) of M yy1 such that ¢ vs interior to My .
Proor. Simple manipulations of (10) yield the theorem for N = 1. (Observe
that g, are identically 0 on M,). Now forj = 0,1, ---, N,

(23)  Ewirin = Evign + (=1 rapyn = g — (—=1)"rygus -

where £5,1,;41 are defined on My analogously to (19). Hence using (6), (4), and
(18), we have

gy = g~ — 2rapan D2 go (=)L) — Axry'pis,
= gN + 2rypyn _,g=0( 1)N+J( )t+(.7) - ANTN QN+1

By (13) and completing the square, the result follows. Q.E.D.
CoroLLARY. If we exclude (¢, d) tn M y.1 for which c is on the boundary of My ,

(24) Dy £ 2wy’ (1 + [Py — avn))?, 0=pyn =1
< Awry’ [Py — dwl, otherwise.

This bound s attained for each c interior to My at one or the other extreme value of
the (N + 1)st moment corresponding to c.

Proor. The right-hand side of (24) is just max (Dx , Dy"), where Dy™* are
defined analogously to (19). That this in fact is an upper bound may be seen
from (15) and (8). Its form is easily derived from (22). As pointed out in the
proof of Theorem 3, Dy is zero at points excluded from the corollary.
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5. Examples: N = 1, 2 and 3. If we invert the transformation (18) for
N = 1,2, 3, 4 (keeping to the interior of M y_, for N = 2, 3, 4), we find
w=p, wn=p’+nrp, v=np(p+ ap)’ + s

v = pi'(p1 + @p2)’ + rpa(p1 + ap2 + @ps)® + rips .
By (18), »»~ and vy may be obtained from these by setting py = 0 and 1, re-
spectively. When N = 1, the Bayes estimate of ©®, by (4) and (1), takes the
‘values p1gz and 1 — qugz at 0 and 1, respectively, whereas the minimax estimate has
corresponding values p; and 1 — 4¢: . (e.f., Section 5 of [5]). The Bayes envelope
functional value at any P in @ is in this case precisely the range of the third

moment in M; which corresponds to the first two moments of © under P, i..,
manipulating (10), we obtain
0 = D1iP2ge = T2 = vt — vy
As mé,y be seen from (10), the least favorable second moment is given by
vt =10 =p(l+ P1)/2

so that as already pointed out in Theorem 4, p» = ¢ = %. The difference D!
takes the form ry(ps — %)% Hence

suppep Wi(P) = . .
When N = 2, the Bayes estimate of © takes values
P1g2( 01z + Pop3)/(1 — p1ge), Pige + P2gs, 1 — qug(Prge + P2gs) /(1 — quge)
the minimax,
me/(L+p2), (1 —@g)/(L+p), 11— aqag/(1+p),

respectively at 0, 1, and 2. The Bayes envelope functional value at P in ® now
depends on P through the first three moments of ® under P. It takes the form
given by
gr = 1a(1 + p2) " [1 — pa(Psds) (s — $4)],
with
ps = (1 — qge)/(1 + p2) = 3 + (p1 — @1)g2/2(1 + p2).

The least favorable third moment itself is

s = p(1l — uge) (1 — q1ge/(1 + p2)).

It is somewhat interesting to note that the values of the minimax estimate given
above may be written

Ps — po/(1 4 p2), D3, Ps + p2/ (1 + p2).
Finally, we have
Dy = rpa(ps — Ps)’/(1 + p2) s
< ra(1 + po) 'pa max (Po/ds , Gs/Ps) = 12/(1 + pa)
50 that supzep W2(P) < (3 — 2(2)})/4 = .04. '
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From the above considerations it is easily seen that the set determined by
(12) is empty when N = 1 and 2. We show below that such is not the case when
N = 3. After investigation, we find that when N = 3, the Bayes estimate of ©
may be written in the form

te,(7)
= pigs + pags — Pags(1 — pipapsg) /(1 — puge)” + Papageasl, 7 =0,
(25) = P1ge + pags — PoDsgsqs/ (@122 + P2ps), i=1
= p1gz + Pogs + P2Psgsqs/ (Prge + P2gs), J=2

-

®

= P1ge + p2gs + Pps(1 — qigegsqa)/[(1 — Qﬂ_{z)z + qip2gzps], J=

From this we may obtain ¢.* (defined in (19)) by setting ¢s = 0. We then find
that

(26)  hs( t~+) = po{qs/[(1 — pﬂ]z)Z + pipegeqs] + ps/I(1 — Q1q2)2 + qlp2q2p3:]}~

With the exception of points (¢ , ¢z, ¢3) in M3 such that (¢ , ¢;) is on the boundary
of M, (the right-hand side is undefined at these points), this is non-negative
everywhere on M; . The left-hand side is defined everywhere on M; by (13), (19),
and (4) and takes the value O or 1 at these exceptional points. It follows from
(20) and (21) that #, < »" everywhere on M;. On the other hand for p;, p.
arbitrary fixed numbers in the open interval (0, 1), i.e. for (¢1, ¢;) arbitrary,
fixed interior to M, and p; tending either to 0 or 1, (26) tends to a positive con-
stant. Moreover, & ,7 = 0, 1, 2, 3, are all everywhere positive interior to M so
that by (23) and (9), A4; is positive and bounded as ps tends to either of its
extremes. Since r; tends to zero in the same circumstances, s tends to infinity.
By (20) and (21), it follows that 2s(c1, ¢2, ¢s) < v (a1, €2, ¢3) for arbitrarily
selected (¢, ¢;) interior to M, whenever ¢; is sufficiently close to either of its
extremes.

Let us now suppose for additional simplicity that p1 = p, = 3 ie. that
(a, ¢2) = (%, 8). In this particular case, the range of the 4th moment is

73 = Dsgs/16,
v = 27(27 + 16ps — 4psgs),

9y = 277(72 + 16p; — 18(99 + 4psgs)/(39 + 4psgs))

and
9. < or = v according as 4psgs < or = a = 6(31)F — 33 =~ 4.
To put this in terms of ¢;, we have
94(%, 8, ¢3) = vi (%, 4, ¢), 9.77/32 < ¢; = 10.23/32.
“For other ¢; in the allowable interval [, 3], the opposite inequality holds. From
the above formulae we easily find that when p; = ps = %,

G = % + 27(1 — 4psqs)/8psgs(39 + 4psgs)-
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It is of interest to note that thisis 2%, 0 < ps < 1. The minimax estimate of ®
may be obtained by appropriate substitution in (25).1i.e.p, = p. = %,and gsor 1
for ¢; according as 4psq; = or < ao.

By (24), taking ¥ = 4psqs, and noting that in the present case,

Ay = 2°(39 + y)/(3 + y)(99 + ¥).
D; is sharply bounded above by

(3+y)(9+9)*/16(39+y)(99 +y) or 27y(1 —y)/4(3 +¥)(99 +v),

according asy = or < ao . This bound is attained when ¢, equals one or the other
of its two extreme values. Thus, after some simple arithmetic, we find that
sup Ws(P) (over all P in @ such that E,® = }, Ex0® = 2) is less than 1/150.

6. Acknowledgment and conjectﬁre. I am indebted to Herbert Robbins for
suggesting the minimax problem that has been treated in this paper. A related
conjecture due to Robbins (oral communication to the author) is that

limy..eo sUppep (Wn(P)/Bx(P)) = 0.

We agree with this conjecture, though we have as yet found no proof. We note
here as a curiosity however that using the above developed technique, it is easily
shown that the above ratio is unbounded on ® for N = 1 and 2. This does not
appear to be the case for N = 3.
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