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MOMENT CONVERGENCE OF SAMPLE EXTREMES

By James Prckaxps 11

Virginia Polytechnic Institute

1. Introduction and summary. Let Z, be the maximum of n independent
identically distributed random variables each having the distribution function
F (x). If there exists a non-degenerate distribution function (df) A(z), and a
pair of sequence a, , b, , with a, > 0, such that

(1.1)  liMpsw Plan ' (Zy — by) £ 2} = limpse F* (@2 + by) = A(z)

on all points in the continuity set of A (z), we say that A (z) is an extremal dis-
tribution, and that F (z) lies in its domain of attraction. The possible forms of
A(z) have been completely specified, and their domains of attraction charac-
terized by Gnedenko [5]. These results and their applications are contained in the
book by Gumbel [6]. A natural question is whether the various moments of
an " (Z, — b,) converge to the corresponding moments of the limiting extremal
distribution. Sen [9] and MecCord [8] have shown that they do for certain dis-
tribution funections F (z), satisfying (1.1). Von Mises ([10] pages 271-294)
has shown that they do for a wide class of distribution functions having two
derivatives for all sufficiently large z. In Section 2, the question is answered
affirmatively for all distribution functions F (z) in the domain of attraction of
any extremal distribution provided the moments are finite for sufficiently large n.
If there exists a sequence a, such that

(1.2) Zy — a,— 0, 1ip.
we say that Z, is stable in probability. If
(1.3) Zufan — 1, ip.

we say that Z, is relatively stable in probability. Necessary and sufficient con-
ditions are well known for stability and relative stability both in probability
(see Gnedenko [5]) and with probability one (see Geffroy [4], and Barndorff-
Nielsen [1]). In Section 3 necessary and sufficient conditions are found for mth
absolute mean stability and relative stability.

The results of this work are valid for smallest values as well as for largest
values.

2. Moment limits. By reparametrization, Gnedenko’s limit laws [5] can be
restated as follows. If

@2.1) limyo P{ (Z, — bn)/a, = 2z} = G(z),
then G (z) must be of the form
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(2.2) —logG@) = (1 +c@—B)/a)™, c¢==0,
=exp — (@ — B)/a, c=0,

where — o < 8 < ©,0 < a < «, and the domain of definition depends upon
the parameters c, 8, and a. Clearly

2.3) "B (Zn — ba)" = a7" [L (x — ba)"dF"(z)
= a:" [Le @ — D) dA (W (&) — logn),

where

24) exp —¢(x) = —log F (x).
and

(2.5) —log A(x) = exp —x,

2y = x,x = 0, = 0, otherwise, and z_ = 2, — z. We call these the positive and
negative parts of x respectively. Now, we define

(2.6) Q) = min {z:¢¥ () = y}.

That is, @ (y) is the inverse function for ¢ (x). Clearly, then, if y = ¢ (z) — log n,
it follows that x = Q (y + log n), for all points of increase of the function ¢ (z).
Observe that the integral (2.3) taken over the sets of constancy of ¢ (z) vanishes.
Consequently,

Q.7) . "E(Zy — ba)-" = a7 " [20 (Qy + log n) — ba)"dA(y),

where A (y) is given by (2.5). It is shown, in this section, that as n — o, these
moments approach those of the corresponding limiting distribution. But

BoX " = [La"dA(c log (1 + ¢((@ — B)/a)))
= [2 (@R (y, ¢) + B)"dA(®y),
where Eq(-) is the expectation using the limiting distribution and
2.8) Ry, c) = [Jexpesds = ¢ ' (exp ey — 1),

is the inverse function for the function —log (—log G(z)) when « = 1, and
8 = 0 (2.2). Similar relations hold, of course, for the moments of the positive
part. The limits of integration are then 0 and .

It was shown by Gnedenko [5], that the same limit law (2.1) holds for a
different sequence of constants a,” and b, iff

(2.9) liMpsw @/ /@y = 1,  liMpsw (ba — ba)/an. = 0.

Clearly, such a change in the normalizing constants will not alter the asymptotic
properties of the moments.
TuaeoREM 2.1. If m is any real positive number, if E(Z,)-" < « for sufficiently
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large n, and if (2.1) holds, then
limyw @0 "E (Zn — ba)-" = [0 (—2)™dG (z),
i, aw @ "E (Zn — ba)4™ = [5 27 dG (),

provided the latter are finite.
Before proceeding to the proof of the theorem, three lemmas are proven.
LemMma 2.1. For any pair of sequences a, and b, satisfying (2.1), there exists
a real \ such that

(2.10) liMpen @y = limyun b, = 0.
Proor. According to [5], the sequence a, satisfies the relation
limn—»oo alcn/an = k’y,

for any positive integer k, and some real positive v. According to Dynkin [3],
it follows that the first part of (2.10) holds if A > . Now the second part is
is proved. From [5], we know that a,, and b, satisfy the relation
limpswn(l — F(ax + b)) = —log G(x). Let A be any real number. Suppose
that for some zo, (1 — F(20)) > Az *, where k is a positive real number. Then
P{X > =z} > Ax", and E|X[|* > A. Clearly, then, if

lim sup,oe2®(1 — F(z)) = o, then E|X|" = « .

But from [5], it is known that if (2.1) holds, there must be some k& > 0, for which
E|X|F < <, hence for which lim sup,..2*(1 — F(z)) < . But then for some
real positive ¢i, ¢, any fixed z, and for sufficiently large n, (a.x + b,)* <
al — Flax + b)) and (I — Fla.z + b,))" = n/c. So (az + by)*
< c¢m/ca, which proves the lemma.

Lemma 2.2, If E(Z,)." < o for some n, then it holds for all larger n, and
if in addition (2.1) holds, then

(2.11) liMysw @n "B (Z, — b,)"I4 = 0,
where
(2.12) I =1 ifZ, =d,

= 0, otherwise,
provided d is such that F (d) < 1.
Proor. The expression (2.11) is equal to

(2.13) na, ™ [1a (@ — b)"F" (x) dF (x)
< na, "em [Lo (" 4 bHF (@) dF (2),

for some real constant c., by the ¢, inequality (Loéve [7] page 155). But the
second part of (2.13) is @, "b,"F"(d) — 0, as n — oo, since by Lemma 2.1,
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@, "b," approaches « at most as rapidly as some power of n. Furthermore
nan " [l |[2"F" (@) dF (2) = nan " [le 2P0 @)FMTN (@) dF (2) <
a, " (F )™ [L,|z|"dF™ (z) — 0, as n — . This proves the lemma.

Lemma 2.3. If (2.1) holds, and € > 0 is arbitrarily chosen, there exists a real
9o, and an integer ng, such that if y 4+ log n = yo, and n = no, then

(214) a(l — )R, c —¢) +8 — ¢ = a, "(Q + logn) — b,)
Sall —e) Ry, c+e) +B+¢

where R (y, ¢) is given by (2.8).

Proor. We begin by observing that the result is invariant under changes of
location and scale. That is, for purposes of the proof, we can assume without loss
of generality that « = 1, and 8 = 0. Hence, we assume that

(2.15) limpsw @, (Q(y + logn) — ba) = R(y, ¢).

Let 1 be any fixed real number, positive or negative. Then for all sufficiently
large n,

(2.16) R(y,c —¢) —e=<a. (Q +logn) —b.) S Ry, c+¢) + ¢

simultaneously for all y between 0 and 1.
From (2.14), it is clear that R (y, ¢) is continuous at ¥ = 0, and so

limn—mo a”—l (Q (IOg n) - b"') = 0’

and we can, without loss of generality, replace b, with @ (log ») in what follows.

Now, let us consider the case of an arbitrary negative value of ¥ and an n
such that the conditions of the lemma are satisfied. Let [ be the largest integer
for which y < —I log 2. Then

a. QW + logn) — Qlogn))
(2.17) = a, ">ty (QUogn — klog2) — QUogn — (k — 1) log 2))

+ a. " (Qy + logn) — Qlog n — llog 2)).

Dynkin [3] has shown that if lima.« @u/an = k°, then for any ¢ > 0, there exists
an n;, such that foralln = ny,and k > 1, (1 — )k £ am/a. = (1 + k™™
We can, of course, choose n to be as large as n; . If k is less than 1, but nk > ng,
clearly, (1 — €)(1/k)"™ = an/am = (1 + ) A/k) Y So (1 + )7%k" <
a/0n = (1 — €)'k, Furthermore by (2.14), [o ' exp (¢ — €)sds <
ani--0(Q(Uog n — klog2) — QUogn — (k — 1) log 2)) = [o'**
exp (¢ + e)sds. Changing signs, f Llog2 €xp (¢ + €)sds < ani—a-1» (Q(log n —
(k —1)1log2) — QUogn — klog2)) < [Ligzexp (¢ — €)sds. But a, " (Q (logn
— (k—1)log2) — QUogn — klog2)) = ans-a-v (QUogn — (k — 1) log 2)
— QUog n — klog 2)) (aw-w-v/a.). So

(1 + ¢)7l27®VEHd [0, sexp (¢ + €)sds
(2.18) < a. ' (Qogn — (k — 1) log2) — Qlogn — klog2))
S A — )2 ® P [0 sexp (¢ — e)sds.



MOMENT CONVERGENCE OF SAMPLE EXTREMES 885

However,
9=~ (e+o [P1og2 exp (¢ + €)sds
(2.19) = [Yg2exp (¢ + €)(s — (¢ — 1) log 2)ds
= [Thaa® exp (¢ + €)sds.

A similar result holds, of course, for the term on the right side of (2.17). So
(L7718 L1 2 exp (cte)sds — e+ (14€) ™ D i [ iors " exp (c+ e)sds
=1+ " [yexp (c + €)sds — e

< —a QU + log n) — Q(log n))
a - e)_lfg exp (¢ — e)sds + e

Changing the sign, we get the inequality (2.14), since (1 — ¢) < (1 + €)™
Now assume that y is positive. Then

@ (@ + logn) — Q(logn))
(2.20) = @, 2ia (Q(ogn + klog2) — Qogn + (k — 1)log2))
+ a7 QW + logn) — Qogn + I log 2),
where [ is the largest integer less than y/log 2. Clearly
a. (QUogn + klog2) — Qogn + (k — 1) log2))
= an-1(Qog n + k log 2)
— QUogn + (k — 1) log 2)) (an-1/as).

lIA

So
(1 — )2%70¢9 [ exp (c — €)sds
= (1 —¢) [0 exp (c — €)(s + (k — 1) log 2) ds
1 —¢€) fl(cklj%)zlog2 exp (¢ — €)sds
an ' (QUog n + k log 2) — Q(log n + (k— 1) log 2))
(1 + €) [ G%ogzexp (c + €)sds.

Recalling (2.16) and (2.18), then, and the fact that (1 + ¢) £ (1 — €)™, the
result follows.

Proor or THEOREM 2.1. Note that if F(d) = 1, ¢ (d) — logn = . Hence
the value d of z, corresponding to any finite value of ¥, is such that F (d) < 1.
It follows, by Lemma, 2.2, that for any such yo , lim,w @, fﬂ"w_“g "(Q + logn)
— b,)"dA (y) = 0. It follows, by Lemma 2.3 that

lim infpaw @ ™ 20 (@ + logn) — ba)™dA (y)
2 [1o (@ — )R(y,¢c — €) + 8 — )" dA(y),

A0

lIA
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Hm SUPow @ " (Lo (Q(y + logn) — b,)"dA (y)
< Y@@ — )R, c+e) + 8+ )"dA®y).

From the obvious continuity of the integrand, and the fact that ¢ > 0 was
arbitrarily chosen, it follows that lim, .. a, ™ [2. (Q (y + logn) — b,)™ dA (y) =
f w (@R (yic) + B)"dA(y). Clearly the corresponding result holds for the
moments of the positive part. Thus the theorem is proved.

3. Moment stability and relative stability. We begin by defining the upper
limit @ = sup {@:F (z) < 1}. It is well known [5] that for stability in probability,
it is necessary and sufficient that either
(3.1) Ye > 0, limese I — F(z 4+ €))/(1 — F(z)) =0,

or T, < . By a power series expansion of —log F (z) about F (z) = 1, it is
clear that for any distribution function F (z),

(3.2) lime.., (—log F(z))/(1 — F(z)) =

So the condition (3.1) can be replaced by the equivalent Ve > 0,
lim,.. log F (z + €)/log F (x) = 0. Recalling the definition (2.4) of ¢ (x), this
can be rewritten Ve > 0, lim,.., (¢(z + ¢) — ¢ (x)) = . Using the definition
(2.6) of Q (y), clearly,

(3.3) limy... @ +¢) — Qy)) =

for all ¢, including negative ones.
The result (1.2) w 111 hold simultaneously for two pairs of sequences a, and
a, iff lim, .. (@, — @,’) = 0. Clearly this does not affect the result (3.4).
TrEOREM 3.1. If m s any real positive number, then

B4) limpoBEZ, — a,)" = 0, limnsow B (Zn — a.)" = 0,
iff B(Z,)-" < «, for sufficiently large n, and
(3.5) Z, —a,—0, ip.

Before proving the theorem, three lemmas are proven.
Lemma 3.1. Let € > 0 be arbitrarily chosen. If Q(y) satisfies (3.3), there exists
a Yo, such that for y + v = y,,

(3.6) —e(rl +1) = QW+ ) — Q) £ (r] + 1).

Proor. Clearly for any fixed value of 7, say 7o, for sufficiently large v, the
inequality holds for all 7 between 0 and 7. First, let = be negative. Then

QU+n—-QW =242 Qu—%) —Qu—k+1)+Qy+1) — Ql — 1),
where [ is so chosen that { < » = I + 1. But for sufficiently large v, and all k&

3.7) —e=QUY— (k—1)) —Qly —k) e

By summation, and the use of the original inequality (3.6), for the last term,

)
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the result follows for negative r. By a simple modification of the reasoning, it
follows for positive 7. So the lemma is proved.
Lemma 3.2. Let a, be any sequence satisfying (3.5). Then

(3.8) lim,., (logn — a,) = «.

Proovr. First assume that ., = «. Let ¢; > 0 be some number. It clearly
follows from the preceding lemma that for all sufficiently v, Q(¥) =< ay, and
hence ¥ (z) = z/c, for all sufficiently large x. Thus F (z) = exp — ¢ “'**, and so
by (3.2), there exists a positive finite constant ¢,, such that for all sufficiently
large 7,1 — F (x) = ce ™. Ttis known [5], that lim,.en (1 — F(a, — €)) = .
Hence lim,.q nce” 9’ = w. So lim,,., ne ™ = o, which is equivalent to
(3.8). If z, < =, a, can be taken to be equal to z. , and the result is immediate.

LeMMA 3.3. Let d be any real number such that F (d) < 1. Let a, be such that
(2.1) holds. Then

(3.9) limpsw B (Zn — an)-"Ia = 0,

where 14 1s given by (2.12).

Proor. First, observe that Lemma 3.2 implies that a. approaches infinity
more slowly than p" for any p > 1. Hence lim,.. a,"F"(d) = 0. But, by the ¢,
inequality ([7] page 155),

E(Zn — an) "4

fd_w (x — a,)"dF"(x)

nem (2o (2™ + a,")F"™ (z) dF ()

nem [Lo [2"FOT0 (@)F 7 (@) dF (z) + nena.” [t F"7'(z) dF (z)
P @) [l |o|"dF™ () + na,"F*(d)) — 0, as n — .

Thus the lemma is proved.

Proor or TurorEM 3.1. First the sufficiency of the conditions for (3.3)
are proved, assuming that z, = . Using the definitions (2.4) and (2.6) of
Y@),and QW), E(Z, — a:)-" = [Yo @ — au)"dF"(x) = [0 (x — an)" dA-
W (@) +logn) = [2u QW + logn) — a.)"dA(y), where y = ¢ (z) + log n,
since the portion of the integral taken over the sets of constancy of ¥ (x) vanishes.
Therefore, what is to be proved is that

limue 2w (@ + logn) — Q(log n))"dA(y)= O.

Clearly, for any finite yo the corresponding value of d is such that F(d) < 1.
So, by Lemma 3.3, lim,.. [*%*" (Q(y + log n) — Q(log n))" dA(y) = 0,
for any such yo,. By Lemma 3.1, however, it follows that if ¢ > 0 is arbitrarily
chosen, there exists such a yo, for which

lim infose [yo-t0en QU + logn) — Qogn))" dA(y) Z € [Zo (y — 1) dA(y),
1im SUPnso Jyg-tosn Q¥ +logn) — Q(logn))"dA(y) = —e [2u (y — 1) dA ().

A1l

IIA
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Since ¢ was arbitrarily chosen, the theorem follows for the first part of (3.4).
Tor the second part, the proof is the same with an appropriate but obvious
modification. If z,, < «, clearly, we can let a, = ., and the result follows im-
mediately by Lemma 3.3, since d can be taken to be any value less than ..
The converse follows immediately from the Markov inequality ([7], page 163).

Now, we consider the problem of relative stability. It is known [5] that, in
order that

(3.10) Za/a, — 1, 1i.p.
it 1s necessary and sufficient that, either
(3.11) Ye > 1, limgae (1 — F(xe))/(A — F(z)) =0,

or 7, < ». Let X;* = log (X:)4, and Z,* = maxi <k <n X;*. For the present,

it is assumed that x, > 0. In this case, (3.10) is equivalent to (Z,.)+/a, — 1,

i.p. since with probability one, Z, = (Z, )+ for all sufficiently large n. It is clear

that the results concerning convergence both in probability and in the mth

mean, are unaltered by the replacement of a, by a.’, iff lim,.. (an/a,) = 1.
TurgoreM 3.2. If x, > 0, then, in order that

(3.12) limuse B (Z,)"/a," = 0, and limp.e £ (Z,)"/a." = 1,

it 1s necessary and sufficient that E (Z,)-" be finite for sufficiently large n, and that
(3.10) hold.

PROOF To begin with, the first part of (3.12) is proved. Clearly a, "E(Z,)-"
= a, " [Y 2™ dF"(x) = na, " [Yw FOTV @)F"7 () dF (x) £ an ™
F& "0) ) [% 2™ dF™ (z) — 0, as n — o, since F (0) < 1.

To prove the second part, we employ the logarithmic transformation. Then
it is sufficient to prove that

limpsw B (exp m (Z,* — a,*)) =
By assumption we can assume that for any d such that F (d) < 1,
E(exp m(Z,* — a.*))1a
= [L,exp m(x — a.*)dF" (&) = (exp — ma,”) [Lwexp madF"(z)
= n(exp — ma) [loexp maF" ' (z)dF (z)
< nlexp — ma,") [Loexp maF™ ™ @)F™™ (z)dF ()
< (exp — ma," )F" @) [, e)l(p medF™(x) — 0 as n — o,

since @, is non- decreasing The remaining part of the expectation is given by
fd exp m(x — an YAF" (x) = [Texp m(x — an *YdA (W (z) — log n). As ob-
served above, a,” can be replaced by @ (log n) without loss of generality. So the
preceding term is [q_1gnexp m(Q(y + log n) — Qog n))dA(y), where

=y (@) — logn, 4o = ¢(d), and ¢ (z), and Q (y) are given by (2.4) and (2.6),
using the starred arguments. So by Lemma 3.1, if ¢ > 0 is arbitrarily chosen,
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(exp — €) [Z exp — ey dA(y),
lim Sup... [7 exp m@ — a.”) dF"(z) = (exp €) [Zw exp ely| dA (y).

lim inf,... [7 exp m@ — a*) dF*(z)

1\%

So, since e > 0 was arbitrarily chosen, sufficiency is proved. Necessity follows
from the Markov inequality. Thus the theorem is proved.

The following corollary results from the L, Convergence Theorem, part 3
(Lotve [7], page 163), and the Markov inequality.

CoROLLARY 3.1. If x, > 0 the result of Theorem 3.2 holds iff

lim, .., Bla, ' Z, — 1|" = 0.
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