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SOME RESULTS ON MULTITYPE CONTINUOUS TIME MARKOV
BRANCHING PROCESSES!

By KrRisuNA BALASUNDARAM ATHREYA
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1. Introduction. Of late there has been a lot of interest in multitype continuous
time Markov branching processes(M CMBP). It was recently noted that there is a
fundamental and yet simple connection between classical ura schemes like
Polya’s and Friedman’s, etc. and multitype continuous time Markov branching
processes (see [1]). Problems on urn schemes have their counterparts in branching
processes and it is while attempting to solve these that ‘the author felt the need

for a systematic study of the MCMBP. The present paper is a partial answer to

this need (see also [1], [2], [3]).
In this paper we develop in a systematic way some basic properties of multi-

type continuous time Markov branching process. Although a few of these proper-
ties are elementary and not entirely new in content we present them here for the
sake of completeness. But there are two very important results which we believe
are new. We prove them under minimal assumptions. (See Section 2 for notations
and preliminaries.) Let {X(¢);¢ = 0} be a MCMBP and let A be the infinitesimal
generator of the mean matrix semigroup {M(¢);t = 0} where M(t) = ((m(t)))
and my(t) = ((E(X;(t) | X,(0) = 8,s,7 = 1,2, .-+, k))) and §;;are Kronecker
deltas. Assuming positive regularity and nonsingularity of the process we establish
the following:

TuEOREM 1. Needing nothing more than the existence of the first moments, we

have
limgae X (¢, w)e ™ = W(w)u exists wpl

where W(w) 1s a nonnegative numerical valued random variable, N\, is the maxi-
mal real eigenvalue of A and w is an appropriately normalized vector satisfying
u*A = zu* where u* is the transpose of u.

TueorREM 4. Let Ay > 0 so that P{X(t) = 0 for some t} < 1 for any nontrivial
makeup and assume second moments exist. Then

limeo PO <2 S W £ 2 < , (0-X(8) — W) (v-X(2)) <y}
= P{O <ppEW=s2< OO}CI)(y/(T)

where v is an appropriately normalized vector satisfying Av = A\, o® an appropriate
constant and ®(x) s the normal distribution function.

Here is an outline of the rest of the paper. In Section 2 we describe our set up
and construct some martingales. Section 3 establishes Theorem 1. Assuming the
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348 KRISHNA BALASUNDARAM ATHREYA

existence of second moments we study in Section 4 the growth behavior of
E |&-X(¢)|” where £ is an eigenvector of the matrix A. The last section develops a
representation for X(¢) — ¢"**Wu and uses it to prove Theorem 4.

This paper forms a minor part of the author’s doctoral thesis at the Department
of Mathematics, Stanford. The author is much indebted to his adviser Professor
8. Karlin for help and encouragement.

2. The set up, mean matrix and martingales.

2.1. The set up. We start with a strong Markov, continuous time % dimensional
(2 = k < ») branching process {X(¢); ¢ = 0} defined on a probability space
(2, &, P). That is, {X(¢, »); ¢ = 0} is a stochastic process on (2, ¥, P) such that

(i) The state space is the nonnegative integer lattice in k& dimensions.

(ii) It is a Markov chain with stationary transition probabilities and strong
Markov with respect to the family &, of s-algebras where §; = o{X(u, w);u < t}
and o{D} stands for the sub s-algebra of § generated by the family D of real
random variables on (Q, )

(iii) The transition probabilities P;;(t) satisfy

(X5 Pig(t)s? ) = TThat (25 Py ()6

where i= (41,8, - ,%), €= (%a,da2, -,da)
d;=1if =3
=0 if 57
Let the associated infinitesimal generating functions be
(D ui(8) = afhis) — s for t=1,2,---,k,
where 0 < @i < ©,8 = (8,8, *,8),0 = s; = 1and his) is a probability

generating function. We make the following basic assumption.
AssumprioN 1.

(2) Ohi(8)/08 ls=qt, oy < © forall ¢ and j.

Under (2) it can be proved using either the theory of branching Markov
processes developed by Ikeda, Nagasawa and Watanabe [9] or the theory of
minimal processes as in Chung [5] that a branching process {X(¢); ¢ = 0} of the
above specification exists. Also from the same theory one could take the sample
paths to be right continuous in ¢ wp 1.

It is very suggestive to think of X(¢) = (Xy(t), - -+, Xi(¢)) as the vector de-
noting the sizes of the population at time ¢ in a system with k types of particles
where

(i) a type ¢ particle lives an exponential length of time with mean a;™ and
on death creates particles of all types according to a distribution whose generating
funection is given by hi(s),

# (i) all particles engender independent lines of descent. This property is the
basic feature of a branching process.
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A moment’s reflection is enough to justify the following representation of
X(t + u, w) as
(3a) X(t+ u,0) = 2 5a D0 X (u, w)
where {X*(u, w), u = 0} is the vector denoting the line of descent from the jth
particle of type ¢ living at time &. Without loss of generality (see Chapter 6 in
[8]) one can assume @ and F to be “big’’ enough to make X*(u, w) a F-measurable

function and conditionally (conditioned on X(¢)) mutually independent.
In terms of generating functions (3) becomes

(3b) f(st +u) = f(§(s, u), ¥)
where .
(3¢) 1(s,8) = (f1(s, 8), fa(s8, 8), - - -, fu(s, B))
and

f(s, t) = E(slxl(t)szxz(t) R R | X(0) = e)).

One relates the ui(s) to f(s, t) as follows: The Kolmogorov forward and back-
ward differential equations for P ;(t) lead to the following in terms of f(s, t).

(3d)  (forward) afi(s, £)/at = Xbea (3fls, 0)/08)us(s), &= 1,2, ,k,
(3¢) (backward) afi(s, 1)/0t = ui{f(s, 1)), i=1,2 -k

the initial conditions for both the systems being fi(s, 0) = s;,2=1,2,---, k.
2.2. Mean matriz. From (2) it follows (see Chapter 5 in [8]) that

(4) mii(8) = E(X;(1)] X(0) = e:)
is finite for all0 = ¢ < «, 7 and j.
If we set
() M(t) = ((mi(£)) sk » for ¢ =0,
we get, using (3b), the semigroup property
(6) M+ u) = M(t)M(u) forall ¢ u = 0.
We also have using (3d) or (3e) the continuity condition
@) limg,o M(2) = I.
Let

(8) bij = dhi(s)/dsilsma 1,y — 8is,
aij = abij, A= ((a;))e for 1=1¢75 =k

Then it is well known that M(¢) has the representation
(9) M(t) = e** for t=0.
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We next make the basic assumption of positive regularity, viz., that there exists
t > 0 and finite such that

(10) - my(t) >0 for all 3, j.

By Frobenius-Perron theory of positive matrices (see appendix in [10]), there exists
a strictly positive eigenvalue pi(%) of M(%) whose algebraic and geometric
multiplicities are both one and any other eigenvalue p(%) of M(%) satisfies
|p(to)] < pi(to). This implies that the eigenvalues A1, Az, -+, M of A can be

taken to be such that \; is real, pi(f) = €% and

(11) A > Re; for ¢ 1,
Further if 4 and v satisfy )

(12) w*A = zu¥, Av =\,

then they also satisfy

(13) wW*M(t) = m()u™,  M(ko)r = m(to)r.

By the Frobenius-Perron theory of positive matrices » and v can be taken to
satisfy

(14) wi>0,0;>0 forall 4,5, D suwi= L

2.3. Martingales. For any collection D of random variables on (2, &, P) we
denote by o(D) the smallest o-algebra contained in &, with respect to which all
members of D are measurable.

Set

(15) Fe = U{X(u) w);u = t}: Y(t) = X(t)e_At: Y(t) = (Yl(t)r R} Yk(t)).

Then we have the following generalization of the well known martingale result
of the simple branching process.

ProrosITION 1. For every i = 1,2, -+ , k, the family {Y«(t); F.;¢t = 0} isa
martingale.

Proor. Trivial using Markov property, (3) and (6). q.e.d.

The same argument also yields

ProrosiTioN 2. Let & by any right eigenvector of A with eigenvalue . Then the
family {€-X(t)e™; ¢ ; t = O} s a martingale (possibly complex valued).

We have the following important

CoRroOLLARY 1. Let v be as in (12). Then

(16) limeov-X(t)e™ = W existswp 1
and
E(W) =v. i X(0) = ei.

Proor. Immediate since the family {v-X(¢)e™*; &, ;¢ = 0} is a nonnegative
martingale and Fatou’s lemma applies. q.e.d.
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—A\ ¢

3. Almost sure convergence of X(f)e *'. To avoid trivial degeneracies we

henceforth exclude the singular case
hi(s) = 25 pisi,
where p;; = 0, D raapi; = L. It is easy to see that in the singular case

{X(t);t = 0} with D% X(0) = 1is essentially a Markov chain with state space
{1, 2, -+, k}, transition probabilities p; ;and the sojourn time in ¢ exponential
with parameter a;.

Using a recent result of Kesten and Stigum [9] on discrete time Galton-Watson
process we establish the following:

TrEOREM 1. Under positive regularity and nonsingularity

(17) limyo X(t, w)e™ = W(w)u  exists wp 1
where W(w) 1s a nonnegative numerical valued random variable and u is defined by
(12).

Proor. Step 1. For ¥é > 0 the discrete skeleton {X(nd);n = 0,1,2, --- }
is a discrete time Galton-Watson process with mean matrix M(5). By (16) and
(10), if 8ng(8) > to, then M(no(8)8) = [M(8)]™® >> 0. Further the process is
nonsingular. Now appealing to Kesten and Stigum’s result [9] we conclude that
there exists 4; ¢  such that P(4;) = 1and w & Ay = X(nd, w)e ™™ — W(w, §)u.
It follows that lim,.. v- X (78, w)e ™™ = W(w, §) sincev-u = 1.

But by Corollary 1 we know lim;.. v-2(t, w)e™* = W(w) exists wp 1. Thus
we have W(w, §) = W(w), wp 1. Hence given any sequence of 8; we conclude
that

A5 P(A) =1
and

(18) weAd= for V;X(nd;,w)e ™™ - W(w)u as n— o.

We write A for \; in the remainder of this proof.
Step 2. Let D = {w:W(w) > 0}. Then on D°limv-X(¢t)e™ = 0 wp 1. But
v; > 0 for all <. This implies on D°,

(19) X(t)e™—0 wpl
It is known that P{D} = 0if A, < 0. So we shall consider only the case \; > 0.

To establish (17) in this case we have to examine now only D. We shall use (18)
to show that on D wp 1,

(20) lim inf X;(¢, w)e™ = u;W(w) for all 3.
However,
(21) lmsup Dt v X(t)e™

= (D ieiliminf X (8)e™) + lim sup v;X;(t)e ™.
But by (16)
lim 3350 X(t)e™ = W(w)  wpl.
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Thus (14), (20) and (21) = wp 1 on D
(22) lim sup X;(¢)e™ < u;W(w) forall j.

Putting (19), (20) and (22) together we get (17).

It remains only to establish (20) and this is our

Step 3. By (16) P{W < »} = 1. Let D, = {w:1/r < W(w) < r}. Then
D, 1 D. To establish (20) it suffices to show ¥ r wp 1. on D,

(23) lim inf Xj(t)¢™ = u;W(w).
Fix § > 0and V¢ > 0 define n(t) = n(t, 8) by
n(t)d £t < (n(t) + 1)8.
Fix j and let N(¢) = N(f, ) be defined as )
N(t,w) =0 if X;(n(t)d) =0
= number among the X;(n(t)8) that split during

[n(t)8, (n(t) + 1)8].
Clearly
(24) X;(t) 2 Xi(n(8)8) — N(2).
We need only to show
(25) PlwiweD,; e ™ N(nd, ») 2 p(8) for infinitely many n} =0

for some p(3) — 0as 8 | 0, because we then could use (18) to get (23) from (24)
and(25).
To prove (25) notice

lim, X;(n8)™™ = u;W(w)  wp L
Therefore, by Egoroff’s theorem [7] ¥n > 0, 72 > 0,3 A ¢ § such that
P(A°) < m and
weA,n>N= |X;(n8)e™ — uW(w)| < m.
Let E, = {w:we D,:é ™ N(nd, ) = p(8)} where p(3) will be specified later
and E = {w:w ¢ E, for infinitely many n}. Now P(E) = P(EA°) + P(EA).
Forn > N, P(E,A) < P{E,A,} where
(26) A, = {wiwe Dy, |X;(n8)e™ — w;W(w)| < m}.
But
(27) P{E,A,} < Plwiwe Ay, N(nd)/X;(n8) — g(3)
> (p(3) — g(8)X,(nd)e™™)/(Xi(nd)e™™)}
.where
g(8) = 1 — ¢
= P{a type j particle splits in [nd, (n + 1)9)| it is alive at nd}.
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Now on A.
(28) (p(8) — g(8)X;(nd)e™)/X (nd)e ™™
= (p(8) — g(8)(usr + m))/(upr + m) = ¢(3)
if we choose p(8) = 2g(8)(uyr + 12) where 7. will be specified in (31).
From (27) and (28)
(20) P(E.A,) £ Plo; weda, [(Xi(n8))™ 274" (& — 9(8))] Z 9(8)}
where
£, = 1 if the rth particle among the X;(nd) splits during [né, (n + 1)6)
0 otherwise.
But on 4,
(30) X(nd)e™ > (up™ — m).
Now choose 72 > 0 such that
(31) ur™ — g =c¢> 0.

Then by Chebychev’s inequality (29), (30) and (31) yield
(32) P(BaAn) S (1eg(8)) 767

Since (32) holds for n > N we get > ¥ P(E,A,) < « and hence by Borel-
Cantelli we have P(EA) = 0. But P(EA°) < ny and m is arbitrary. This estab-
lishes (25). Notice p(8) — 0 as 8 | O since 72 does not depend on 8, r is fixed and

g(8) > 0asd | 0.qed.
A REMARK. Let £; = (£a, 8, -+ ,Ex) fori=1,2,--- ,kbe random variables

taking values on the k-dimensional nonnegative integer lattice with generating
functions respectively hi(s). Then it can be shown that

(33) E(&ilog tij) < forall ¢ and j

if and only if

(34) E(X;(t) log X;(¢)]| X(0) = e;) < forall ¢,j and ¢

Now again appealing to Kesten and Stigum’s result [12] yields the following:
TuroreEM 2. Either

(35a) | W(w) =0

or

(35b) P{W(w) = 0|X(0) =ed = ¢, E(W(w)|X(0) =e) = v:

where ¢; = P{X(t) = 0 for some t | X(0) = e for v = 1,2, -+, k are the

extinction probabilities and the unique root tn the unit hypercube {x =
(m, - ,x); 0 < o £ 1} satisfying ui(zx) = 0 for 7 = 1,2, ---, k and
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z; #= 1 for at least one 1. We have (35b) if and only if (33) holds. Further if (33)
holds W (w) has an absolutely continuous distribution on (0, ).

4. Second moments. In the rest of this paper unless stated explicitly to the
contrary (or is clear from the context) we make the following additional assump-
tions.

AssuMPTION 3.

(36a) M > 0.
AsSsSuMPTION 4.
(36b) azhi(s)/as,-ask |s=(1,1,...,1) < © f07' all ’L,] and k.

It is known that My > 0 means P{X(¢) = 0 for some ¢} < 1. Harris [8] has
shown (36b) implies B(X(t)X;(t)| X(0) = e,) < o forall,j,rand ¢ = 0.
Let

(37) C(t) = cov (Xi(t), X,(1)] X(0) = e).

Using (3) we can assert

(38) Co(t + 8) = (M(5))*C(t)M(s) + 2iamei(t)Ci(s)
where C,(¢) = ((C,(t))) and (M(s))* is the transpose of M(s). Let
(39) D.(t) = B(X{t)X()| X(0) = e:).

From (38) it will follow that

(40) Dt +s) = (M(8)*DA)M(s) + 2iiamni()Ci(s).
This yields the differential equations

(41) D/(1) = A*D,(t) + DA + 2iam(£)C{(0)

where ’ denotes differentiation.
It can be verified that the unique solution of (41) is

(42) Di(t) = (M(1))*D0)(M(t))
+ [ (Mt — 7)) (Xt mer)C{(0))(M(E — 7)) dr.
Let & be an eigenvector of A with eigenvalue ), ie., Af = A& Let

(43) Vi(t) = B(|&-X()| X(0) = &) = E'Di()s.
Using (42) we conclude that
(44) Vi) = % 4+ 2k e [o € mai(r) dr),

where ¢; = E*C/(0)t, @ = Re.
Now appealing to Frobenius-Perron theory [10] we conclude

(45) lime,e M(t)e™ = P = vu™.
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Hence we get the following:
Prorosirion 3. With the above notations
(46a) lim, V.(¢)e ™ .
=&+ Zk—l Cs f T B My (e ™M dr if 2a > Ay,
(46b) Lim, V.(t)e ™%
= 0,( D 51 CUs) if 2=\,
(46¢) lim, V,(t)e ™"
= 0Dk wics) (M — 2a)7 if 2a < .
This leads us to the following: :
TueorREM 3. Let £ be any vector such that At = N\t and let a = Re X\ be >N\i/2.
Then the martingale {Y(t) = £-X(t)e™; T, ;t = 0} satisfies (for any initial set
up),
sup: E Y|P <
and hence there exists a random variable Y such that
(47) Y(t) tendsto Y wp 1andin means squareas t— oo.
Proor. Immediate from (43), (46a) and Doob’s convergence theorem [1]. We
make use of (42) in [2], [3].
5. A Representation of X () — ¢"'Wu. In Section 3 we saw
lim X (¢) ¢ ™" = Wuwp L.

The question arises as to what can be said about the order of magnitude
Y(t) = (X(¢)e™ — Wu). The following lemma helps in answering this.
LemMma 1. There exists a set A ¢ § such that

(1) P(A) =
(2) wed = for every t, there exists random variables W, Hw),j=1,2,-+-,
Xt w),t=1,2, -,k such that

(48) X(t, 0) — W (w)u = 2 i 25" (er — Wi (w)u).

Proor. Fix a t. Then for any [ > 0 recall the representation (3)
X(t+ 1 w) = 25 252 X1, w).
Now
WW(0) = liMesw X(8)e™" = limpe X (¢ + 1, 0)e ™0,
Thus
MU (@) = limMpw D i Doiit? X9(1, w)e ™
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For a fixed ¢, lim .., X7(1, w)e ™" = uW,%(w) exists wp lforj=1,2,---, Xii),
¢t =1,2,---, k. Hence for each fixed ¢, there exists a set A,¢F such that
P(A) = 1,forwe A;, W:(w) exist and

MW (w) = D k0 D B W, (w)
and
X(t) — MuW(w) = Dk D 50 (65 — uW(w)).

Set A = [) ¢rationa1 4¢ . Then using the right continuity of the sample paths we
have for w ¢ 4, for every ¢

X(t, ) — MW (w) = 2 kg D55 (6; — uW¥(w)). q.e.d.

We now get the following theorem which says something about the order of
magnitude of Y(t) = (X(t)e™* — uW).

THEOREM 4. Let A be >0 so that P{X(t) = 0 for some t} is less than one for
any nontrivial initial make up. Assume second moments exist. Then

(49) limne PO < < W S 1 < o, 0 Y(£)M(0-X(1) ™ < ¢}
=P0<z W= < old(y/o)
where v is as in (12),
(493) o = D iiuw’, ol = Var(W|X(0) =e), for i=1,2, -,k
Proor. Let
(50) Z(1)
It suffices to show
(51) limpe B(e™ P50 <1 S W < 2, < )
=e PP < S W S 2y < ).

v-Y () (v-X(8)) M

Now since v- X(t)e™* — W a.s. it suffices to show
(52) limpo B(e" ;0 < 2 S 0-X(1)e™ S 13 < )

= PP < gy S W S 1, < ).
But

(53) = B{]]5 &5 0(X () (Xi(0)/v-X(1))Y);
0<m =0 X(t)e™ =2 < o}

E(e™P,0 < 21 S v-2(t)e™ £ 1 < )

where ®;(0) = E(e”™"?) and W; = limp.v-X(t)e™ when X(0) = e;.
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To justify (53) we observe that from (48) we can write
(54) €M Y(£)(v-X(8)) 7 = 2 (Xi(0) /o XN X (1)) 5P 9

where 7" = (v; — W), and for r = 1,2, ---, X;(¢) are independently and
identically distributed and further independent of X(t). Now E(4/") = 0,
E( [m"lz) = g < .If we now appeal to the classical central limit theorem (53)

yields immediately (52) since
(X(t)/v-X(t)) - u; as. q.ed.

ReMArks. 1. From (48) using the argument of Theorem 4 it would seem
tempting to conclude convergence of X(t) — €W appropriately normalized, to
a multivariate normal. But such a convergence does not hold since after all
the limit random variable W is really one dimensional.

2. Theorem 4 says something about the behavior in law of (X(t) — WeM*).
One would like to use (48) more strongly to assert some sample path behavior,
like proving some law of the iterated logarithm ete., but this has not been done

~ yet. (See [11].)
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