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MOST POWERFUL TESTS FOR SOME NON-EXPONENTIAL FAMILIES

By EmiL SpigTvoLL

University of Oslo

1. Introduction and summary. We shall be concerned with the parametric
problem of testing hypotheses concerning the value of one parameter when the
values of other parameters (nuisance parameters) are not specified. Neyman [6]
derived under certain conditions a locally most powerful two-sided test for this
problem, i.e., he gave the form of the test maximizing the second derivative of
the power function with respect to the parameter of interest at the point specified
by the hypothesis. Generalizations of Neyman’s results were given by Scheffé
[7] and Lehmann [2], using the same technique as Neyman. They were also able to
prove that the tests were UMP unbiased. A new technique for dealing with these
problems was introduced by Sverdrup [9] and Lehmann and Scheffé [4] where the
completeness of the sufficient statistics in an exponential family of densities is
used to derive UMP unbiased tests. It is stated by Lehmann and Scheffé [4] that
the conditions imposed earlier imply an exponential family of densities.

When no UMP unbiased test exists we have little general theory. The problem
is both one of principle and of technique. Most stringest tests exist under general
conditions but are difficult to derive in particular cases. Lehmann [3] proposed
maximin tests. Spjgtvoll [8] has given an example of the form of a maximin test
when no UMP unbiased and invariant test exists.

This paper is an attempt to establish some results for testing hypotheses when
the probability density of the observations does not constitute an exponential
family under both the hypothesis and the alternative. The assumptions made in
Section 2 are satisfied if we have an exponential family under the hypothesis, but
do not say anything about the form of the density under the alternative. The
results concern most powerful similar or unbiased tests, and under certain con-
ditions the form of these tests for the particular family of densities studied, is
given in Section 3.

In Section 4 the theory in Section 3 is applied to the problem of testing serial
correlation (not circular) in a first order autoregressive sequence. It is found that
the usual tests are nearly UMP invariant.

In Section 5 the problem of testing the value of the ratio of variances in the
one-way classification variance components model is considered. Some numerical
results are given for the power functions of the maximin test, the locally most
powerful test and the standard F-test. The results indicate that the standard
F-test performs well compared with the other tests.

2. Assumptions and definitions. We shall consider the case where the prob-
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ability distribution of X belongs to a family
O = {(Pfs: (0,9)eQ)
where Pj s is defined by
dPis(x) = a(x, 8, )b (), 0, &) du(x),

where u is a o-finite measure over a Euclidean space.
Let the parameter 6 be real. We shall consider the problem of testing the
hypotheses

H,:0 =6, against 6 > 6,
H;:0 =06, against 0 £ 6.

We shall assume that there exists a value ¢ of ¢ such that the distribution
Py, 3, dominates the family ®*. In that case we may write

(2.1) dPss(z) = alz, 8, 9)b(t(x), 6,9)/ (a(x, 6o, d0)
b(t@), 00, %)) dPsy 5, (x) ae. OF

Further it is assumed that the statistic 7 = ¢(X) is sufficient when 6 = 6,
and that the family of distributions for 7' when 8 = 6, is boundedly complete.

We define locally most powerful tests of the hypotheses H; and H, as follows.
(Compare Lehmann [3], p. 342.)

DEFINITION. A level a test ¢o of Hy(H:) is locally most powerful (LMP) if,
given any other level o test ¢, there exists for each ¢ a A such that 8 (0, ¢, ¢o) =
B(6, 9, ¢) whenfy < 0 < 6 + A6 — 6o < A).

Similarly we may define LMP tests among similar tests (LMPS) and among
unbiased tests (LMPU).

A test ¢ of H, satisfying (a) 860, 9, ¢) = a, (b) By (6o, &, ¢) = 0 and
8o (60, ¥, ) = maximum among tests satisfying (a) and (b), was denoted test
of type B by Neyman [6]. If there exists a unique test of type B, then it is a
LMPU test of H,.

3. Derivation of most powerful tests. Let Ps'° denote the conditional prob-
ability distribution of X given T = ¢ when 8 = 6, . Since T is sufficient, P7,* can
be chosen to be independent of 8. Let E7,* denote expectation taken with respect
to Pp. . Similarly let E3s and Ejs denote expectations with respect to the dis-
tribution of X and the marginal distribution of T respectively.

A test ¢ is similar if £5, 90 (X) = « for all #. Since T is sufficient and complete
when 0 = 6, a test is similar if and only if E7, ‘¢ (X) = a a.e. ®;, where @, de-
notes the family of distributions for 7' when 6 = 6, .

We have the following theorems:

TureorEM 3.1. For the hypothesis 0 = 6y against (0, 3) = (61, O1) there exists a
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most powerful similar level o test o1 defined by

1 when a(x, 6, %1)/a(x, 6o, Fo) > c(t)
=~ () when a(z, 0, )/ ax, 0, ) = c()
=0 when  a(x, 0., H)/a(x, 0, %) < c(t),

where ¢(t) and v (t) are determined by E’Z;Yo' ‘o0 (X) = afor all t.

Let a5 and by’ denote the derivatives with respect to 6 of the functions a and b
respectively. The next theorem gives the form of the test that maximizes
By’ (60, 3, ) locally.

TurEorREM 3.2. Suppose that for any test ¢ the derivative with respect to 0 of the
power function B(6, ¥, ¢) can be computed under the integral sign. Then among
simalar level o tests the following test o, maximizes the derivative of the power function
at (00, 00)

o1 (x)

ea(x) =1 when  ag (x,00,%0)/a(x,0,8) > c(t)
= y() when a4 (x,00,%)/a(x,0,%) = c(t)
=0 when  ag (z, 00, %)/a(x, b, ) < c(t),
where ¢(t) and v (t) are determined by Efl0y(X) = a for all t.

Let a;” and by” denote the second derivatives with respect to 6 of the functions
a and b respectively.

TurorEM 3.3. Suppose that for any test ¢ the first and second derivative with
respect to 8 of B (8, &, ¢) can be computed under the integral sign and suppose that
ad (z, 00, 9)/a(x, 0, &) + b (t(x), b, 3)/b(E(x), b0, F) = k(@ )h(x) for some
functions k and h, with k() > 0 for all §. Then among level « tests unbiased at
8o the following test o3 mazximizes the second derivative of the power function at (9o , )

e(x) =1 when  aq’ (x, 60, %0)/a(x, o, %)
+ a(t)as (@, 00, F)/a(x, by, do) > c2(t)

= v (t) when as (x, 00, %0)/a(z, by, F)
+ e ()ag (z, 60, F0)/a(x, o, %) = ¢ (t)

=0 when  ag (x, 6o, %)/a(x, 8, Fo)
+ ¢ (t)ad (x, 00, Fo)/a(x, 8o, F) < e (t),

where ¢ (), ¢ (t) and v (t) are determined by Es'e3(X) = a and Ei'es(X)-
(ad (X, 0, 90)/a (X, 60, o) + b ¢(X), 00, F0)/b(t(X), 6, %)) = 0.

Proor. Theorem 3.1 is Theorem 3 of [9]. The proofs of Theorem 3.2 and Theorem
3.3 follow by the usual technique [3], [9], now demonstrated on the proof of
Theorem 3.3.
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Unbiasedness in some neighbourhood of 6, implies 85 (6o, &, @) = 0, hence
0 = Eiy o0 (X) (ad (X, 00, 9)/a(X, 00, &)
3.1) + b ¢(X), b0, 9)/b(E(X), 6o, #))
Eiy0Eay ' (X) (@ (X, 60, 9)/a (X, 60, &)
+ by (¢(X), 60, 8)/b(E(X), b0, ).

We may choose the function 4 () in the theorem equal to a (,00,)/ax,0,3)
+ by (t(x), b0, ¥)/b(t(x), 8, F). Hence by (3.1)

0= Eg'o,ﬂE{olt(p(X)(ao, (X7 bo ) 00)/0’(X7 007 00)
+ bol (t(X): bo ) l?o)/b (t(X)) 6o ) 00))

Il

Completeness of T' implies
(3.2) Eil'o(X)(ad (X, 60, %)/a(X, b0, d)
+ b (t(X), 60, 80)/bA(X), 0, 0)) =0 ae @,.
The test must be similar, hence
(3.3) Efl'o(X) = a ae. @,
We have
B (B0, Do, @) = Eiy.o,Ep'0(X) (@ (X, 00, %)/a(X, b, d)
+ 2a4 (X, 00, So)bs’ ¢(X), 60, 90)/ (@ (X, 8y, %)b (X)), 6, %))
+ b (¢(X), 80, F0)/b(t(X), b0, )).

Maximum is obtained if for each ¢ the expectation Ej,’ in the above expression
is maximized under conditions (3.1) and (3.2). An application of the Neyman-
Pearson fundamental lemma gives the test ¢3.

The tests ¢1, ¢ and ¢; are not proved to be admissible. Hence there may
exists tests Y1, ¥» and ¥; with the same properties as ¢, ¢; and ¢;, and which at
the same time dominate the ¢’s. But if ¢1, ¢ and ¢; are unique, they are ad-
missible.

The following lemma will be useful when establishing uniqueness.

LemMa 3.1. Let X be a random variable, T = t(X) a statistic and let E*, E* and
E*" denote expectations with self-evident notation. Given a test function ¢o such that
@) =1 when h(w) > 2iakit@))fi()

=0 when h®) < X2 raki(t(x))fi(x)
for some functions hy fi, fo, =+, fm, k1, ko, <+, km. Then a test function ¢ satis-
Jying
34) EMoX)fi(X) = B X)fs(X) ae, © = 1,2, m,
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satisfies
E* (X)h(X) = E*p(X)h(X)

if and only if ¢ (x) = @o (@) a.e. on the set {x : h(x) # D 1 ki(t @) )fi(x)}. Other-
wise EXo (X)h(X) < E*oo(X)h(X).

RemAgrk. This lemma establishes the uniqueness of an optimum test con-
structed by maximizing conditional expectations given a statistic 7. The Ney-
man-Pearson fundamental lemma can be used to prove the uniqueness for each
given T = t, but the above lemma in addition states that the test is unique
unconditionally.

Proor. We have by (3.4)

E o (X)ks (t(X))f+(X) = E"ki(T)E 0 (X)f:s(X)
= E'%i(T)E™ 00 (X )fs(X)
= B0 (X )i (t(X))f:(X).

It follows that
E¥oo (X)MX) — B (X)h(X) =E (p(X) — ¢ (X))

(X)) — 22T ks (¢ (X))fe (X))

By the definition of ¢, the above difference is 20 for all ¢. It is = 0 if and only if
¢ @) = ¢o(x) a.e. on the set {z: h(zx) # Dokt @))fi (@)},

We may state the following remark:

REMARK. (i) The test ¢ is unique (a.e. P¥) if

Py s, (@(X, 00, 81) = ct(X))a(X, 0, %)) = 0.
(ii) The test ¢; is unique (a.e. P*) if
P35, (a5 (X, 00, %) = c(t(X))a(X, 8, %)) = 0.
(iii) The test s is unique (a.e. P¥) if
Pog.0, (a8 (X, 60, %) + a1 (t(X))ad (X, 6o, ) = e¢(X))a(X, b, %)) = 0.

Remark (i) is proved by using Lemma 3.1 with h(z) = a(z, 61, 91)b (t(z), 61, 91)/
(a(z, 6o, 3o)b(t(x), 6o, D)) and P39, as probability measure. The remarks (ii)
and (iii) can be proved in a similar way.

If ¢, is unique and does not depend upon ¢, , then it is the unique most powerful
similar test for testing 0 = 6, against 6 = 6; .

If ¢» (¢5) does not depend upon & and is unique, then it is the LMPS (LMPU)
test of the hypothesis H; (Hz).

We have tacitly assumed measurability of the functions occurring in the
theorems. We shall not prove this, but only note that in each specific case we may
try to find (measurable) tests which is of the form given in the theorems. By
Lemma 3.1 they will be most powerful.
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4. Testing for serial correlation. The model for the observations X;, X5, -« -,
X, is

Xi=PX1:—1+Ui, 7:=2)3;""n’

where U, , Us, - -+ , U, are independent N (0, ¢°), and X1, X5, --- , X, have a

multingjrmal distribution with EX; = 0, Var X; = ¢*/ (1 — p°) and Cov (X, X,)
= p'"*/ (1 — p*). The parameters ¢ and p are unknown.

We shall consider the problem of testing the hypotheses
Hy:p = p against p > po,
H,: P

The hypothesis testing problem H, is invariant under a common (positive)
change of scale of X3, X5, - - - , X, . A maximal invariant is

8 = (X)) QXA Xl XA

The distribution of S depends only upon p, hence any invariant test is similar.
When considering invariant tests it is therefore no restriction to restrict attention
to similar tests.

The probability density of X;, X, - -+, Xais

@r) ™1 — o )lexp (—i P (Xiaad — 20 Diezawia + 0 ik ),
which can be written in the form a (x, p, 0)b (¢ (z), p, ¢) With
a(@, p,0) = exp (=2 ((0" — po’) i @ — 2(p — po) Doime Tio1))

I

0 against p % 0.

and
b(t(x), p,0)

where

@) (1 — o) exp (=0t (2))

I

HX) = Db X2+ o Dot X — 2p0 ora XXy .

The probability measure for p = po and ¢ = o, can be used as a dominating
measure for any oo . We have a (z, po,0) = 1. T = #(X) is sufficient and complete
when p = po . Applying Theorem 3.1, the most powerful similar test against an
alternative (p1, 01) is found to have the rejection region

23 1 XX — (o1 + po) Dors XE > ¢(T).
Introduce ‘
Wi= (220 XXex — (o + po) 21 X7)
(I XE 4 0 212 X — 200 2t XiXe)

The distribution of W; does not depend upon o. T is sufficient and complete when
p = po. Then by a theorem of Basu [1] W, and T are independent when p = po.
The rejection region may be written Wi > ¢(T')/T where ¢(T) is determined
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by P(Wy > ¢(T)/T|T) = a when p = py. But since W; and T are independent
when p = py we must have ¢(t)/¢ equal to a constant. Hence the rejection region
is Wi > ¢ where ¢ is determined by P(W, > ¢) = « when p = po.

Since Wi does not depend upon oy it is the most powerful similar test for
p = po against p = p;. Since here invariance implies similarity and W, is in-
variant, it is also the most powerful invariant test for p = po against p = p;.
By the Hunt-Stein theorem ([3], p. 336) the test also maximizes the minimum
power over the set of alternatives with p = p; . If we could prove that the power
function of the test increases with p, then it is proved that it maximizes the
minimum power over the set of alternatives with p = p; .

The following argument will show that the test based on W, is almost a UMP
invariant test. We have

Wi = 2201 XXea/ 200 XE + (o + po) (X + X2/ D iaX? — 1)]
M4 eI — X+ XD/ XD — 2000t XX/ Dt XA

If we neglect the term (Xy* + X,%)/D_r X which is small even for moderately
large values of n, we find that to reject when W > ¢ is equivalent to reject when
Wo > ¢ where

Wy = io XX (ZLI Xiz)_l-

For each p; this is an approximation to the most powerful invariant test for
p = po against p = p1. It does not depend upon p; . Hence it is almost a UMP
invariant test for p = pg against p > po.

Using Theorem 3.2 and reasoning as above it is found that the test which
maximizes the derivative of the power function with respect to p at the point
(oo, d0) is based on the statistic

Wy = QiaXXis — po2 s X2)
QI X 4 0 IS X — 2000t XX y)

with rejection region W, > constant.

Since the distribution of W, depends only upon p, and W, does not depend
upon gy, the test based on W, is LMPS.

If we in W, neglect the term (Xy* + X,%)/ D 7y X it is seen as for Wi that
the test based on W, reduces to the test based on W,. Hence the test based on
Wy may be regarded as an approximation to the LMPS test.

The statistics W1 and W, do not, of ‘course, uniquely reduce to W, when we
neglect terms of the form (X:* + X,’)/ > 7 X Another possible statistic is

W =20 (Xi— X)) (i X)) =2 — (X 4+ X XA ™ — 2w,.

See for example [5]. The test with rejection region W, < constant can also be
regarded as both a nearly UMP invariant test and LMPS test. The difference
between the power functions of the two tests can be expected to be small.

If we set pp = 0, then the test based upon W, reduces exactly to the test
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based upon Wy, hence in this case the latter is LMPS. If we set po = 0 and
p1 = 1, then the test based upon W; reduces exactly to the test based upon W',
hence the latter is most powerful invariant against the alternative p; = 1. This
should give an indication of the difference between the two tests. The test based
upon W is a little more powerful than the test based upon W, near the hypothe-
sis, and the latter is a little more powerful at alternative near p = 1.

Finally we shall find a test of the hypothesis Hs : p = 0Qagainst p # 0.[X,/X,,
Xo/X,, -+, Xu-1/X,] is a maximal invariant under a common change of scale
of all variables, and |p| is a maximal invariant in the parameter space.

If we apply Theorem 3.3 it is found that the test which maximizes the second
derivative of the power function at (0, s0) subject to the restriction of unbiased-
ness and similarity, rejects when

— DS X 4 o0 (e XX ) + a(T) D XX > o )
where in this case T = > .7 X/ This can be written as
X4+ X X)) 4 00 (i XX Qi X7 4+ 6(T)) > a(T).

Neglecting the term (Xy* + X,)/ (Q_i= X*)® and reasoning as before we get
the rejection region

Wo < —c and We> ¢

where ¢ is determined from the condition of level a.

This test is an approximation to the test which maximizes the second deriva-
tive of the power function at (0, 00). Since the power function of the former test
depends only upon |p| and W, does not depend upon oy it is an approximation to
the LMPU test at p = 0.

5. Variance components models. In a previous paper [8] the author has studied
the unbalanced one-way classification variance components model.
XU=M+U1'+VU: j=1,2,“‘,7?/7;,1::1,2,"‘,7',

where u is an unknown constant, and where the U; and V;; are all independently
normally distributed with expectations zero and variances 7 and o” respectively.
The hypothesis to be tested is

H:A = Ay against A > A,

where A = 7°/o".
In [8] it is shown that a maximal invariant under a group of translations,
changes of scale and orthogonal transforrhations is

Z:Q7%, ZQ7%, -+, Z,aQ 7]
whereQ = Z§=1 Z,n;l (Xij - Xi)z and Z; = nf(Xi - X,.) (% = 1,2, cre, T — 1).

The family of probability distributions of Z’ = [Z1, Za, -+, Z,_4] and Q
can be written in the form (2.1) with

alz, g A, o) = exp (—@2)TEAQ) 2 — FA ) 2))dMTT
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for any oo, where 4 (A)s® is the covariance matrix of Z and n = D,

In [8] it is shown that the test which maximizes the minimum power over the
set of alternatives with A = A;, has a rejection region of the form W; > con-
stant where

Wy = (ZAW@)Z — Z'AM)7Z) (Z'A0)7Z + Q)

A limiting form of W, is obtained when A; — «. Then we shall reject when T >
constant where T = Z'A (A0)'ZQ". From the identity

(5.1) Z'AW)TZ = Y ianina 4+ 1) X — X)?

where X = (Qianima + 1)) 2icini(na + 1)7'X, the statistics T
and W; may be computed by the observations X,; [8].

Since the distribution of the invariant statistic depends only upon A, any
invariant test has constant power when A = A,. Hence similarity represents no
restriction when considering invariant tests. We shall now find the form of the
locally most powerful invariant (LMPI) test. Derivation gives

as’ (2, ¢, Do, o) = (207) A% (A0)eg? T

where A*(A) = — dA(A)™'/A. The statistic Z'A(A0)"'Z + @ is sufficient and
complete when A = A, [8]. Using Theorem 3.3 and arguing as in Section 4 it is
found that the LMPI test has rejection region W, > constant where

W, = Z'A*(00)Z (Z'A (00)'Z + Q)7
From the identity (5.1) it is found by derivation that
Z'A*(A)Z = D in (ni(nas + 1) (X — X)%

It is seen that the LMPI test puts more weight to the group means with many
observations than the other tests. It should be noted that the tests based on
T, W, and W, reduce to the usual test when n; = ny = --- = n,. The same is
the case if r = 2.

It is of interest to compare the three tests by means of their power functions.
In [8] it is proved that W, and T are distributed as ratios of linear combinations
of chi-square distributed random variables. The exact distribution is not known.
In the case r = 3 the following lemma can be used to obtain a relatively simple
expression for the cumulative distribution of the three statistics.

LemMa 5.1. Let X1, X, X3 be independently distributed chi-square random
variables with vy, vs , vs degrees of freedom respectively, and let a; and az be two con-
stants. Then

U= (aXi+ aX;)( X+ Xz + X3)!

1s distributed as Y1Ys where Yy and Y, are independent and Y1 has a beta distribu-
tion with v1 + ve and v; degrees of freedom and (Yo — a1)/ (a2 — a1) has a beta
distribution with ve and vy degrees of freedom.
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Proor. Define Yy and Yo by Vi = (X; + Xb)/(X; + X, 4+ X;3) and ¥V, =
(@X: + a:.X,)/ (Xi + X,). Then Y, is independent of X; + X,, and hence
independent of Yi. Also (Ys — a1)/ (a2 — a1) = X/ (X1 + Xo).

We shall use Lemma 5.1 with »; = v, = 1 and v; = n — 3 wheren = )i n;.
By integration it is found that if 0 < a; < a, then

P(U>u) =31 — w/a)™™® + 301 — u/a)!"™®
(5.2) + @2r) (= 3) U (1 — g)i
‘Aresin (1 — 2(u/z — a1) (a2 — 1)) da
foru < a1,and fora; £ u < a
PU>u) =11 — uw/a)™®
(53) + @) 70 = 3) [ure 1 — 2)' "
‘Arcsin (1 — 2w/ — o) (@2 — &)™) d-

To avoid complicated formulas we shall in the following consider only the
case Ag = 0.

Let Bo, 81 and B3: denote the power functions of the tests based upon T, W;
and W, respectively, and let ¢, ¢ and ¢, denote the corresponding constants
used in the tests. In [8] it is shown that W, is distributed as

Wi(A) = D2 (AN + 1 — (A + 1)/ (A + 1))82
20 @an 4+ DSE+ @

where Si°, 8y, - -+, 87— are independently chi-square distributed with 1 degree
of freedom, independent of @ which has a chi-square distribution with n — »
degrees of freedom. The \; are the roots of the equation |B — AC| = 0 where B
and C are determined from A (A) = BA + C.

We find

Br(A) = P(Wi(A) > a)

r—1

=P @AN + 1)/ (AN + 1) — Aa)SECiTi8E + Q)™ > )

where the statistic is in the form of U in Lemma 5.1.
Regarding the test 7" we may use the fact that 7' is distributed as

T(A) = 251 (AN + 1)87Q™
to write
Bo(A) = P (AN + 1 + a)SP (T 8E + Q)7 > ).

The power function of the test based on W, is
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TABLE 1
mo=m=2n5 =26 m=5mn=10,n =15 m =8, m = 10, ng = 12 "1m==”2m=
A
Bo B1— Bo B2 — Bo Bo B — Bo B — Bo Bo Bi—Bo  P2—Bo B

0 .010 .000 .000 .010 .000 .000 .010 .000 .000 .010
.01 .011 .001 .001 .014 .000 .000 .014 .000 .000 .014
.02 .013 .001 .001  .019 .001 .001 .019 .000 .000 .019
.03 .015 .001 .001  .024 .001 .002  .025 .000 .000 .025
.04 017 .001 .001 .030 .002 .002 .032 .000 .000 .032
.05 .018 .002 .002 .036 .003 .003 .039 .000 .000 .039
.06 .021 .002 .002 .043 .003 .003 .046 .001 .001 .047
.07 .023 .002 .002 .051 .003  T.003 .055 .000 .000 .055
.08 .025 .003 .003 .059 .003 .003 .063 .001 .000 .064
.09 .027 .004 .003 .067 .004 .003 .072 .000 .000 .073
1 .030 .003 .003 .075 .004 .003 .081 .001 .000 .082
.2 .058 .006 .006 .163 .004 —.003 .177 .001 —.001 .180
.3 .091 .007 .006 .246 .002 —.012 .267 .000 —.003 271
4 .125 .007 .005 .319 .002 —.021 .343 .000 —.004 .348
.5 .160 .004 001 .381 —.005 —.031 .408 .001 —.005 .413
.6 .193 .002 —.003 .433 —.006 —.033 .462 —.001 —.006 .466
7 .225 —.001 —.007 .478 —.008 —.037 .507 —.001 —.006 .512
.8 256 —.004 —.012 .516 —.008 —.039 .546 —.001 —.006 .551
.9 283 —.007 —.016 .550 —.010 —.041 .579 —.001 —.006 .584
1 310 —.010 —.021 .579 —.010 —.042 .608 —.001 —.006 .613
2 .503 —.032 —.054 .746 —.011 —.041 .768 —.001 —.005 .772
3 .614 —.040 —.068 .818 —.009 —.034 .836 —.001 —.004 .839
4 .685 —.042 —.073 .859 —.008 —.029 .873 —.001 —.003 .875
5 734 —.042 —.073 .884 —.006 —.025 .896 .000 —.002 .898
10 .850 —.032 —.059 .940 —.004 —.015 .946 .000 —.001 .947

B(8) = P(Z'A*(0)Z(Z'A0)7Z + Q) > @)
=PI (A 0) — a4 0)" + cAQ)NZEZAQ)Z + Q7' > )
=P TuSiinsl + Q) > )
where the u; are the roots of
[A¥©0) — 04 @) + ed (@) — pd @) = 0.

By means of Lemma 5.1 and the expressions (5.2) and (5.3) the power of the
tests can be computed for r = 3. The results for some combinations of n;, n,
and 73 are given in Table 1 and Table 2. For fixed 7, , n, and n; the second and
third column show how much must be added to the power function 8 to get the
power functions 8, and B, respectively. The last column in each table gives the
power of the F-test when n, = n, = ng = n/3. The level is 1 % and the value of
of A, is chosen to be 0.1. The reason for choosing A; = 0.1 is that for larger
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TABLE 2
m=mn =35, n =80 m =35, m = 30, n3 =55 mm==n§0=
A
Bo B1 — Bo B2 — Bo Bo B1 — Bo B2 — Bo B
0 .010 .000 .000 .010 .000 .000 .010
.01 .014 .001 .001 .023 .005 .005 .027
.02 .020 .002 .002 .042 .009 .010 .053
.03 .026 .003 .003 .065 .012 .013 .083
.04 .033 .004 .004 .088 .016 .016 115
.05 .041 .005 .004 113 .017 .017 .149
.06 .049 .006 .005 137 .019 .018 .182
.07 .058 .006 .005 .161 .019 .017 214
.08 .067 .007 .006 .184 .019 .016 244
.09 .077 .006 .005 .206 .019 .015 274
.1 .086 .007 .006 .227 .019 .013 .301
.2 .184 .007 .000 .391 .010 —.008 .502
.3 272 .003 —.010 .498 .001 —.028 .617
4 .346 —.001 —.020 .572 —.005 —.042 .689
.5 .408 —.005 —.028 .627 —.009 —.0562 739
.6 .460 —.008 —.034 .670 —.012 —.060 775
7 .504 —.010 —.039 .703 —.013 —.065 .802
.8 541 —.011 —.042 .731 —.014 —.069 .824
.9 573 —.012 —.044 .753 —.014 —.071 .841
1 .602 —.013 —.046 773 —.015 —.074 .855
2 .761 —.014 —.046 .872 —.013 —.071 .923
3 .829 —.012 —.039 911 —.010 —.062 .948
4 .867 —.010 —.033 .932 —.009 —.053 .961
5 .891 —.008 —.028 .945 —.007 —.047 .968
10 .943 —.005 —.017 972 —.004 —.028 .984

values of A; the difference between 8o and f; vanishes. For A; = 3.0 for example
the two power functions were identical to three decimal places. The power
functions were also computed for 5% level, but the results did not in tendency
differ much from those for 1% level, though the differences in power were
smaller.

It is seen from the tables that the difference between 8y and 8, is small, and
very little is gained by the LMPI test near the hypothesis as compared with the
loss of power for moderate values of A. It is also seen that we may have a serious
loss of power compared with the situation where n; = ny = n3 = n/3.
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