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INFERENCE PROBLEMS ABOUT PARAMETERS WHICH ARE
SUBJECTED TO CHANGES OVER TIME!

2
By Cuanban K. MUSTAFI

Columbia University

Introduction. Consider a situation where a random variable is observed se-
quentially over time and the distribution of this random variable is subject to a
possible change at every point in the sequence. We discuss some problems con-
nected with this situation.

In the first two sections, we assume that the change is random in nature and
affects the mean of the distribution. The study of this problem is centered about
a model introduced by Chernoff and Zacks [1]. We first consider the problem of
estimating the current value of the mean on the basis of a set of observations
taken up to present. The problem has been treated in some detail before [1]
but it has been assumed throughout implicitly that certain parameters occurring
in the model are known. In Section one, we derive a procedure for estimating the
current value of the mean on the basis of a set of observations taken at suec-
cessive time points when nothing is known about the other parameters occurring
in the model.

Section two considers another important aspect of the problem, namely, to
estimate the various points of change. We handle the problem in the framework
of empirical Bayes procedure and use an idea similar to that of Tainiter [6] to
derive a sequence of tests to be applied at each stage. This sequence of tests will
be shown to be ‘“asymptotically reasonable’’ in a certain sense.

In Section three, we consider » independent observations of a random variable
taken at successive time points. It is further assumed that the distribution of the
random variable belongs to the one parameter exponential family. We examine
the problem of testing the equality of these n parameters against the alternative
that the parameter has changed r-times at some unknown points where 7 is
some finite positive integer less than n. A test procedure is obtained by generaliz-
ing the techniques used by Kander and Zacks [2] who studied the case r = 1.
Under quite general conditions, the distribution of the test statistic is shown to be
asymptotically normal both under the null and the alternative hypotheses.
This kind of problem has also been studied by Page [5].

1. Estimation of the present value of tﬁe mean. Let x' = (@, 2, -, )
be the observation vector where the observations are taken at n successive time
points. Then following Chernoff and Zacks [1], the co-ordinates of x satisfy the
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following relations:
(1) xi=Mn+€i+ZI:=_i1Jka (’i=1721"'7n—1)
= pn + € (@ = n),
where u, is the present value of the mean. We assume that the variables e;
=12 ---,n),Ji¢e=12--+,n—1),Z; ¢ =1,2,---,n — 1) are all
independent with
E(e) = 0; Vi) =N (=1,2,---,n)

2) E@Z)=0; V@Z)=d¢ (G=12-,n—1)

PJ;=1)=P=1—-—PJ;=0) Z=1,2,---,mn — 1).
We, however, do not make any assumption about the actual form of the dis-
tribution of the random variables. The random variable J; assumes the value 1
if there is a change between the time points ¢ and (¢ + 1) while it assumes the
value 0 in case there is no change between these points. The random variable
7 ; represents the amount of change when a change is present between the points
2 and (¢ + 1). The dispersion matrix V of x is [1]:
®3) V = NL + P25 W,

where I, is the n X n identity matrix; W,® is an n X n matrix whose upper
left & X k submatrix consists of elements equal to 1 and all of whose other ele-
ments are zero. The BLUE (best linear unbiased estimate) of u, on the basis of n
observations is given by [1]

4) o = 003 8070 + 17120 6 P2 + 2
with

) V(@) = N5 4+ 1

where

6) &7 = [ows -+ Vaca(Oaa — D],

£ = (i — Diawi v+ Ong@aa — )] @ =2,3, -+ ,n — 1)
with
) n =2+ ¢, vi=2 4 ¢ — viyg (6=2238, ---,n—1)

where ¢ = ¢PA\7° > 0.
Suppose, 7 is some positive integer less than n. Then from (3), V can be re-
written as

11 Vi )
(8) V= \'/ )\2 I, + 02 P Z Wr(k)

k=1
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where Vi1, Vi2 and Vi are matrices of ordersn — r X n —r,n —r X rand r X
n — r respectively.

Equation (8) shows that the dispersion matrix of the last r observations can
be obtained replacing » by r in equation (3). Consequently, the BLUE 4, of
e and its variance V (f.,-) based on the last r observations can be obtained from
equations (4), (5) and (6) replacing n by r. We now prove some results con-
cerning the limiting behavior of the sequences {v;} and {7 &7},

Levua 1.1, limy v, = A, where

) A =1+ %l + 1+ 4/c)].

Proor. We assert that the sequence {v;} is monotone decreasing and bounded
below by 1. Suppose, v, > 1; then —v, ' > —1.

pp=24+c—v >14+c¢> 1

Since v; > 1, the second part of the assertion follows by induction. Again, let
us suppose that vy > v; ; then —v;y > —v, . Hence vy = 2 + ¢ — o+ <
2+c~vk—_11=vk.

Since, v > s, the first part of the assertion also follows by induction. Since
{vr} is monotone decreasing and bounded below it must converge to a limit. Let
L be this limit. Then from (7), we observe that L must satisfy the condition

(10) LI’— Q2+c¢)L+1=0.

It is easy to see [4] that the two roots of equation (10) are A and A" where 4
is defined by equation (9). Since v, > 1 for each k, L > 1. Hence, L. = A which
completes the proof of the lemma.

LemMma 1.2

lim, e P je & = (4 — 1)7%
Proor. Substituting» = 7 andn = r 4 1 in equation (6), we obtain
£/ = 89, i=1,2---r—1,
Hence,
(11) Piab? = &0 4 £ 0.
By Lemma 1.1 and equation (6), & > 0 for each ¢ and r. Also
0/ = [0 = 1)/oea 0 = Dl — 1)/ @2 — D] < 1
if and only if 1
(12) Vg > Ur_y.

Equation (12) is always true by virtue of Lemma 1.1. Hence, {£"} is a monotone
decreasing sequence. Also, £ > 0 for each r. Therefore, {£"} converges to a
limit. Using Lemma 1.1 and the relation £ = (#,—y — 1)/v,1 (v, — 1), we obtain

13) liMye &7 = 47
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Consider now the relation between V (4a,) and V (fnr41)- fin,r+1 is the BLUE
based on the last (r + 1) observations. {.,, the BLUE based on the last
observations, is also a linear unbiased estimate based on last (r 4+ 1) observa-
tions. Therefore, V (in,r) = V (fin,r+1) which from (5) leads to

(14) DL E™ = Y.

Hence, { 2 i1 £} is a monotone increasing sequence. Using the expression given
in equation (11) repeatedly, we obtain

Tiag® = 52 + 576550 + - + 5785 - 82
Using the fact {£"} is monotone decreasing and £® = (1 4 ¢)™ < 1 we obtain
(15) it 2600 -8 =

Equation (15) shows that the sequence {Y i—1 £} is bounded above by ¢
Since, {D_f=1£"} is monotone increasing it must converge to a limit. From
equations (11) and (13), it is easy to see that this limit is (4 — 1)™ which
completes the proof of the lemma.

Lemma 1.2 shows the result of using a finite number of recent observations fer
the estimation of the present value of the mean when there is an infinite sequence
of observations {z,} and the present time-point is at infinity. It follows from
Lemma 1.2 that the sequence {V (4.,)} decreases to the quantity N*(1 — 47")
with increasing r. Thus, if we choose a finite number 7, which ensures that V (fin .z )
is sufficiently close to N*(1 — A™") then by including an additional number of
finite observations from the end and using the corresponding BLUE, we cannot
substantially improve its variance. The remaining n — 7, observations, however,
contain information about ¢ and can, therefore, be used for its estimation. This
will enable us to obtain an estimate of u, when nothing is known about A?, ¢ and
P. We first describe a procedure of estimating ¢ in the following lemma:

LemMa 1.3. Suppose, {¢;} and {Z;} are each sequences of identically distributed
random variables. Let

Yi = Tji — Tin (j=1)2;"')n—1))
(16) uj =Y — Y = T — 2Tip + Tip G=12 -, n — 2).
Slz = (n — 1)_12?——111/1, 822 = (n — 2)_1 Z.’I 1'“/:

Then, (68 — 282) (S — 287)™* converges to ¢ almost surely.
Proor. From (1)

yi = JiZi + ¢ — €in (j=1:2)°'°’n—1)'

It is easy to see that because of the assumptions made in the lemma {y;} is
a 1-dependent marginally strictly stationary sequence (see Tainiter [6] for
definition). It also follows that [6]

17) m— 12Tyl =8 =27 + P as.
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Likewise {u;} is a 2-dependent marginally strictly stationary sequence and
(18) (n—2)"' 217 uf =8 —> 6N+ 2P as.

The proof of the lemma is immediate from equations (17) and (18).

We are now in a position to prove the main result of this section. This is given
in the following theorem.

TaeorEM 1.1. Suppose ro < n s a fixed positive integer. Let

S = (= — DT (@ — )’
(19) Siry = (0 — 1o —2)7 D r0? (xi — i + Tip)’,

¢ = (681, — 285,)(Ssr, — 281,,)7%

Let the sequence {0:} be defined in the same way as the sequence {v;} replacing ¢ by ¢
in equation (7). Likewise, let us define a sequence £°™° (i = 1,2, --+, 1 — 1)
replacing n by 7o and v by 0, in equation (6). Let
(20) a; = (El(ro—l) + )(1 + ZTO—I AJ(TO—1)+)‘1) .7 = 1) 2) ey, To — 1)
= (14 Zp g4

where Ej(r" Y1 = max (0, §777), so that D ;% a; = 1. Consider now the estimate
ta,ro Of wn defined as
(21) bary = 2710 rbi; N =To+ Lo+ 2, -
Then,

(1) E(Cnry) = ba.

(i) For each finite n, V(t,, ) SN+ PP — 1),

(i) limnse V(tnrs) = N1 4+ 22350 &7
which s the variance of the BLUE based on the last vy observations.

Proor. First of all, we observe that S3,, and S3,, are functions of the random

variablese; (j = 1,2, -+ ,n — 1), J; (=1,2,---,n—1r—1),Z; (j=1,2,

,n — 1o — 1). Consequently, a; (j = 1,2, -+ -, ry) defined in equation (20)
are also functions of the same random variables. Znvors (G = 1, 2, ---, 79)
are functions of the random variablese¢; (n — ro + 1, -++,n),J; (n — ro +1,
ceeyn—1),Z;(n —ro+1,---,n — 1). Hence,a; j = 1,2, .-+, 1) is in-
dependent of Zy—rg4+; (j = 1,2, -+, 70). From (20) and (21), we obtain

E(ture) = o Lit1 B(@5) = po
which proves the first part of the theorem.
22) V() = B23105@nrri — ) = 250N + PP — j)IE (@)
+ 2252 252 P (ro — §)E (asa5).
Using the condition ) % E (e) £ D71 E(a;) = 1 we obtain
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Vitem) = N + o"Pro2 3 E(af') — o"P2LIL1IE (")
+ 26°Pre >0 D I E(aja;) — 20°P 23 2 i1 GE (aja5)
N+ o*ProE (X a;) — " P iE(af) + 2227 Y15 E (aj05)]
< N+ & Pry — PE[D_ibita £ N + &P (ro — 1).
This proves part (ii) of the theorem. Finally, from Lemma 1.3
= ETA 4+ 2T as. (G =12 -, 0 — 1)
- 14+ 25 g™ as.

Further, 0 <a’ =1,0 £ ajay < 1. Hence, by the dominated convergence
theorem

lima B(af) = (5770 + 2550677
G=1,2,+-+,70—1)
(1 + Zro—l E](ro_l) )—2
(& VEDY (L 4 S gy
Gg=23,--- ro—l;] =12 ---,j—1)
liMnaw B (@rap) = £ 0 + 25 g7
G =1,2 1 — 1)

limn. E (ar,)

From (22) and (23), we obtain

i Vo) = (1 4 255 &) 80V @nr ) G 70) + V(@)
4 2305 2 €OV @ncrays s Tncrogss) ETTUETTY)]
A+ 2 ) VIS 6 By + @l

—_ [ ro—ls(ro—l) _|_ ]—l

This completes the proof of the theorem.

Theorem 1.1 describes a procedure of estimating the present value of the
mean when 7 is large and nothing is known about the parameters given in equa-
tion (2). The theorem asserts that for each finite positive integer ro, it is possible
to construct an estimate ¢, r, of the present value of the mean which is unbiased
for each n and whose variance is asymptetically equal to the variance of the
BLUE based on the last o observations. We also observe from Lemma 1.2 that
if the value of o is increased successively, then after a certain stage, the inclusion
of an additional number of finite observations will not improve the asymptotic
variance of t,,, substantially. The final choice of o is, thus, left to the statis-
tician depending upon how closely he wishes to approach the minimum
variance N*(1 — 47).
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2. Estimation of the various time points of change. In this section, we con-
sider another important aspect of the problem, namely, the estimation of all
such pairs of points between which changes have taken place. It will be assumed
throughout this section that the various probabilities of change are equal, {e;}
and {Z;} defined in (1) are each sequences of identically distributed random
variables and certain distributions (to be specified later) are known. The method
which we are going to develop uses an idea similar to that of Tainiter [6].

Let

24) yi=2x — T = ¢ — e + JiZ; G=12,--,n —1).

Each J; in equation (24) can assume two values, namely, one and zero. If
J; = 1, there is a change between the time points 7 and (j + 1), while if J; = 0
there is no change between these two points. The problem of estimating the
location of all such pairs of points between which changes have occurred can
thus be reduced to the problem of testing at each stage whether J; is zero or
one. We also observe that under the assumptions made at the beginning of
this section {y;} is a marginally strictly stationary one-dependent sequence of
random variables. The problem considered here can be reduced in the framework
of empirical Bayes procedure. For detail, we refer to Tainiter [6].

Consider a class C of decision rules in which the decision at the jth stage de-
pends on y; and y;1 ( = 2) and for j = 1 it depends only on y; . Then it follows
[6] that there is a sequence of decision rules which minimizes the Bayes risk at
each stage. The minimum value of this Bayes risk (also known as Bayes en-
velope function ) for j = 2 is independent of j and will be denoted by R (P).

TuaeoreM 2.1. Suppose P is unknown. Let us define the function h(y) as

hy) = 0 — P{Y; 2 K|J; = 0})
“P{Y; z K|J; =1} — P{Y; 2 K|J; = O))

(25) -(Pf{e; — ¢j1 + Z; 2 K} — Ple; — ein = K})7' if y 2 K,
h(y) = —Ply; =2 K|J; = 0}
“(PlyizK|J; =1} — {g; 2 K|J; = 0})"
{.

-(Ple — 1+ Z; 2 K} — Ple; — ¢ 2 K})7 if y <K,
where K 1s some real constant for which
P(e; — e+ Z; 2 K) 5 P(e — ej1 2 K).
Let
P; = lec.=1 [k x)1/3,
(26) Pi(i,92, -++,¥;) =0 if P;=0
= Pj if 0< Pj <1
=1 if P; = 1.
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Define a sequence of decision rules {d;*} as follows:
@7) di* @) =1 if op; ;) Z 0(conclude J; = 1)
=0 if op; (y;) < 0 (conclude J; = 0) @

v

2)
where ao and ay are the losses corresponding to the wrong decisions,

(28) ¢r; (¥5) = Pia[(1 — P)f’ Wil yia) + Pift (il yiza)]

— (1 = Pyacl (1 — Pi)fe’ Wil yi1) + Pifo' W yi-a)]
and f,' (i | yi—) = conditional density of y; given y;—y when J; = p and J;—y = ©
G, p = 0, 1). Let R;* (P) be the risk of the procedure at the jth stage. Then

limj,e R;*(P) = R (P).

Proor. The proof of the theorem is essentially the same as the theorem given
in Section 4 of Tainiter [6] with » = 1 and is, therefore, omitted.

Theorem 2.1 outlines a procedure to test for posible change at each stage when
P is unknown but the distributions of the sequences {¢;} and {Z;} are known.
In this case we can compute the sequence {¢r; (¥;)} as given in equation (28)
for each j = 2. The theorem asserts that if we apply these tests successively at
each stage, the risk will converge to R (P) which is the Bayes envelope function
in the class C' consisting of all decision rules with the property that the decision
about J; depends on y; and y;— and P is known.

We now consider an example where the sequence {¢p; (y;)} defined in (28)
can be reduced to a more explicit form. Let ¢; be normally distributed with mean
0 and variance \* and Z; be normally distributed with mean 0 and variance o>
These assumptions are similar to those made by Chernoff and Zacks [1].

Let

(29) ®(x) = @r)7F [T, L.
From (25), we obtain the sequence {h (y;)} as:

hs) = 2EEN))/@EEN)) — @EEN + ) if gz K

(30) =@E&EE@)™) - 1]
[PEEN)T) —@EEN + )T iy <K

where K is some real constant for which & (K (2\*)™1) = &K @\ + ¢ 7
i.e., K # 0. From a practical point of view, K can either be taken as a small
negative number or a large positive number so that we can confine ourselves to

one of the two definitions of A (y;) given in (30). From (26) and (30), we can
compute the sequence {P;}. Also,

fo Wilyic) is N (—3yia, %),
fo @ilyia) is N(=N@N 4+ o)y, MO + )@ + )T,
(B1) £’ @ily) is N(—3ym, IV + o),
A Wilyia) is N(=N@\ + )y,
BN+ )N+ )N+ AT,
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Using the sequence {P;} and equation (31) we obtain the sequence of tests
{d;*} defined in (27) to be applied at each successive stage.

3. Test procedure for possible changes at unknown time-points. The present
section is devoted to the generalization of a problem studied by Page [5],
Chernoff and Zacks [1], Kander and Zacks [2]. The problem can be described as
follows: Given observations on independent random variables x;, x5, -, Za
(taken at consecutive time points) with density f(z, 6;) (¢ = 1,2, ---, n), it is
required to test the hypothesis Ho:0, = 6, = --- = 6, = 6 (known) against the
alternative

J01=02= oo =0m1'=0
(32) Hl! 0m1+1=.0m1+2=...=0m2=0+8

Ompis = Oz = +++ =0, =0 416

where r is known but m;, me, - -+, m, and § are unknown. The hypothesis Hi
has the following interpretation: During the period 1 to n the parameter 6 has
changed r-times between the time points (mi, my + 1), ---, (m,, m, + 1).
The points my, me, +++, m, as well as the amount of change are unknown.
However, if the parameter 6 changes between any two points the amount of
change is fixed and is equal to 8. Obviously, 1 € m; < me < -+« < m, < n.

In the present study, we make the following four assumptions regarding the
density f(z, 6), the fixed amount of change 6, and the unknown time points
My, Ma, *++, My

1. f(z, 8) = h(x) exp W (0)U (&) + ¥,(0)].

2. ¥, (9) is monotone increasing in § and ¥, (9), ¥,'(9), ¥," (8), ¥," (8) are
finite over the whole range of 6.

3. Terms of order 0(8) can be neglected (where 0(8) denotes all such terms
for which [0(3)]6™ — 0 as § — 0).

4, (my, me, -+, m,) is a random vector with the following probability
distribution
(33) Pm) = (n —r)7, m =12 ---,n — 7,
=0, otherwise.
P(mj|mj, mja, -++,m)
= P (m;j|mj)
(34) m—mjs—r+j—1)7" mj=mja+1,---,n—r+j—1,
B 0, otherwise (j =2,38,---,71).

The first three assumptions are similar to those made by Kander and Zacks
[2] while the fourth assumption is a natural extension of an assumption also
given in [2]. Its interpretation is that each possible location of jth jump is equally
likely once the location of the (j — 1)st jump is fixed.
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In various references mentioned at the beginning of this section, it has been
assumed that » = 1. The results of the present study is valid for any finite » and
includes the result given in [2] as a special case.

The joint density of 1, 22, + -+, , and my, me2, - -+ , m, under H; (using the
four assumptions) after some simple calculations is given by:

f@i, oo, Tn,ma, e, M)
@5) = PP s | mi) I T2n h(e)liexp { X is g (i, 0))]
A4 8P g (@i, 0) 4+ oo A+ 18 g (34, ) + 0(8)],
where g (z;,0) = ¥, (0)U (x;) + . (0).

The marginal density of 2;, 22, - - -, , under H; can be obtained by summing
equation (35) over my, mz, - -+, m,. The marginal density of @1, z», --, Zn
under H, is
(36) Tk @)llexp { 219 (s, 0)}].

From (35) and (36) we observe that the likelihood ratio can be expressed as
B7) X 2wt 2omemet [P ()] e P (s | mia)]
L4 8 i1g @, 0) 4 - A+ 8D g (@i, 0) + 0(5)].
Now,
g (i, 8) = ¥ (0)U (z:) + ¥ (0).

By assumption 2, ¥,'(8) > 0 and by assumption 3 terms of order o(5) can be
neglected. Hence, from (37), the quantity

(388) T = Dmitaidmetmitr oo 2wy [P )T 52 P (mi | mis)]
[Zggml+1 U,+ 2 Z;'nimﬂ Uui+ -+ + 7‘2?:7,,,.,.1 Ui
(where U; = U (z;)] is a monotone increasing or decreasing function of the

likelihood ratio according as & is positive or negative. We propose T as a test
statistic for testing H, against H,.

The expression for T given in (38) cannot be computed directly since m; ,
ma, + -+, m, are unknown. We first develop a procedure which will enable us to
express T in terms of n, r and U; (j = 1, 2, -+, n). Next we shall study the
asymptotic distribution of T (with fixed r) as n becomes infinite.

Let us define a sequence of functions W;(s,,2) (j =2, ---,r) by

Wals,,i) = (s — )5+ (s —1— 1)@ — 1)
4ok s —l—i4+ 1)
i=1,2-,5=10 §1=0,1,2 -, withs > [,
(39) Win(s,L,4) = (s — 1) Wi(s + L, 1+ 1,4) + (s — 1 — 1)}
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Wi+ LI+2,5—1)4 -+ (s—1—4+1)"
'Wk(s_l‘]-’l_l_i) 1)7
t=1,2-,8—1; k=23--..

The proof of the following three lemmas can be verified in a straightforward
way.
Lemma 8.1. Let 1, s, t be positive integers witht > s > 1. Then

40) s Yhemn Us= 202 iUnip + (s — 1) (Unsa + -+ - + U..

(Ift = s + 1, the second term on the right hand side of (40) is zero).
Lemma 3.2. Let 1, s be positive integers with s > 1. Then

2t (s = m 4+ 1) i U = STt (88, ) Uryays.
LemmA 3.3. Let 1, s be positive integers with s > 1. Then
2ot (s —m + 1) Xt w, (s + 1,m, ¢)Unprys
= 225 Wana (s, L, ) Uiy
THEOREM 3.1.
@) (= )T = 2355 jUs + D5ea 205 Wit — 1, 0, §)U s
+ (= 1) 2 Ui
Proor. From (33) and (38) we obtain
(n—nT =205t —m—r+1)" Dot (0 — My — 1)
(42) 2ttt Us F D bmga Ui o v o s Us
+ 4 2 Ul
=Ti+Tet+ -+ Tj+ -+ T,
where
Ti= 2wt —m—r 4+ 1) X0 = ey — 1)
ey 11 Dtemigs U
= 2nh e —m = 1) T =y — e — 1)
D macu ) 3 SNNE, N

Substituting m = m; ;1 = m;y,s =n —r +J — 1,¢t = n and using Lemma
3.1, we obtain

(43) Zz]—:rl—n;:}-ﬂ E;;mq‘-l-l Ui = E?:lf—mj_1+j—l iUmj_1+i+1
+ (n —r — mja ‘l"] - 1)[Un—r+i+l + - 4 Un]
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From (42) and (43) we obtain
Ti=2mlitn—m—r+1)"
(44) D Domgttmg o (U —my — 4+ — 1)
' I U i+ (0 — D) [Uncrin + -+ 4 Ul

Letm = mj1 ;1 = mjye;8s =n —r +j — 2. Then applying Lemma 3.2, we
obtain

n—rtj—2 . -1 —mj_y—r i1
im0 — miy — v 4§ — 1) T e
—— . +'_2 . .
= ZZ;{ MW, m—r+7—2 m, /L)Umj_2+2+i .

It is clear that we can apply the above technique repeatedly and use Lemma
3.3 till all the summations of equation (44) are exhausted. Thus, we finally end
up with

Ti= 203 Wiln —1,0,8)Usi + (0 — 1) [Uncrsin + -+ + Ual,

(45) J=2,3--,7;
Ti= 2 m1 2 i—mn Ui
Let mi = m;1l = 0;s = n — r; { = n; then applying Lemma 3.1 we obtain
(46) Ty =255 iU+ @ — 1) Unrsa + - + Uil
Summing equation (45) from j = 2, ---, r and adding the expression for

T, from (46), we obtain
@7) (n— )T = 255 jUsn + 25 2055 Wiln — 1, 0,7) Ui
+ (0 = 1) 255 jUnrrina
which completes the proof of the theorem.
Lemma 34. W;(s,0,7) Ss— 1 (1 =i<s—1;j=2).
Proor. The lemma can be proved by induction.
LemMma 3.5.
g;in(S,l,’l:)=2_j(8—l)(3_l+2j'—1) (j=273"")'
Proor. The lemma can be proved by induction.
Lemma 3.6. Let E(U;) = punder Hy. Then, when H, is true
(48) E(T)=uwin+r—1)+2"@m—r— 1)@ — 1)L

Proor. The proof of this lemma can be obtained in a straightforward way by
the application of Lemma 3.5 in equation (41).

We are now in a position to prove the asymptotic normality of the test statistic
T. This is given in the following theorem.

TareoreM 3.2. Suppose mi, ms, -+ , m, are the points where the parameter 9
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has changed and § is the fized amount of change occurring at these points. Let the
mean and the variance of U; ( = 1,2, --- , n) for given my , ma , + - - , m, and & be
as follows:

E(U]')=p'7 j=1:2:"'7m17
(49) =m, Jj=m+1Ll--,m,

= Kr, j=mr+1:'

V(U]) =0'21 = 1,.2,"','}711,
(50) =6127 j=m1+1y"':m27
=0'r2; j=mr+1,...,n
Suppose, ¢1, Cz .+ - , Ca—y are @ sequence of constants defined as

a=m—r)"
Co = (n - r)~1[2 + W2 (n -7, 07 1)])
= (n— )8+ Wen — 1, 0,2) + Ws(n — 1, 0, 1)],

s = —1)[(n—7)+ Woln —r,0,n —r — 1)
(51) + -+ W, (n—1r,0,n— 2+ 1)],
toen = — ) [0 —7) + Waln — 7,0, n — 1)
+ -+ Wl —1,0,n — 2r + 2)],
Crrra=(n — 1) 200 — 1) + Ws(n — 7,0, n — )
+ o+ W,tn—1r,0,n— 2r 4+ 3)],

Gr=( — )70 =)0 — 1) + W,(n —1,0,n = r)].

Let
ES
(52) =N 21—1 ¢+ m Za—ml ¢ + © + u ]—‘mr ¢,
2% 2 —1 -1 2
(53) ot =0 2 e + o Ty o+ o immy Ci

and E|U; — E(U)P £ B < o for all 5. Then (T — p*)e*™ is asymptotically
normal with mean 0 and variance 1.
Proor. From (41) and (51) we observe that

n—1
T = ZJ—l ¢iUj .
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Lety; = ¢;Uja,7 = 1,2, -+ ,n — 1. Then, the sequence {y;} are independently

distributed. Let omin = min (¢°, o1’, - -+ , o,°). Then
o = D0V (Y5) Z ohin 2541 ¢
(54) = ohin 2 — )7

= a,zmn(n - r)_l(n —r+1)2n — 2r + 1)/6.
Also,
o =200 Ely — EW) = 2255 ¢’ E U — E(U)P £ 68 2205 ¢

By Lemma 3.4 the sequence {¢;} defined in (51) is uniformly bounded by r.
Therefore,

(55) o < Bri(n—1).

From (54) and (55), we obtain p/a < O (n™"*). Hence, lim,.., p/o = 0. Thus,
the sequence {y;} satisfies Liapounoff’s condition ([3], P. 275), and the proof of
the theorem is complete.

The following two corollaries are immediate:

CoroLLARY 3.1. Under Hy , [T — E (Mo 12 e tis asymptotzcallz/ normal
with mean 0 and variance 1 where o" is the common value of o, ooy ... o, given
in equation (50) and E (T') is given in equation (48).

CoroLLARY 3.2. If 6 > 0, the asymptotic power funciton of a test of size € is
gwen by

P(ml y Moy o0y My, 6) 1 - @(V(Z]—l C]>U - * *_ + (T( Z] =1 CJZ) tea'*_l)

where \
D) = @r)* [l e Pde = 1 — e

We now investigate the rate of convergence of the distribution of the statistic
T to the normal distribution in the following theorem.

TueoreM 3.3. Let F,(z) = P{(T — u*)c™ < 2}. Then |F.(z) — ® ()| =
0 (n™*), where ® (2) is defined in equation (29).

Proor. The proof of the theorem can be verified from a result given in Loéve
(3], P. 288).

Finally, we consider an example. Let f(x, 6) be the density of the normal dis-
tribution with mean 6 and variance 1. Then, we can write

f(@,0) = h(z)exp [¥1(0)U (z) + ¥, ()]

where,
h(z) = @o)e ™ W) =6,  W(0) = —3; U) =

Hence, T = 277 ¢;Xj .
In this case, the distribution of 7T is normal for any sample size. Further, it
follows from (52) and (53) that,

=025 ¢+ 4,
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where
A= o2+ 22 e T 2, )
and
0'*2 = ;:11 Cj2.

It may be pointed out that if we substitute r = 1in (41), we obtain the test-
statistic suggested by Kander and Zacks [2] for detecting one change.
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