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WEAK CONVERGENCE OF A TWO-SAMPLE EMPIRICAL PROCESS
AND A NEW APPROACH TO CHERNOFF-SAVAGE THEOREMS'

By RonaLp PYRE AND GALEN R. SHORACK
University of Washington

0. Summary. An empirical stochastic process for two-sample problems is
defined and its weak convergence studied. The results are based upon an identity
which relates the two-sample empirical process to the more usual one-sample
empirical process. Based on this identity a relatively simple proof of a Chernoff-
Savage theorem is obtained. The c-sample analogues of these results are also in-
cluded.

1. Introduction. Let X;, -, Xu, -+, and Yy, ---, Y,, --- be inde-
pendent sequences of independent random variables (rv) with common con-
tinuous distribution functions (df) F and @ respectively. Let N = m + n and
Ay = m/N and suppose that 0 < Ay = Ay = 1 — Ay < 1 for some Ay > 0. (Here,
and throughout, when N is used as a subscript it denotes the pair (m, n).) Let
A= s, 1T — N

When dealing with a single sample X;, -+, X,, most distribution-free tests
and statistics are based upon the empirical process {U,(¢): 0 < ¢ < 1} defined
by

(1.1) Un(t) = ml[FF(t) — 1,

where F,, is the empirical df of the sample and where for any two df’s, F, ¢ we
write FG™* for the composed function FG'(t) = F(G7'(¢)). (Throughout this
paper we take inverse functions to be left continuous; thus F~'(¢) =
inf {x: F(z) = t}.) These 1-sample empirical processes have been studied ex-
tensively. Much is known about them including their weak convergence to a
separable tied-down Wiener process {Uqo(¢): 0 = t < 1}; that is, to a Gaussian
process with E[Uy(¢)] = 0 and E[Us(s)Uo(t)] = s(1 — ¢),0 < s =t = 1.

Similarly for the second sample, let G, denote the empirical df of ¥y, .-+, ¥,
and let {V,,(¢):0 = ¢ < 1} be the corresponding empirical process

(1.2) V.(t) = GG — 1.

By assumption, the Un,- and V,-processes are independent. Let {Vo(¢):0 = ¢t < 1}
denote a second tied-down Wiener process independent of the Uy-process.
Define

(1.3) Ky =FHy', Ky.=FH"', K=K, =FH,
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756 RONALD PYKE AND GALEN R. SHORACK

where
(14) Hy = MFou + (1 — An)Gs, Hy, =N + (1 — M\)G, H = H,,.

Most non-parametric tests and statistics for the 2-sample problem are based
upon the relative ranks of one of the samples. Suppose we let {Ry;:1 < 7 < N}
denote the set of relative ranks of the X-sample; that is, Ry; is the number of ob-
servations among X, - -- , X,, which do not exceed the 7th order statistic of the
combined sample Xy, +++ , Xn, Y1, --+, Y, . In terms of previous notation one
sees that Ry; = mF,.Hy '(4/N). It is thus natural to propose the 2-sample
empirical process { Ly(t): 0 =< ¢ < 1} defined by

(1.5) Ly(t) = NYF,Hy () —FH'(1)].

We will now show how the Ly-process relates to the linear rank statisties
studied by Chernoff and Savage (1958). Define

(1.6) Ty =m " D aceniByi = D ims cwillnHy “(i/N)

where {cy;: 1 = ¢ = N} is a given set of constants. If vy denotes the signed
measure which puts measure cy; on the point ¢/N for 1 < ¢ < N, and puts zero
measure elsewhere, then (1.6) may be written as

(1.7) Ty = [¢ FnHy ' dvy .

The class of linear rank statistics described by (1.6) or (1.7) is the same as the
one considered by Chernoff and Savage (1958). This can be seen by writing
Zyi = Ryi — Ryiaforl < i = NandZy, = Ry . A summation by partsin (1.6)
then yields

(1.8) Ty = m_l Z?:l C;l;iZNi

where cy: = cyi + Ccyips + -+ + cywv . Although the difference between (1.6)
and (1.8) is only due to a summation by parts, the relative simplicity of the
proofs of Theorems 4.1 and 5.1 given below indicates the usefulness and natural-
ness of the representation (1.6).

Write uy = [ K dvy and set

(1.9) Ty* = NN(Ty — uy) = [ Ly dvy .

Let » be another signed Lebesgue-Stieltjes measure on (0,1) for which
Ib|(Je, 1 — €]) < o forall e > 0 where [»] = »* + »™ is the total variation of ».
In the statement of Theorems 4.1 and ‘5.1 conditions are given to insure that
{vy} converges to v in such a way as to permit one to substitute » for vy in (1.9).

In Section 2, various results about 1-sample empirical processes are described.
In Section 3, the basic identity relating the Ly-process to the 1-sample empirical
processes of the two samples is presented. The results of Sections 2 and 3 are used
in Sections 4 and 5 to establish in a relatively simple way the weak convergence
of the Ly-process relative to various metrics. These results are then used to ob-
tain central limit theorems for linear rank statistics. The extension of all results
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to the c-sample problem is given in Section 6. Related work is contained in Pyke
and Shorack ((1967a) and (1967b)). In the former the analogous limit theorems
for random sample sizes are obtained, whereas in the latter questions of asymp-
totic relative efficiency are considered.

2. The 1-sample empirical process. For m = 0let {W,.(t): 0 < ¢ < 1} denote
stochastic processes on a probability space (2, 2, P) whose sample functions are
points in some metric space (91, §).

DerintrioN 2.1. We write W,, — 1 W relative to (9, 68) if limy. B[Y(W,)] =
E[¢(Wy)] for all bounded real functionals ¢ defined on 91 which are continuous
in the §-metric and are such that ¢ (W), m = 0, are measurable with respect to
9. Such convergence is called convergence in law or weak convergence. (If the
W process and Wo-process are measurable with respect to the Borel sets of
(91, 8), so that their image laws on 9 are well defined, then the above definition
is equivalent to the usual definition of weak convergence as given in Prokhorov
(1956) for example.)

Suppose M = D, the set of all right continuous real valued functions on [0, 1]
having only jump discontinuities. In this case two possible metrics are § = p, the
uniform metric defined by

(21) p(f,9) = supoziz1 [f(8) — g(D)],

and 6 = d, the Prokhorov metric on D as defined by Prokhorov (1956). Prok-
horov showed that (D, d) is a complete separable metric space and that U,, — U,
relative to (D, d). Actually, since all jumps of the U,-process equal m, it is
possible to show that U, —1 U, relative to the stronger uniform topology of the
non-separable metric space (D, p). We will obtain this result as Lemma 2.1. (It
should be pointed out that Dudley (1966) gives a definition of weak convergence
for non-separable spaces which is more general than Definition 2.1 above in that
his use of upper and lower integrals enables him to place a less restrictive assump-
tion of measurability upon the function y. Also, the statement “U,, —. U, on
(D, p) in the sense of Prokhorov’s definition” is false; see Chibisov (1965) for a
statement of the measurability difficulties.)

Since U, —1 Uj relative to (D, d) and (D, d) is a complete separable metric
space it is possible, (see item 3.1.1 of Skorokhod (1956)), to construct processes
{Un(t):0 =t < 1}, m = 0, with sample functions in D and having thesamefinite
dimensional df’s as {U,(¢): 0 < ¢ < 1}, m = 0, but which in addition satisfy
d(Un , Uy) —as. 0. Let us make an independent construction for the V,-processes
so that

(22) d(ﬁm ) [70> —a.s. O; d(vn ) VO) —a.s. O

where all processes are defined on a single probability space (2, %, P). This is the
probability space we shall work on in what follows. Note that if we set
F. = mU.(F) + F, then F,, is a.s. a df having exactly m discontinuities each of
magnitude m ™. (We shall henceforth drop the symbol ~ from the notation.)
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Based on the above construction, we shall prove a series of lemmas about the
U..-processes.

WarNING. The results obtained below which involve convergence stronger
than convergence in law may apply only to the specially constructed processes.
Only the implied convergence in law should be assumed to hold for the original
processes unless further checking is done.

LemMA 2.1, In view of (2.2), p(Un , Uy) —a5. 0 as m — .

Proor. Since U, is continuous with probability one, it suffices to invoke
Theorem 1 of Appendix 1 of Prokhorov (1956) whichstates that d-convergence to
a continuous function is equivalent to p-convergence. []

For many applications, such as those discussed in Sections 4 and 5 below, the
weak convergence of the empirical processes in (D, p) is not sufficient. Rather,
it is necessary to make use of the specific behavior of these processes near 0 and 1.
For the Uy-process, this behavior is best described by the law of the iterated
logarithm. Set

a(t) = {2t(1 — 1) log [—log (1 — t)]}%.
Then by the law of the iterated logarithm (cf. Lévy (1948)) it follows that
(2.3) Pllim sup.q |Uo(t)/qo(t)] = 1] = 1, a=0,1.

To see this, let {W(s):s = 0} be Brownian motion with mean zero, E[W (s)]* = s
and continuous paths a.s. By a transformation of Doob (1949), the finite di-
mensional df’s of {Uy(¢): 0 £ ¢ < 1} agree with those of {(1 — )W (¢/(1 — ¢))
0 =t < 1}. By applying the usual law of the iterated logarithm to the W-process,
(both at s = 0 and at s = ), and using this transformation, one obtains
(2.3).

To study the behavior near 0 and 1 of the Un-processes we use the following
result. This result is equivalent to Lemma 7 of Govindarajulu et al. (1967), but
the proof given here is simpler. For a similar result, see the result of Chibisov
(1964) quoted as (4.5) in Chibisov (1965).

LemMa 2.2. Let q be any non-negative function which is non-decreasing on [0, 6]
for 8 < 1. Then there exists a constant cy > 0 such that

(2.4) PllU.(1)] £ q1),0 =t <021 — ¢ [0 [q()] "t

for all m = 0. Moreover, cy is non-increasing as 6 — 0.

Proor. Form = 1,let {»,(t): 0 < ¢t < «} be a separable Poisson process with
E[vm(1)] = m. Then the left hand side of (2.4) equals P(4 |v.(1) = m) where
A = [pu(t) — mt] = miq(t),0 =t =< 6]

Since {v,(t) — mi: ¢ = 0} is a martingale, {|vm(t) — mt[*: ¢ = 0} is a sub-
martingale with E |v,(t) — mt|> = mt. Therefore, by Theorem 5.1 of Birnbaum
and Marshall (1961)

(2.5) P(4°) = [olg()1 " at.

(Since the v,.-process has independent increments, (2.5) may also be obtained
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directly from the H4jek-Rényi version of Kolmogorov’s inequality; cf. Gnedenko

(1962).) Furthermore, since a Poisson process has stationary and independent
increments, we may write
P(A® |va(1) = m)

(2.6) = 2o P(A°n [pu(8)

(Pm(1) = m])™

= 2o P(A°n [pu(8) = K)Plu(l — 0) = m — k(Pla(1) = m]) ™.

If Y is a Poisson rv with parameter \, then P[Y = k] < P[Y = [A]] for every k
where [\] is the greatest integer in X. By applying this to Ply.(1 — 6) = m —k],
it then follows by Stirling’s approximation that there exists a constant
¢ = O((1 — 9)"*) such that Plyu(1 — 8) = m — k]/Plpm(1) = m] < ¢ for all
k. Using this bound, (2.6) gives P(A°|va(1) = m) = cP(A®) which in con-
junction with (2.5) completes the proof for m = 1.

For m = 0, simply apply the Birnbaum-Marshall inequality directly to the
transformed W-process described following (2.3). Thus

PllUy(t)| = q(8),0 =t = 0]

Pl(1 — )W (t/(1 — 8))| < q(t),0 = ¢t = 6]

PW(s)| = (1 + 8)g(s/(1 + 9),0 = s =< 6% = 6/(1 — 0)]
21— [0°(1+ 97 g(s/(1 + )] "ds = 1 — [5lg()] " dt

by the Birnbaum-Marshall inequality since E[W (s)]’ = s. (This result does not
use (2.2).) [

From Lemma 2.2 we see the possibility of obtaining weak convergence of the
U .-process relative to more general metrics on D. Whenever well defined set

(2.7) pd(fy9) = p(f/g,9/0) and  do(f,9) = d(f/q, 9/9)-

DeriniTioN 2.2. Let Q' denote the class of all non-negative functions defined
on [0, 1] which for some e > 0 are bounded away from zero on (¢, 1 — ¢), are non-
decreasing (non-increasing) on [0, ] ([1 — ¢, 1]) and which have square-integrable
reciprocals. Let Q = {geD:g = ¢’ for some ¢’ ¢ Q'}.

TraEOREM 2.1. For ¢ € Q, po(Unm , Us) =5 0 and do(Un , Us) —5 0 as m — .

ProorF. Forany0 < a=e=<1 —e=b <1,

(2.8) pq(Um, Uo) = SUPo<t<a,b<t<1 (lUm(t)l + |U0(t)|)/9(t)
‘I‘ P( Um 3 UO)/infa§t§b Q(t)’

where € is a value associated with ¢ as in Definition 2.2. For each such a, b, the
second term on the right converges to zero in probability by Lemma 2.1. Fix
& > 0. Since ¢~ is integrable, choose a < € so that fg lg(®)]*dt < ¢, *8°. Then by
Lemma 2.2 '

(29) Plsuposesze [Un(t)/q(t)] < 8] 2 1 — 8" 3 [g()]"dt > 1 — 6.

klnm(1) — va(8) =m — kI)

I

lIA
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Since the reversed process defined by U, (¢) = U,((1 —t)—) has the same
finite dimensional df’s as the U,-process, one may in a similar manner choose
b = 1 — efor which Plsups<:<1 |Un(£)/q(t)| < 6] > 1 — 6. Since this inequality
and (2.9) also hold for m = 0, the first term on the right hand side of (2.7) does
not exceed 45 on an event whose probability exceeds 1 — 44. This completes the
proof for p, .

It is straightforward to show that there is a constant ¢ for which d < cp;
Lemma 4.3 of Chibisov (1965) states that ¢ = 4 works. Thus, the result for p
implies the result for d. (For continuous g we could have used Theorem 1 of
Appendix 1 of Prokhorov (1956) which states that p-convergence to a continuous
function is equivalent to d-convergence.) []

This theorem implies that for ¢ ¢ Q, U,, —1, U, relative to (D, p,) and relative
to (D, dy). Related results are given by Chibisov (1964), (1965) who proves the
weak convergence of the empirical processes relative to d, when ¢ is a function of
degree 1 in neighborhoods of 0 and 1 and satisfies

fﬁ exp { —cg*(w)/u(l — w)}u(l — w)]"du < » for all ¢ > 0.

(A function A is of degree r if h(cu)/h(u) converges to ¢” as u approaches a speci-
fied limit.) In view of this weak convergence and the completeness and separa-
bility of (D, d4), one may apply Skorokhod’s result, as was done prior to (2.2),
to obtain versions of the empirical processes for which d,(U,, Us) —.,. 0 and
04(Un , Up) —as. 0. It can be shown that the remaining results of this section
are valid for these ¢ functions of Chibisov and that therefore the results of the
following sections remain valid for this larger class of ¢ functions

The basic identity to be derived as Lemma 3.1 will express Ly as a random
linear combination of U, (FHy ') and V,.(GHy ). We therefore need an analogue
of Theorem 2.1 for the process U,,(FHy ') = U,(Ky); the analogue will appear
as Theorem 2.2.

LemMa 2.3. As N — o, p(HHy ', HH ™) —.,. 0, uniformly in oll conttnuous
F and G and all Ay € [0, 1].

Proor. Since Hy — H = Ay(F, — F) 4+ (1 — \y) (G, — @), the Glivenko-
Cantelli theorem implies that p(Hy, H) —.s. 0 uniformly in F and G. Also
o(HHy™", HH') = p(HHy', HyHy ") + p(HyHy"', HH™') where
o(HyHy ', HH ) < 1/N. (This result does not use (2.2).) []

Lemma 2.4. If g Q, then as N — o,

p(Un(Kx)/q¢(Kn), Us(K)/q(K)) =50

uniformly in all continuous F and G and all My € [0, 1].

Proov. Since H = AF + (1 — \y)@G, Lemma 2.3 implies that p(Ky , K) —,5.0
and p(GHy ', GH™") —, 4. 0 uniformly; note that Ky — K and GHy ' — GH*
are always of the same sign. Therefore, since U, is continuous a.s.,
o(Uo(Ky)/q(Ky), Us(K)/q(K)) —, 0, the argument is like that of Theorem 2.1
where a.s. continuity of U, is needed to handle the term from the middle of the
interval. Thus this lemma follows from Theorem 2.1 and the triangle ine-

quality. [J
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LemMA 2.5 For € > 0, there exisis b > 0 such that
(2.10) PlKy(t) < 20Nt forall t=1/N] =1 — e

Proor. It is well known (cf. [9], Lemma 8) that for every ¢ > 0, there exists
b > 0 such that P(4,,) > 1 — e where
(2.11) A, = [F(t) £ bF.(t) forall ¢ whereF,(¢) > 0].
Therefore, it follows that if ¢ = 1/N and 0 < F,Hy '(t), then on 4,,

Kx(t) =FHy'(t) < bF,Hy '(t) < bhs "HyHy '(t) < 26N
On the other hand if ¢ = 1/N but 0 = F,.Hy '(¢) < 1/m, then on 4,
Ky(t) =FHy '(t) < FF,,'(1/m) < bm™ < 2bay 7't

Thus on 4,, we have Ky(t) < 2b\s ‘tforallt = 1/N. []

Let U,*(Ky) equal U, (Ky) for I/N <t <1 — 1/N and equal 0 otherwise.

THEOREM 2.2. For q £ Q

po(Un™(Kx), Us(K)) —, 0

uniformly in all continuous F and G and all Ay € A.

Proor. As in the proof of Theorem 2.1 the problem reduces to a study of the
supremum over intervals [0, §] and [1 — §, 1] for sufficiently small 6. For over
the interior interval (8, 1 — 8), ¢(K) and, with high probability, ¢(Ky) are
bounded away from zero so that the supremum over (5, 1 — &) converges in
probability to zero by Lemma 2.4. Furthermore, it suffices to consider only the
interval [0, 6] since the interval [1 — §, 1] may be treated similarly by considering
the reversed process U, (t) = Un((1 — &)—). Also without loss of generality
assume ¢ is non-decreasing.

For given ¢, 7 > 0, choose b by Lemma, 2.5 to satisfy (2.10). Then use Lemma
2.2 to choose o > 0 to satisfy

PllUL(8)] = ng(Ast/2D), 0 <t < a]l >1—¢
and then choose § > 0 so that
PKy(t) < 0,0 <t =98] >1—c¢
for all sufficiently large N. This choice of 6 is possible by Lemma 2.3 since
Kx(t) < N "HHy'(5) for t < 5. With these choices of b, @ and & one obtains
Plsupoz:<s |[Un™ (Kn($))|/9(8) < 1]
= P([|Un(t)] < ng(Ast/20), 0 <t < a]n[Ky(t) < a,0 <t £ §]
n [Kn(t) = 2007 (1), ¢ 2 1/N))
for N sufficiently large. Since n and e are arbitrary the proof is complete. []

2 The authors are indebted to the referee for Lemma 2.5. The linear bounds on Ky pro-
vided by this result allow stronger statements to be made about the behavior of empirical
processes in the tails than can be obtained by iterating Lemma 2.2. The main results of this

paper are now able to be stated for ¢ € Q rather than for the slightly more restrictive class
of functions satisfying

f3 1t — HPg@OI dt < .
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3. The 2-sample empirical process. Recall that by Lemma 2.1
(3°1) p(Um ) UO) —a.s. 07 p(V,,, ) VO) —,.5.0 as m,n— .

Our study and application of the 2-sample empirical process {Ly(t): 0 = ¢ <1}
defined in (1.5) depends on the following identity which relates it to the 1-sample
empirical U,- and V,-processes.

Lemma 3.1. With probability 1,

(3.2) Ly(t) = (1 — M\){\v 'By(t)Un(FHy (1))
— (1 = M) AN VA (GHN T (1)} + 8n(t)
for all t & (0, 1] where "
(3:3) ov(1) = An(ON'[HyHx (1) — 4,
(3.4) An(t) = [K(u) — K@)/ (we — 1),  w = HHy (1),
and By 1s defined by
(3.5) MvAx(t) + (1 — \v)Bx(t) = 1.

(In (3.2) Ly s defined by left continuity at any otherwise undefined points.)
Proor. The relationship (3.2) follows immediately from (1.3), (1.4) and (1.5}
by writing

Ly = NY[F.Hy — FH | = N'mU,.(FHy") + FHy ' — FH ]
= N U.(FHy ™) + Ay(HHy — HH )]

provided HH v - 5% HH™'. Since with probability one this proviso is satisfied
except at a finite number of points, and since

NYHHy™ — HH ]
= NYHHy ' — HyHy ' + HyHy ' — HH ]
= MNURFHY™Y) — (1 = \)Vu(GHy ") + N'[HyHy ' — HH

the desired result follows. If HHy ' = HH ', it follows from the first line of the
proof that the proper expression for Ly is Ly = M T UL(FH™. [
In the representation (3.2), one has for all ¢ £ [0, 1] that

(3.8) |Ax()| = N\, [By(t)] = (1’— )7 lon(t)] < Ay N8

The first two inequalities follow from (3.5) since Ax(?) and By(?) are of the same
sign, whereas the third inequality derives from (3.3) and the fact that
0 < HyHy'(t) —t = N.

From the representation (3.2) of the Ly-process, it is easy to see what must be
the natural limiting process. We define first of all the Ly-process by

(3.7) Ln(t) = (1 — Ay) (W By U(FH (1))
— (1 — M) ANt Vo(GH (1))}
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for 0 = ¢t = 1. In view of Lemma 2.4 (for ¢ = 1) and its analogue for the
V .-process, the following limiting result is immediate.

LevMA 3.2. As N — o, p(Ly , Ly) —, 0.

To obtain the natural limiting process from (3.7) it remains to study the limit-
ing behavior of By and Ay . By their definition, Ay and By are difference
quotients of FH ' and GH™ respectively. In view of (1.4), NyFH '(¢) +
(1 — Ay)GH'(t) = t, so that both FH ' and GH " are absolutely continuous.
Let ay and by denote the derivatives of FH ' and GH " respectively, which there-
fore exist a.e. on [0, 1] with respect to Lebesgue measure. In some results, we will
let Ay converge to a fixed Ao . Let ao, by denote the derivatives of FH, ', GH, ™"
where Hy = MF + (1 — N)G. Now, wherever defined, set

(8.8)  Lo(t) = (1 — o) N P00 (8) Us(FH, (1)) — (1 — No) Pao(£) Vo(GH, 7 (£))}
and
(39) Low(t) = (1 — ) ou(0) Us(FH (1))

— (1 = M) an (O Vo(GH (1))},

These expressions respectively determine the natural limiting processes for Ly
when Ay does or does not converge. In the following sections the convergence of
Ly to these limits will be considered.

4, Convergence in the p, and d, metrics. We now consider the convergence
of the Ly-process to the limiting Lo-process when Ay — \o . Let q ¢ Q, let 3™ be
defined to equal éx on [1/N, 1 — 1/N] and O elsewhere, and let Ly equal Ly on
[1/N, 1] and 0 elsewhere. By (3.6), pa(8x™, 0) = o(1). Also

supi-yvseat [Lv(t)/q(8)] = o(1)
sinee [Ly(t)] = N*|1 — FH'(t)] £ N'\4"(1 — ¢) in this interval. Thus, in
order to prove that
(4.1) po(Ly', Lo) =, 0
it will, by (3.2) and the triangle inequality, suffice to prove that
p(By , 0)[pg(Un™(Kx), Us(K)) + p,(Un(K), Us(Ko))]
+ p(By , bo)p(Uo(Ko), 0),

and the analogous quantity in Ay, V, and G, converge in probability to 0.
Apply (3.6) to p(By, 0), Theorem 2.2 to po(U,*(Ky), Us(K)), the proof of
Lemma 2.4 to p,(Uo(K), Us(Ko)) and Lemma 2.2 to p,(Uo(Ky), 0) to obtain
that (4.1) holds provided

(4.2) p(By ; bo) =5 0.

We will now make a differentiability assumption on the functions {K, : A ¢ A}
that will imply (4.2). This assumption is satisfied in many important cases, as
Corollary 4.1 indicates.
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AssumprioN 4.1. The functions K, have derivatives a) for all ¢ ¢ (0, 1), and
for some N\, ax is continuous on (0, 1) and has one-sided limits at 0 and 1.

It is an easy consequence of (1.4) and Assumption 4.1 that the functions GHy ™
have derivatives by satisfying Aax + (1 — X)by = 1 and that by is continuous on
(0, 1) and has one-sided limits at 0 and 1.

DeriniTION 4.1. A family of functions {hx : A & A} is said to be uniformly equi-
continuous (uec) if for all e > 0 there exists 8¢ > 0 such that |h(u) — h(v)]| < €
for all A ¢ A and for all u, v in the domain of the functions with |u — v| < &..

Lemma 4.1. Under Assumption 4.1 {an: Ne A} and {by : N e A} are two uec
famalies of functions on [0, 1] and ax(by) converges uniformly to ao(be) as X — Ao .

Proor. Differentiate Ky = Ky (HyvHy ') to obtain

(4.3) a = ax (HVvE DI — Nan + (1 = N1 — N)7L

If we set on = an (HyvH) ') and let ¢, denote the remaining factors in (4.3) so
that ax = oy, then

[a(w) — a1l — ax(@) N = N (1 = N)7] = [aa(u) — ax(0)len(u).

But for AeA, then ¢\’s are uniformly bounded since |a| < 1 and
ax(\ — M) (1 — N7 is uniformly bounded away from 1. Thus for AeA,
laan(u) — ax(v)| = C |an(u) — ax(v)]| for some constant C. To complete the proof
that {ax : N € A} is uec, apply to the definition of ay the fact that {HxHy': X € A}
is uec; since for v < v we have 0 < FHy '(v) — FHY '(u) £ A '(v — u) <
N (0 —w). [

LemMA 4.2. Under Assumption 4.1 p(Ax, ao) —as. 0 and p(By, bo) —as. 0 as
N — .

Proor. By the definition of Ay in (3.4), the mean value theorem and Lemma
4.1 we have that ay is continuous and Ayx(t) = ay(ty) for some ¢y between ¢ and
HHy'(t). Consequently, p(Ay, ay) = supo<:<i |an(ty) — an(t)|. Since, by
Lemma 2.3, ty — ¢ uniformly on [0, 1] as N — oo, it follows from the uec of the
ax’s that p(Ay , ay) —as. 0. Also, since Ay — Ao, p(axy , @o) — 0 by Lemma 4.1.
An application of the triangle inequality completes the proof. [J

Due to the left continuity of the Ly-process we introduce D~ for the set of all
left continuous funetions on [0, 1].

TuroreMm 4.1. (a) Suppose Assumption 4.1 holds, ANy — No and q £ Q. Then
po( Ly, Lo) —p 0 so that Ly — 1, Lo relative to (D, p,). The same statement holds
for d, .

(b) If in addition the measures {vy : N' = 1} and v of Section 1 satisfy

(i) [iwLyd(vy — v) =, 0, and,

(i) [oqd|r| < o,
then Ty™ —, fé Lody, a N(0, o0’) rv where
(44) o0 = 2(1 — M) N[5 [3 bo(w) bo(v) FHy *(u)[1 — FHy ' (v)] dv(u) dv(v)

+ (1 —=N\)7 f<1) f("] ao(w)ae(v)GHy (w)[1 — GHy ™ (0)] dv(w) dv(v)}.

Proor. (a) Lemma 4.2 shows that (4.1) holds under Assumption 4.1. Con-
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vergence in law follows easily by definition. Results for d, follow by an analogous
argument, since dy = 4p, as remarked in the proof of Theorem 2.1.
(b) Now

Ty — [§Lody| = |[§ Ly’ d(vw — v) + [5 (Ly' — L) dv|
S [ Ly dow — »)| + po(Ly', Lo) Jogdl| —, 0.

The fact that the limiting rv has a normal distribution relies on the existence and
finiteness of its variance, which in turn follows from (ii) since

Bl Lod)’ < ¢ [ [6u(l — v) dp|(u) dJ|(v)
< e f5 [o {1 — wod — 0)Pg(u)g()] g(w)q(v) dls|(u) dlv|(v)

for some constant ¢. []

Since the Ly-process takes jumps only at points /N and since the Lo-process
has continuous paths a.s., the mappings Ly (N = 0) from (2, %A) to (D7, p,)
are measurable; see Billingsley (1967), p. 308. Thus the weak convergence in
Theorem 4.1 is valid in the sense of Prokhorov’s usual definition.

It is necessary to write Ly and not Ly in Theorem 4.1 since if the smallest
observation is an X, then Ly(0+) = N'm™.

Remark. If Ay does not converge, then in Theorem 4.1 we may write
po(Ly'y Lox) =5 0 and Ty™ — [ §Lowdv —, 0 where [§ Loy dv is N (0, oty) with
oon given by the obvious modification of (4.4). In this form, the theorem relates
most closely to the main theorem of Chernoff and Savage (1958); ooy is given as
equation (4.3) in this reference.

CoroLLARY 4.1. The conclusion of Theorem 4.1 is valid if in place of Assumption
4.1 we have either (1) F = G or (ii) there are numbers — o < ay, 05,71, v < +
for which F(au) = G(an) = 0, F(az) = G(aa) = 1, the boundary of the set of

IIA

common zeros of the continuous functions f = F' and ¢ = @ is finite and
vi = limg.q; [g(x)/f(x)] exists for i = 1, 2.
Proor. (i). This follows since Assumption 4.1 is satisfied when F = G.

(ii). Suppose first that the set of common zeros is empty. Since ar(t) =
(d/d)FHY (1) = (A + (1 — NgHN () /FHTH(8)]) 7", the existence of v1 and
v2 implies in this case that Assumption 4.1 holds.

In the general case, consider the finite set of points ¢ for which Hx, (¢) is in the
boundary of the set of common zeros; these points are interior to (0, 1). Hence,
we may throw away intervals of arbitrarily small [v|-measure that contain these
points. On the complement of these intervals Assumption 4.1, with A replaced
by a sufficiently small interval about Mo, holds. Now apply the proof of Lemma
4.2 to each interval in the complement. []

5. Convergence in other metric spaces. A study of linear rank statistics leads
naturally to a study of integral functionals on stochastic processes; see (1.9).
It thus seems natural to consider integral metrics on these processes. Indeed,
this will allow us to obtain results under weaker hypotheses than previously
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assumed. This follows since the By’s may converge in an integral norm when they
fail to converge in a supremum norm.
Whenever well defined let

(5.1) Il = folf@ldlv ] @).
We shall drop the subscript and write ||-|| in case » is Lebesgue measure on
(0, 1).

Lemma 5.1. If [5qdy] < « for some qeQ then
1Un*(Kx) — Uo(K)|ly = 0

uniformly in all continuous F and G and all Ay & A.

Proor. This is an immediate consequence of Theorem 2.2 since |fll, =
pa(f, 0) [oqdll. O

As in Section 4, one may show that [|x" |, = o(1), and |[1—y~ Ly dv| = o(1).
Thus by analogy with equations (4.1) and (4.2) we have that in order to establish

(52) ”LNI - LO”v _>p O (”LN, - LON”u _)p O)
it suffices to find conditions under which
(5-3> ”(BN - bO)qIIv —, 0 (”(BN - bN)QHN —p O)

for some ¢ € Q.
Let Co (0, 1) be the set on which Ko = FH o Lis differentiable. By the remark
at the end of Section 3, the Lebesgue measure of Cy is 1.
ILeMMA 5.2. If Ay = No + O(N™") and u is a Lebesgue-Stielijes measure on
(0, 1) for which u(Cy) = 0, then Ay — aoand By—bo in P X u-measure as N — .
Proor. By (3.5), it suffices to prove the result about Ay. From (1.3) and
(3.4) one obtains that K = FH' = FH,'(HH ) = Ko HoH ™) and that
AN = AN1AN2 Where
Am = [Ko(HHy ™) — Ko(HH )HHy " — HH 17,
Ay, = [HoHy ' — HH )HHy " — HH T
By (1.4), Hy = MoF + (1 — )G = H + (Mo — M) (F — @), so that
HOHN_I(t) - HOH_I(t) = HHNVI(?‘/) —t+ (}\0 - )\N>DN(t)
where Dy = FHy ' — FH™ — GHy™' + GH . Therefore,
(5.4) Awz = 1+ (\o — \y)Du(dy — N7 Wy)™
where 0 é dN(t) = HNHN_I(t) —t = I/N and WN = N%(HNHN_I - HHN—I .
By definitions (1.1) and (1.2),
Wy = MULFHy™) + (1 — ) Va(GHY ).

It therefore follows by arguments similar to those used to prove ‘Lemma 2.3
and 2.4 that p(WN, W()) —p 0 where Wo = )\O%Uo(FHO_I) —|" (1 —_ )\o)iVO(GHo_I).
By Lemma 2.3, p(Dy, 0) = 0. Let {Ni: k = 1} be a subsequence for which
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p(Way, Wo) —as. 0. For each w e @ let Co,, = {te [0, 1]: Wo(t) = 0}. By apply-
ing to (5.4) the convergences just mentioned and the hypothesis Ay — Ao =
O (N7*), it follows that every subsequence has a subsequence, {N;} say, for
which
(5.5) PlweQ: Ayp2)t) — 1forall teCo,} = 1.

To study the limit of A, observe first that for any function p

p(z) —ply) _ p() —p@)r =% plw) = ply) = —y
T —y T — o z—y To— Y rT— 2z

)

Thus if p is differentiable at @, with derivative p’, then [p(z) — p(y)] /(x — y)
— p'(x) if @, y — 2o in such a way that (o — y)/(x — y) remains bounded.
As N — o« over a subsequence {N} for which p(Wx, , Wy) —..,. 0, one obtains
that for each ¢ ¢ Cy,, and almost all w,

(HHy" — HH ) (HHy ™" — HH™™

= O\ — N)(FH — GH [dy — N "Wy + (Mo — M) Dyl
remains bounded. Therefore
(5.6) PlweQ: Aya(t) — ao(t) for all teCyn Co,} = 1.

Since P[Wo(t) = 0] = 0 for each ¢ ¢ (0, 1) and since the set of pairs (¢, w) for
which ¢ e Co, is measurable because of the almost sure continuity of the W,-
process, it follows from Fubini’s theorem that w(C§.) = 0 for almost all w.
The proof is completed by combining (5.5) and (5.6). []

TueorEM 5.1. (a) Suppose K, vs differentiable a.e. [v], Ay = N + O(N?).
and [5qdly] < o for some q & Q. Then |Ly’ — Lo||, —, 0 so that Ly —1, Lo rela-
twe to (D™, ||-||,).

(b) Suppose in addition that the measures {vy : N = 1} of Section 1 satisfy

(1) fi/NLNd(VN — V) —p 0.
Then Ty —p [0 Lo dv which is a N (0, 0o) 1v with oo given by (4.4).

Proor. (a) By Lemma 5.2 with u = |y|, every subsequence of By contains
a further subsequence converging to b a.e. P X |»|. Thus by the dominated con-
vergence theorem we obtain [[(Bxy — bo)qll|s; —a.s. 0. Convergence in law fol-
lows easily by definition.

(b) Now

(57) |Tw* — [SLods] < |f5 L' dow — )| + |f5 (Ly' — Lo) db|

which equals 0,(1) by (i) and since we have established (5.3) for [»|. []

Note that Theorem 4.1(a) has a stronger conclusion than Theorem 5.1(a)
since the pg-topology on D™ contains the || - [|,-topology on D™ when [ qd|»| < .
However, the functional [5-dv is ||-|,-continuous a.s. on D~ with respect to the
measure of the Lo-process, so that it was possible to obtain part (b) of Theorem
5.1 in analogy with Theorem 4.1(b).
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We next discuss a relationship between Theorem 5.1(b) and Theorem 1 of
Chernoff and Savage (1958). Define a function Jy on [0, 1] by letting Jx(£) = cns
for (1 — 1)/N <t £4i/Nfori =1, ---, N and J5(0) = Jx(0+) so that
Ty = f 0 Jx dFHy " by (1.7). Let —J denote a non-constant function of bounded
variation on (¢, 1 — ¢) for all ¢ > 0 which induces the Lebesgue-Stieltjes measure
»¥Chernoff and Savage consider the statistic N %[TN — ffw J(H) dF] = Ty™ + vx
where vy = N? f o[Jv(H) — J(H)]dF; this equality is obtained by summing
uy by parts.

ProrosiTion 5.1. Suppose

(1) N* [§ () — Ju(t=)|dHyHy "' (t) = o(1),

(2) Jx(0) = o(N*) and Jy(1) = o(N?),-

(3) ()] = K[t(1 — )]7** for some constants K, 8 > 0 and

(4) N* [§1In(t) — J(B)]dt = o(1).

Then

(a) vy = o(1),

(b) [iwLyd(vy — v) = 0,(1) uniformly in all continuous F and G and all
>\N & A, and

(¢) there exists qeQ such that [3qdpy| < oo.

Proor. (a) vy < N« 'N! [3|Jx(H) — J(H)|dH = o(1) by (1).

(b) In = [iwLydvy — v) = —[14" Lyd(Jy — J) + o(1) by (3) and
the bound on Ly in [1 — 1/N, 1]. Thus Iy = — [14"" Ly(t+) d(Jx(t) — J(t))
+ o(1) using the integration by parts formula on page 419 of Hewitt and Strom-
berg in conjunction with (2), (3), (4) and the fact that |Ly(t) — Ly(t+)|
= O(NY) for all ¢. A second integration by parts used in conjunction with (2),
(3) and the bound on Ly at 1/N and 1 — 1/N shows that

Iy = Jin™ () — J(t=)]1dLx(t) + o(1)
NONUSo () — T dHSHY () + [slw(0) — J(0)]d
o(1)
where the last equality follows from (1) and (4).

(¢) Let ¢(t) = [t(1 — £)]"** and use integration by parts. []

CoroLLARY 5.1. Proposition 5.1 remains true if (4) is replaced by

(4" J = J4 -+ J. where J 4 is a saltus function taking only a finite number of jumps
and where J, has a continuous derivative J, on intervals (0, ar), (ay, @), - -,
(as, 1) which satisfies

7. ()| < K[t(1 — O for t = any as.

Proor. We give the proof for s = 0. Let ty = (1 + [Nt])/N where [-] is the
greatest integer function. Now by (2) and (3)

Iv= N [§|Jy — J|dt = N* [53/" [Ty — J|dt + o(1)
S NS w(t) — J(w)|dt + N*[§|Jalty) — Ja(t)]dt
+ N* o™ | Te(tw) — Je(t)] dt 4 o(1)
= N [0V We(ty) — Ju(2)|dt + o(1)

I\
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where the last equality follows from (1) and the (4') condition on J,. But
N [V (ty) — Jo()]dt = N7 NTRE(1 — 0] Pde = o(1)

since (4') makes possible an application of the mean value theorem to show
|Jo(ty) — J.(1)] < NTK[(t +1/N)(1 —t — 1/N)| P whent < ty < t + 1/N;
and where the factor ¢ + 1/N accounts for the change in the limits of integra-
tion. The integral from 2/N to % is similar. Thus Iy = o(1), so that (4) holds.
If s % 0, then separate off sufficiently small intervals about each a; and repeat
the above proof. []

Theorem 2 of Chernoff and Savage shows that (1), (2), (3) and (4') hold
when J = ¥ where ¥ is a df satisfying

|(d9/dt) ()] = Kif(1 — )7 for ¢ =0,1,2

and where cy; is the expectation of the sth smallest order statistic in a sample of
size N from a population having df ¥. This shows that Theorem 5.1(b) is broadly
applicable. Statements that condition (4) in Theorem 1 of Chernoff and Savage,
which puts bounds on J, J' and J”, need hold only a.e. appear frequently in the
literature; though the validity of that statement is suspect (see Govindarajulu,
et al. (1967)). Proposition 5.1 and its corollary are weak enough to cover all
the cases where Chernoff and Savages’ (4) failed at a finite number of points;
and this is weak enough to cover all cases of known interest.

ReMArk. Let g ¢ Q be fixed. Consider a class J of sequences (J, J1, Ja2, +--)
for which [§ ¢d|J| is uniformly bounded and for which the hypotheses of Propo-
sition 5.1 are uniform in J. Then the conclusion of Theorem 5.1(b) is uniform in
J. To see this, note that the term ||Ly’ — Lo||, in (5.7) is 0,(1) uniformly in J
by the uniform boundedness of [¢¢d|J| in J. The term |[iwLyd(vy — »)]
in (5.7) is 0,(1) uniformly in J by the proof of Proposition 5.1.

6. The c-sample problem. Let X;1, -+, Xj; ,J = 1, -+ , ¢, be independent
random samples from populations having continuous df’s F;. Let N = n,
+ .-+ 4+ n.; when used as a subscript N will denote the c-tuple (n1, - -+ n.).
Let oy = (Aw1, **+, Awe) Where Ay; = n;/N. Suppose limy. Ay; = Ao; exists and
M < Njw < 1 — Mg forsome Ay > 0. Let 4 = (o1, *+ -, Aoe). Liet Fi; denote the
empirical df of the jth sample. Then Hy = 25y \y;Fy;is the empirical df of the

combined sample. Let Hy = > 5o N5, Hy, = D 5aN;Fjwhered = (Ap, -+, \,)
and H = H,, .Forj =1, -, ¢ define stochastic processes {Ly;(): 0 < ¢t < 1}
and {Lo;(¢): 0 < ¢t = 1} by ‘

(6.1) Luj(t) = N'IFyHy ™ (8) — FH ' (8)]

and

(6.2)  Loj(t) = —ao;(t) Do iws NsUoi(FHo (1)) A
+ [ i (Noi/ M) @0s() Ui (F;H (1))

where the processes {Up;(1): 0 =t < 1},7 = 1, -+, ¢, are independent tied-
down Wiener processes.
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We consider the c-sample analog of Theorem 5.1(b). Let Zy? equal 1 or 0
depending on whether or not the 7th smallest observation from the combined
sample of size N is from the jth sample. Consider the linear rank statistics

(6.3) = _1 Z‘L——l N1 jz) = _1 Z'L=l CN‘I/Z(j)
where RY) = vaﬁ) + o 4+ 28, (Cyi:1 £ 4 = N} is a given set of constants

and Cys = Cy:i + -+ + Cuyy. Let vy denote the signed measure which puts
measure Cy; on the point 2/N for 1 < 7 = N and puts zero measure elsewhere.
Then, forj =1, --- , ¢,

(6.4) Ty; = [0 Fy;Hy " dvy.

Forj =1, -, clet uy; = f(l; F;H " dvy and set Ty; = N%(Tw — uxj). Let v
be a signed Lebesgue-Stieltjes measure on (0, 1) for which |v[([e, 1 — €]) <
for all ¢ > 0.

TueoreM 6.1. Suppose fg qdy| < « for some qeQ, and for j = 1, ,C
we have )\N] = Ao + ON ) and Ko; = F;H, " is differentiable a.e. v. If

(1) N* fllN LNJd(VN - V) —>p0f07'] = la * 6
then (Tuy, -+, The) — (fﬁ Loyydy, - - -, fé Lo, dv), a N (0, =) random vector where

3o s straightforwardly determined from (6.2).

Proor. Guided by (6.2) and (3.2) represent each Ly; as the sum of ¢ empirical
processes (say Uj,;) multiplied by random coefficients (say Ax;) plus a negligible
term (say 6x;). The proof is completed by applying the lemmas of Sections
2,4, and 5 in a fashion analogous to their use in Theorem 5.1 to obtain that for
each j, Twj —p [0 Lojdv. []

Let D° denote the c-fold product D X --- X D. On this space consider the
metrics d°(f, ¢) = 2.5= d(f5, g;) and p°(f, 9) = 254 p(fs, g;) for all
f=U,,f),9=(q, g in D’ Clearly the analogue of Theorem 5.1(a)
holds on D° under the hypotheses of Theorem 6.1. Moreover, this result clearly
holds for any metric p°(f, g) for which o(f;x, gix) = 0asN — o forj=1,--- ¢
implies p°(fx, gv) — 0 as N — o ; and similarly for d°.

It is also clear that c-sample results analogous to Theorem 4. 1 hold.
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