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ESTIMATION OF STOCHASTIC SYSTEMS: ARBITRARY SYSTEM
PROCESS WITH ADDITIVE WHITE NOISE
OBSERVATION ERRORS'

By G. KaLLiaNnpur AND C. STRIEBEL

University of Minnesota

1. Introduction. The principal result of this paper, stated in Theorem 3, is a
form of the Bayes theorem which is required for the solution of many problems
in the control and estimation of stochastic systems. Although the original
motivation for the problem treated here is in the field of control, it is more con-
venient to formulate it in terms of estimation. Its application to control will be
discussed in a later paper.

We shall be concerned with the estimation of a “system process” z(t),
0 £ ¢t £ T which we assume to be defined as a stochastic process (¢, n) on a
known probability space (Qx, ®x, Px), (n € Qx). It is further assumed that the
system process cannot be observed directly. Instead we have available an
“observation process’ z(r) which is given by

(1.1) 2(r) = [tx()du + w(r), 07T,

where w(r) is a standard Wiener process independent of the system process.
Our available data is 2(r), 0 < 7 < ¢, for ¢ fixed in the interval 0 = ¢ £ T,
and using this data we wish to estimate some functional of the system process
2(r),0 =+ =T,

(1.2) Glz(r,n);0 £ 7 £ T).
It will be assumed that the resulting function g (y) defined on (Qx, ®x, Px) by
(1.3) gn) = Gla(r,9);0 =+ = T]

is integrable.

The system process, or more precisely, the space Qx on which it is defined cor-
responds to the parameter space in the usual Bayes approach to the theory of
estimation. Thus the probability Px is the a priore distribution for the unknown
parameter; the process z(r), 0 = 7 < {,is the observed random variable and we
wish to estimate the function g (y) defined on the parameter space.

We shall assume a squared error loss function. Hence we wish to find an
estimate 6(2(7), 0 < 7 = t) which minimizes

(1.4) E@ — &)
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786 G. KALLIANPUR AND C. STRIEBEL

It is well known that this is accomplished by letting
(1.5) 6 =Elglz(z),0 =7 = 1]

Our task then is to compute this conditional expectation. In Theorem 3 a formula
is given for (1.5) where, in addition to the usual measurability and integrability
assumptions, it is assumed only that the system process is square integrable
almost surely

(1.6) [{le@nldt < o a.s. Px.

It should be noted that by the proper selection of the function g, this result
can be used to solve the smoothing problem, the filtering problem and the es-
timation problem in addition to many others. For smoothing let

(L.7) g(n) = x(s, )
where 0 < s < ¢, for filtering

(1.8) g(n) = ()
and for prediction

(1.9) g(n) = (s, )
where t < s £ T. It may be noted that by letting
(1.10) ga(n) = L(n, a)

the conditional expectation (1.5) becomes the a posteriori Bayes risk for the
loss function L (n, a) where a belongs to an action space. Thus the conditional
expectations of the form (1.5) are those required to solve the general Bayes
decision problem.

The formula provided for the conditional expectation (4.32) of Theorem 3
is useful in applications only in the case that ¢ is fixed. If the data is coming in
continuously and we require an estimate which is being continuously revised to
take into account the new data, then this formula, while valid, is not practical
since the estimate at time ¢ + A must be completely recomputed using all the
past data. The value of the estimate at time ¢ is of no use in computing the esti-
mate at time ¢ + A. The practical method of computing an estimate which de-
pends continuously on time is by the use of a stochastic differential equation.
Under additional assumptions on the system process, the formula presented in
this paper (4.32) can be used to obtain such a differential equation. This work
will be given in a later paper.

Certain generalizations of this problem considered here can easily be handled
by the methods of this paper. For example, both the system and the observation
processes may be vector-valued. The observation equation (1.1) may be replaced
by

(1.11) z2(t) = ff) hir,z(r))dr + w(r), 0

IIA
B
IIA

T,



ESTIMATION OF STOCHASTIC SYSTEMS 787

where h satisfies appropriate regularity conditions. However, as each of these
generalizations introduces complications in notation and technique, it was
deemed best at this stage of the investigation to treat the simplest case which
includes what we consider to be the essential difficulties inherent in the
problem.

Further generalizations of the observation equation have been considered and
will be presented later. For example, the case

(1.12) dz(@t) = h(r,z(r))dr + o(r, (7)) dw(r)

can be solved by these methods. The success of generalization in this direction
depends on the existence of results of the Cameron and Graves type quoted in
Lemma 2.

One essential property of the estimation problem that is omitted here is the
possibility of control in the distribution of the system process. This property is
difficult to formulate rigorously and since it is not considered here, no attemptat
such a formulation will be made. However, since the motivation for the work is
the desire to obtain results valid for a “controlled” process, some comment is
essential. Heuristically, in a “controlled” system at any given time ¢ the dis-
tribution of the future of the system process (x(r) for + = t) is permitted to
depend on the past of the observation process (z(r) for 0 < 7 < t).

The formula in Theorem 3 was obtained earlier under the assumption that
the system process is constant in time

(1.13) () =2

and « is a random variable with a finite number of states. It is presented along
with the stochastic differential equation satisfied by (1.5) in an interesting and
fundamental paper by W. M. Wonham [5]. This paper is, to the knowledge of
the authors, the only rigorous work on this aspect of the estimation problem. In
fact, the generally heuristic nature of the literature in this area justifies in our
opinion what might appear to be an excessive attention to technical detail in the
following treatment.

Theorem 1 in Section 1 states a general form of the Bayes theorem. In Theorem
2 the result is extended to the case in which conditional densities exist. In Section
3 the probability structure of the problem defined by (1.1) and (1.5) is presented
in detail, and some lemmas which will be required later are proved. In Section 4,
the main result of the paper (Theorem 3), is stated and proved. Theorem 3 is
cast in a form which is convenient in the derivation of the stochastic differential
equation to be presented in a later paper. Another form of Theorem 3, given asa
Corollary in Section 5, is more appropriate for the estimation problem. Its use in
a Monte Carlo computation procedure is also discussed in the last section.

2. General Bayes theorems. In Theorem 1 we consider an arbitrary random
variable g, measurable with respect to a sub ¢-field @x, and compute its con-
ditional expectation with respect to another sub s-field @;. In Theorem 2, the
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same conditional expectation is computed under the further assumption of
existence of conditional densities.
THEOREM 1. On the probability space

@2.1) @, @, P)

let g(w) be an integrable random variable measurable with respect to a sub o-field
Gx and let Q (A, w) be a version of the conditional probability

(2.2) QA,w) = E(l4]Cx) a.s.
for A &£ Gz C @. Then ¢, , defined by
(2.3) 0 (4) = [g(@)QA, )P (dw)

for A & Gz is a finite signed measure on (2, Gz); it is absolutely continuous with re-
spect to P , the restriction of P to Gz ; and its Radon-Nikodym derivative satisfies

(24) Eg | Qz) = doy/dP; a.s. P;.

Proor. From the integrability of g and the properties of conditional proba-
bilities it is easily verified that ¢, is a finite signed measure.

Since the conditional expectation E (g | @z) is @z-measurable, in order to verify
that E (g | @z) is a.s. the Radon-Nikodym derivative in (2.4) it suffices to show
that

(2.5) E[I14E (9| @z)] = ¢,(4), A Qg
For A &€ @z, I4(w) is Gz-measurable, so that

(2.6) I.E(g|Qz) = E(gl4|Qz) a.s.

Taking expectations, we have

2.7) E[I[.E(g|@z)] = EIE (9la|@z)] = E(9la).

Since g is Gx-measurable

(2.8) E@li|Gx) = gE(I4]|@x)  as.

Thus from (2.2), (2.3) and (2.8), we have
29)  E(@l) = ElE@I.|6x)] = [ g(@)Q4, «)P(do) = ¢, (4).

The result (2.5) then follows from (2.7) and (2.9).

It is well-known that the conditional éxpectations @ (A4, ») defined by (2.2)
need not be measures in 4 for o fixed. Following Logve [2] (p. 137) we shall say
that the conditional probabilities Q(A, w) are regular provided @ (4, «) is a
probability measure in 4 for each fixed w. This assumption will be required in

TuaeoreM 2. Let the following conditions be satisfied:

(i) the conditional probabilities Q (4, w) in (2.2) are regular,
(ii) the o-field @z is generated by a countable famaly of sets, and

(iii) there exists a measure \ defined on (2, Qz) such that Q (A, w) is absolutely

continuous with respect to \ for w ¢ Q where P(Q') = 1.
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Then, 1t follows that

(iv) Py s absolutely continuous with respect to \,

(V) there exists a function q (&, w) which is measurable on (2 x Q, @z % Qx)
and satisfies

(2.10) g ) = (dQ/d\) (-, w)(E) ae. N xP,
(vi)
(2.11) 0< [q¢ w)P(do) < © as. P, and

(vil) for g integrable and Gx-measurable

[ a)ate, )P ()
(2.12) Blg|a,) = as. P

[ ate )P

Proor. In Doob [2] (Example 2.7 of the Supplement, p. 616) the existence of
a jointly measurable density ¢ (¢, ) is shown in the case that Gx = @ is gener-
ated by a countable family of sets. A very slight modification of the argument
given there establishes the existence of the function ¢ (£, w) satisfying (2.10) for
our case. The details of this argument will be omitted.

From the definition of Q@ (4, ») in (2.2), for 4 £ @2

(2.13) P;(A) = E(Is) = BIE(Ii|@x)] = [ Q(4, ©)P (dw).

Thus, from the absolute continuity of @ (4, w) with respect to A assumed in con-
dition (iii), it follows from (2.13) that Pz (A4 ) and from (2.3) that ¢, are abso-
lutely continuous with respect to N\. From Loéve [4] (p. 141, Example 21)

(2.14) deg/dN = (dey/dPz)- (dPz/dN) a.e. A
Let

(2.15) Ao = {w]| (dP3/d\) (w) = 0}.

Then

(2.16) Jag (APz/dN) ()N (dw) = Pz(4o) = 0
and hence

2.17) 0 < dPz/d\ < »  as. Pj.

Finiteness follows from the finiteness of P . From (2.14)
(2.18) (dg,/dPz)(w) = (dey/dN) (w)/ (dPz/d\) (w) for w g Aou By

where B, is set on which (2.14) does not hold so that A (By) = 0. Since Pzis
absolutely continuous with respect to A\, Pz(By) = 0 and hence

(2.19) doy/dPz = (dpg/dN)/ (dPz/dN) a.s. P;.
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It remains to show that

(2.20) (doo/dN) (8) = [g(w)q(E @)P(dw)  as. Py
and
(2.21) (APz/d\) (¢) = [ q¢ «)P(dw)  as.  Pj.

From (2.3) and (2.10) of the theorem, for 4 ¢ G2

222)  ¢(4) = [g@)QA, )P (dw) = [ ()[4 ¢ «INEE)IP (o).

Applying the Fubini theorem (see, for example, Logve [4], p. 136) on the product
space (@ x Q, @z x Qx, N X Px) to (2.22), it follows that

(2.23) 0o (4) = [41f 9(@)a (& )P (de)IN(dE)

and that [ ] in (2.23) is an @z-measurable function of £ Thus the expression
[ lin (2.23) is the Radon-Nikodym derivative of ¢, with respect to A and (2.20)
follows. The result (2.21) follows by the same argument for ¢ (w) = 1. Con-
clusion (vi) of the theorem follows from (2.17) and (2.21), and (vii) follows
from (2.19), (2.20) and (2.21).

3. Function space formulation. Let R'""' be the space of all real-valued
functions z (r) for 0 < 7 = ¢, let 2" be the product o-field in R®? defined in
the usual manner, and let C[0, t] be the space of real-valued continuous functions
on [0, t].

Define measurable spaces (W, ®w) and (Z:, ®z,) as follows:

(3.1) W =20Cl0,T], ®w=Wn&"",
Z, = C0, t], ®z, = Zi0®x™Y,

where 0 < ¢t = T.

It will be assumed that a Wiener measure Py is defined on (W, ®y) and that
a probability space (Qx, ®x, Px) is also given. Elements of Qx and W will be de-
noted by n and w respectively. The probability space to which Theorem 2 will
be applied is the product space defined by

(3.2) @,@,P)= (Qx x W,® x ®w,Px x Py).
The o-field @y is induced by the projection transformation
(3.3) P:(Q, @) — (Qx, Bx)

defined by '

(3.4) P (g, w) = 1.

Thus

(3.5) Gx = & (®x)

consists of the cylinder sets in Qx x W with bases in ®Bx .
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We shall use the notation (3.3) extensively throughout the paper to indicate
that ® is a measurable transformation from the measurable space (2, @) into
the measurable space (Qx , ®Bx); that is, ® is a single-valued point transformation
from @ into Qx for which ™ (®x) C G.

It will be assumed that a real-valued stochastic process z(u, 1), 0 < u < T,
n £ Qx , called the system process, is defined on (Qx , Bx , Px). The s-field @5 is
induced by the transformation H to be defined in (3.8) and (3.9). The measura-
bility of H is demonstrated in Lemma 1.

Since ¢ will remain fixed throughout this section, we shall drop the subsecript ¢,
following the convention Z = Z; and ®z = ®z, . It may be noted that in Lemma
1 the transformations k, H and ¥ all depend on ¢, but that this is not reflected in
the notation at this point.

LemMa 1. If z (u, ) 7s a (jointly) measumble process, then the transformations

(3.6) h:(Qx, ®x) — (Z, Bz)

and

3.7) H:(Q,Q)— (Z, Bz)

defined by

38) @) = [tx(u,n)du for 0=7=<t if [¢lx(u,n)]du< o
=0 for 0<r=<t if [olxCu,n)ldu=

and

(39) H@,w)(r) = k() () + w(r), O=r=1)

are measurable and

(3.10) HQ) = Z.

Proor. The process x(u,n) is assumed to be jointly measurable on
([0, T] % Qx, ®p,;; X ®Bx, pp,r1 X Px) where ®p,r is the Borel o-field and
pio.77 is Lebesgue measure on the interval [0, T]. Thus z* (u, ) and 27 (u, 1) are
also jointly measurable and by the Fubini theorem for positive functions,
fo z (u, n) du and fo 2 (u,n) du are Bx-measurable in 7 for r fixed. Similarly,
fo = (u, 7))’ du is Bx-measurable and hence

(3.11) C={n:filz@,ndu < =} e®x.
Define '

ht(r, m) = f3x+(U,n)du if neC

(3.12) =0 if ngC;

K (r,n) = [t (@, n)du if neC

=0 it neC.
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These functions are ®x-measurable and finite for r fixed (0 < 7 < t) and hence
h(r, ) defined by
(313) h’(Ty 77) = h+(T) 77) - h (77 "7)

is finite and ®x-measurable for 7 fixed (0 < 7 =< t). It follows from (3.12)and
(3.13) that

(3.14) h: ©@x, ®x) — (R, @)
given by
(3.15) (hm)]@) = hin, 7)

satisfies (3.8) of the theorem. Since h is ®x-measurable coordinate-wise, it is
measurable with respect to the product o-field ®z"?. From (3.8) k(n, 7) is clearly
a continuous function of 7 for n £ Qx fixed. Thus

(3.16) h(Qx) C Cl0,¢] = Z

and h in (3.6) is measurable with respect to ®; = C[0, {] n ®z'"". The trans-
formation

(3.17) V. (W, ®w) — (Z, ®Bz)
which restricts functions w(r) for0 = 7 < T totherange0 = 7 =,
(3.18) [ @)](r) = wir), 07,

is clearly measurable.
Finally, defining

(3.19) H(n,w) =h(n) + ¥ W),

it is easily seen that H is a measurable transformation from (2x x W, ®x x ®Bw)
to (Z, ®z). Let z be an arbitrary element in Z and let 9 € Q¢ be fixed. Then

(3.20) h(n)eZ

and

3.21) 20=2—h(n)eZ

since both are continuous functions on [0, #]. Define

(3.22) wo(r) = 20(1), 0=7=1d,
= z(1), t=7r=T.

Then from (3.18)

(3.23) T (wo) = 2o

and

(3.24) H(n,wo) = h(n) + ¥(wo) = h(n) + 20 = 2.
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Thus
(3.25) ze H(Q)

and (3.10) follows. This concludes the proof of Lemma 1.
We shall write w = (5, w) and H (w) for H (g, w). If the system process z is
jointly measurable, it follows from the preceding lemma that

(3.26) @z = H'®;

is a sub o-field of @. We recall from the definition of Py and ¥ (3.18) that P»¥
defined by

(3.27) Py¥ ' (B) = Py[¥ ' (B), Be®s,

;8 a standard Wiener measure on (Z, ®z). Let 2z be a fixed element of Z and
16t P, be the probability on ®; given by

(3.28) P,,(B) = Pylw:¥(w) + 20e B] for Be®;.

We shall require the following result due to Cameron and Graves [1] (Theorem 1,
" Iifﬂf/[)MA 2. If 2o € Z s an absolutely continuous function of T on [0, ],

(3.29) 20(r) = [{ o) du O=r=1)
where

(3.30) Jolmo@)Pdu < o,

then P., is absolutely continuous with respect to Pw¥ " and
(3:31)  (dP.,/dPw¥ ") (2)
=exp{[ox(r)de(r) — &[S [wo(r)Pdr}  as. Pp¥.

It is understood that the first integral in the exponential in (3.31) is to be re-
placed by zero for those values of z for which the integral does not exist and
hence that the Radon-Nikodym derivative is defined for all values of z ¢ Z.

LeEMMA 3. For A € Gz and w £ Q, define

(3.32) Q(A, ) = Prapwy(HA)

where P, (B) is defined by (3.28), h and H by (3.6)-(3.9), and ® s the projection
(3.4). Then Q (A, w) s a regular conditional probability measure for P, given Gy .
Proor. From the definitions of P,,, H and ¥

(3.33) Pupy(HA) = Pylw:¥(w) + h(n) e HA] = Pylw:H (n, w) e HA].
Since from Lemma 1 (3.10) H is onto,

(3.34) Pylw:H(n, w) e HA] = Pylw: (n, w) e A] = Py (4,)

where A, is the section of A at 5. Thus from (3.32), (3.33) and (3.34),

(3.35) Q4, w) = Py(dsw).
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It follows that Q (4, w) is a measure in A for w and hence 7 fixed. By the Fubini
theorem, for A ¢ Bx x ®w

(3.36) P(A) = [ax Pw(4,) (dn)

where Pw(4,) is a ®x-measurable function of 5. Since ® is @x-measurable, it
follows from (3.35) that @ (4, w) is Gx-measurable for A ¢ @ fixed. For C ¢ Gx ,
since C is a cylinder set, there exists B ¢ ®x such that

(3.37) C=BxW.

Then for A ¢ @z from (3.36) .

(3.38)  [cl.i(w)P(dw) = P(AnC) = [ag Pw[(An C),)Px (dn).

From (3.37)

3.39) Pyl(AnC),| = Pw(A4,)I5(),

and hence (3.38) may be written as

(340) [cIi(w)P(dw) = [2Pw(A,)Px(dn) = [w [5 Pw(Ay)Px (dn)Pw(dw)
= [w [3 Pw(dew)P (o) = [cQ(4, &)P (do).

From (3.40) it follows that

(341) Q(4, ) = Ell4(w) |Gx] (@)  as.

Hence Q (4, w) is the required regular conditional probability measure.

4. Main theorem. Under the assumption that the system process z(r, 7) is
jointly measurable and square integrable a.s., Theorem 2 will be applied to the
probability space defined by (3.2) with Gx given by (3.5) and Gz by (3.26). In
order to do this the conditions (i)-(ii) of Theorem 2 must be verified. First,
according to Lemma 3, Q (4, w) given by (3.32) is a regular conditional prob-
ability measure for P given Gx, and hence (i) is satisfied. Condition (i) is
checked by noting that the o-field @z is generated by the countable class of sets

4.1) {H"(Biyus) | to, @, b rational}
where
4.2) Biyup = {2l2eZ,a.< 2(h) = b}.

In condition (iii), the measure N will be defined by
4.3) NA) = Pp¥ ' (HA), Ae@sz,

where Pw¥ " is defined by (3.27). Then, according to Lemma 2, P, is absolutely
continuous with respect to Py¥ " provided z, satisfies (3.29) and (3.30). For
A £ Gz such that N(4) = 0, from (4.3) clearly Py¥ " (B) = 0 where B = HA
and hence P, (B) = P, (HA) = 0. Thus from the definition of @ (4, w) given
by (3.32) it is clear that Q (4, ) is absolutely continuous with respect to \ for
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all w such that h(® (w)) satisfies (3.29) and (3.30). Referring to the definitions
of h and ® given by (3.8) and (3.4) we see that

hi® (n, w)] (r)
“44) = [ox(u, 1) du for 0<r=t if [ola(u )du < =
=0 for 0=+=1¢ if fé[x(u, NPdu = .
Thus, since x (u, 1) is assumed to be square integrable a.s., it follows that

(4.5) W@ w)(r) = [tx@,n)du (O=r=<t) as Py x Py

A

where the exceptional (, w) set does not, of course, depend on r. Hence i[® (w)]
has absolutely continuous sample functions a.s. and by assumption

(4.6) [l n)Pdu < o  as.

Thus (3.29) and (3.30) are satisfied a.s., and condition (iii) of Theorem 2 is
seen to hold.

A formula for the Radon-Nikodym derivative on the right side of (2.10) of
Theorem 2 can also be deduced from Lemma 2. For w = (4, w) fixed and such
that (4.5) and (4.6) are satisfied, by Lemma 2

4.7) (@Phey/dPw¥ ™) (2) = f,(2) a.s. Pyy™
where

(4.8) Fr(2) = exp { [z (u, n) dz(u) — % [§ [&(u, n)]" du}.
Define

(4.9) 9o(&) = fow (HE) for £eQ.

The function fs() (2) is measurable on (Z, ®;) for w fixed as above since it is a
R-N derivative. Thus g, (¢£) is measurable on (?, Gz) since by Lemma 1 H is a
measurable transformation from (2, @z) to (Z, ®z). For 4 ¢ @,

(4.10)  [a quEN(E) = [4foHE)PwYH () = [a4fo@)Pw¥ " (d2),
(see, for example, Lehmann [3], Lemma 2, p. 38). From (4.7)

4.11) JaafowPw¥7 (d2) = Puawn (HA),
and thus by definition of Q (4, w) (3.32),

4.12) J1g@ENEE) = Q(4, w).

It follows that

(4.13) @d/a)Q (-, w)(¢) = ()  as. A

for we @', where Q' is the set on which (4.5) and (4.6) hold and hence
PEQ) =1.
Now from Theorem 2 there exists a function ¢(f, w) measurable on
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(@ x Q, @, x @x) which satisfies
(4.14) g, w) = q.¢) a.e. N x P.

The conditional expectation given ®; of every Qx-measurable and integrable
random variable ¢ is given by (2.12) of Theorem 2.

To facilitate interpretation and application it is desirable to recast the right
hand side of (2.12) in a more convenient form. For this purpose we introduce
the probability space

(4.15) (@, @, P) = (Qx, ®x, Px) x Qx,®x, Px) x (W, By, Pw)

where the spaces (2x, ®x, Px) and (Qx , Bx., Px) are identical.
We shall denote elements of @ by @ (sce, (4.41)) and expectations with respect
to the probability space (4.15) by E. On the space (2, @), define the projections

(4.16) 1 (2, E) — (Ox, Bx)

and

(4.17) (2, E) > (2,Q) = Qx x W, B x ®x)
by

(4.18) Dy (n, 7, w) =1

and

(4.19) &, (n, 7, 0) = (i, w).

From (4.17) letting

(4.20) P = Px x Py

it is easily seen that
(4.21) P@'A) = Px(A) if Ae®y and
P@A) = P(A) for Acaq.

Let ¢g(n) be an integrable rz}ndom Variable on (2, ®x, Px). Then
92 (@) = gl® (0, w)] = g(n) and g1 (&) = glPi(n, 7, w)] = g(n) are integrable
random variables on (Q, @, P) and (2, &, P) respectively. The conditional ex-
pectation E (¢® | @) is an @, measurable function on (2, @). Since @ is induced

by the transformation H (3.26), there exists a ®z-measurable function F (z) on
Z such that

(4.22) E@g®|Qz)(w) = F[H (w)]

(see Lehmann [3], Lemma 1, p. 37). To denote this function F (z), we will use
the more suggestive notation

(4.23) E@®|H, ®z) () = F(z)



ESTIMATION OF STOCHASTIC SYSTEMS 797

where F (z) satisfies (4.22) and hence

(4.24) E@P|Gs)(w) = E@P | H '®s)(w) = E@g®|H, ®z) (H (w)).

The o-field @, in (2, @) is defined by

(4.25) Gz = (H®) ' (®z) = &' (@),

Following the notation outlined above

(4.26) E(G|Gz) (@) = BG| (H®) " (B2)] (@) = E(G|HP:, Gz)(HP(w))

where G is an arbitrary integrable (or non-negative) random variable on

@, @Q,P). ,
On the space (Z, ®z) denote by P,H ™" the probability measure
(4.27) (P,H')(B) = P;,(H'B) where Be®;.

Since the following theorem is to be applied in other connections, the de-
pendence on ¢ will be explicitly displayed.

TrreorEM 3. Let x (r,7),0 £ 7 < t, 7 ¢ Qx, be a jointly measurable process such
that

(4.28) folxw, 7)) du < ©  as.  Px.
Then there exists a function vz (@) measurable on (Q, @) such that
4.29) yi(n, 7, w) = exp[foz @, n)dw@) + [oz(w, 7)z (U, n) du
— 3 [olw(u, n) du a.s. P,

(4.30) 0< E(y|H®, ®z)(2) < o as. P,H™,
and
(4.31) E(gP|H, ®z) ()

= E(gd-v |HE,, ®7) ()/E (v | HE:, ®2) (z)  as.  PH

for all integrable random variables g on (Qx, ®x, Px).
Proor. Consider the projection

(4.32) 0: (2, Gz) % (2, Gx) — (2, Bx) x (2, Qz)
defined by
(4.33) 0 ) = (@), 8).

Observe that the range space of 01is Qx x © = Q where Q is taken to be Qx x W,
and Bx x @z C @&. Further, 6 is a measurable transformation with

(4.34) 67 (®x %X Qz) = @z % Qx.

Since ¢ (¢, w) is @z % @Gx measurable, there exists v: (@) measurable on (Qx % ©Q,
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®x % Q@z) such that

(4.35) & @) =700 w))

(Lehmann [3], Lemma 1, p. 37).
It is easily seen that

(4.36) P=PXXPZ=(PZXP)0_1 on (Bx)(@z

where it will be remembered that P, is the restriction of P to @5.
It suffices to take g non-negative and Px-integrable on Qx . Since ¢ (£, ) is
@z x @Gy measurable, by the Fubini theorem

(4.37) Jag® (@)g (&, )P (d)

is @z measurable in £ From (4.25) &, is a measurable transformation from
@, Gz) to (2, @z) and hence

(4.38) [ 92 (0)q(@:(@), )P (dw)

is an @z measurable function on Q. If A ¢ &, then there exists B € G5 such that
A = Qx x B. Thus, again from the Fubini theorem and (4.36) (remembering
that az C ®Bx % az)

Jalfag®(©)q(@: @), ©)P (dw)IP (de)

(4.39) = 5 Jox [Jog® (@) (& @)P (dw))Px (dn) P2 (dk)
= [a([ag® (@)q(t w)P (dw))Pz ().

From the definitions of the transformations ®, &;, &, and 0,

(4.40) 9P (@) = go1(®) = g21(0(5 ) = g(n)

where

(4.41) 3= (aw), o=Ou) =& = @{w).

Thus from (4.35) and (4.36), the right hand side of (4.39) can be written as

@42) 5 JagBil0E )yl ¢ )P (do)P7(dE) = [49%1(5) v: (@)P (dw)

since 0 (B x Q) = Qx x B = A. It follows from (4.39) and (4.42) that

443) E(gdiv:|G2) (@) = [agP(0)gl®: (@), o]P (dw)  as.  Pj.

Here P7 denotes the restriction of P to @;. In Theorem 2, if £ is replaced by
&, (@), the equations (2.11) and (2.12) hold a.s. on (2, &, P;). Thus from
(4.43) we have

(4.44) 0 < Ely:|Gsl(®) < a.s. Py
and

(4.45) E(g | @z)(‘i@(&))) = E’(giﬁ-% l az)(w)/E'(’Yt | &z)((o) a.s. Py.
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TFrom the notational convention defined in (4.24) and (4.26), we can write
(4.44) and (4.45) as

(4.46) 0 < E(v,|HY,, Bz)(HP@)) < = as. Py
and
(4.47) E(g|H, ®;)(Hd:(w)) = E(gdiy. |HE:, Bz) (HP(a))

E (v | H®, , Gz) (HD: ()] a.s. P;.

These equations will be used to show that (4.30) and (4.31) of the theorem
hold a.s. P,H . Let N be the set on which (4.30) or (4.31) does not hold. Since
the functions involved are all &, measurable, N ¢ ®; . For @ ¢ (H&)™'N, (4.46)
or (4.47) is violated, and hence from (4.46) and (4.47)

(4.48) P [(H®,)"'N] = 0.
From (4.21) and (4.27)
(4.49) 0 =P,@® '"H'N) =P,(H'N) = P,H"(N).

Thus (4.30) and (4.31) hold a.s. P.H.
It remains to show that (4.29) holds. From (4.14) and (4.9)

(4.50) g ) = fow (HE) a.e. N x P.
Thus from (4.35) and (4.33)
(4.51) v (@ (w), &) = fow (HE) a.e. ANxP

where f, (z) satisfies (4.8). Let @' be the subset of @ on which
@52) [ile, n)du < =,  [ile(, N)'du < ©,  and

[ow(u, n) dw(w)

exists and is finite. From the f~0rm of the probability space & (4.15) and assump-
tion (4.28), it follows that P(&') = 1. For » & €' it is easily seen from the
definition of H (3.8) and (3.9) that

(4.53) f3,@[H®: @)]

= exp [[oz(u, n)dw@) + [0z (u, n)z(u, 7)du — % [0 [z (u, 7)) du],
Let N be the set in © on which
(4.54) ve(n, 7, w) # fa, [HD: @),

Since (4.51) is violated for (¢, w) e 6~ (V), there must exist a set M £ @; x Qx
such that

(4.55) 6 (N M
and
(4.56) (N x PY(M) = 0.
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From (4.34), there must be a set M ¢ ®x x @z such that

(4.57) M = ¢ (0).
Since 6 is onto, it follows from (4.55) and (4.57) that
(4.58) N c 1.

It was shown earlier that P is absolutely continuous with respect to N. Thus
from (4.56) it can be shown that

(4.59) (P; x PY(O'M) =0
and hence from (4.36)
(4.60) P(M) = 0.

From (4.53), (4.54), (4.58) and (4.60) it follows that (4.29) of the Theorem
holds a.s. P.

5. Discussion. A more explicit form of Theorem 3 is given in the following
corollary.

CoroLLARY. Let (1, 7), 0 = 7 = t, n¢eQx, be a jointly measurable process
such that

(5.1) [, n)du < ©»  as.  Px.
Then
(52) 0 < [fexp [[ox(u, n)de(w) — } [ilx(u, n) dul}Px(dn) < «
a.8. P,H™
and

E@®|H, ®z) () = {[lg() exp { Jow(u,n) de(w) — % [¢[w(u, )] du}]
(5.3) -Px (dn)}{ [ lexp [[o & (u, n) dz () — % [0l (u, n)] dull
-Px (dng)} ™ a.s. P,H™

The integrals in (5.3), taken over Qx are well defined since the expressions
[ ] are ®x measurable a.s. Px for z ¢ @; where P,H " (Q;) = 1.

Proor. From (4.36) v:(®) is measurable on (2x % @, Bx X @z) where
&= (n,n,w),nel and (7, w) ¢ 2. From (4.37) and the Fubini theorem, it can
easily be shown that
(54) Elgdive| G, 7, w) = [g@)ve(n, 7, w)Px(dn)  as.  Ps.
From (4.55), (4.59) and (4.61)

(5.5) ve(n, m,w) = fo(H (7, w)) as. P

where f,(2) is given by (4.9). Again by the Fubini theorem and (4.37) for
(7, w) € 2 where P, (Q") = 1

(5.6) veln, i, w) = f,(H@, w))  as.  Px.

The exceptional set here may depend on (3, w).
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From (5.4) and (5.6)
(5.7)  Elgdive |G (@) = [ gy (H®:(8))Px(dn)  as. Py

where integration on the right side of (5.7) is understood to be with respect to
the completion of the measure Px . That is, the right side of (5.7) is &z measur-
able in (7, w) a.s. P;. By definition (4.27)

(65.8) E(gdiv: |HE, ®z)(HP:(2)) = E(gdi-v: | (H®)'®s) (@).

Since (H®;)"'®; = G, from (5.7), using an argument similar to that in the
proof of Theorem 3 it can be shown that

59) [9mf,@Pz(dn) = E@gdive|HD;, ®z) ()  as.  PH.

The corollary then follows from Theorem 3, (5.9) and (4.9). From (5.6) the
function f, (z) is Bx measurable a.s. Px for z ¢ H(Q') = Q; where P,H ' (Q,)
= P,@) = 1.

Formula (5.3) of the corollary can be used to find Monte Carlo approxima-
tions to the desired estimates. Suppose we wish to estimate a functional

(5.10) Ge@r);0=7r=T)

defined on the system process. For example, the form of this functional required
for the smoothing, filtering, and prediction problems are given by (1.7), (1.8)
and (1.9). We will assume that a sample of system processes is available. Thus
the functions

(5.11) xn (1), 07T,
are independent for n = 1, 2, ---, N and as random variables with values in
funetion space, they have the distribution induced by Px. Let

(5.12) gn = G@a(7),0 =7 = T).

It will be assumed that the process
(5.13) z(7), 07 =4
has been observed. Then we can approximate the ‘best’” estimate of G by
(5.14) 8(z(r),0=7=t) =E[G|2(),0 =t =) =N "D 19ufu/N D fu
where
(5.15) fu = exp (o) de(u) — 3 [ loa ()] dub.
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