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EXISTENCE OF OPTIMAL STOPPING RULES FOR REWARDS
RELATED TO S./n

By Davip SieemunDp,! GorpON Simons,? AND PAun FEDER?
Stanford University

1. Introduction and summary. Let {X,,n = 1} be a sequence of independent
and identically distributed random variables Wlth mean 0 and finite »th moment
for some » = 2. Let S, = > 7 X.. We observe the X’s sequentially and must
decide when to stop sampling. If we stop at time n we receive a reward of the
form h,(S,), and we are concerned with finding stopping rules ¢ which maximize
our expected reward, E[h:(S;)]. In particular we are concerned with showing that
the so-called “functional equation rule” (FER) (for a definition, see Section
2) is such a (optimal) rule.

Chow and Robbins [2] have treated the reward sequence n™"S, with X; = =1
each with probability 1. Dvoretzky [4] considered reward sequences of the
form n™*S, (e > %) under the assumptions EX,; = 0, EX; < co. Teicher and
Wolfowitz [7] considered sequences ¢,S,’ (8 = 1, 2) under the same assumptions
on the distribution of X;. They impose the conditions ¢, > 0, a1 < Cny2Cn,
(n + 1)feun = nPe,.

We establish certain principles which allow us to relate certain reward se-
quences h, of a particularly simple form to others of a more complicated form
and in the process conclude that the FER is optimal in the more complicated
situation. Using the basic reward sequence n~*|S,|° with 2a > 8 > 0 and assuming
that E|X,|™**® < o, we examine the problem of optimality for reward se-
quences of the form ¢,S,", ¢a|S.|°, n " log |S.|, ete., where ¢; , ¢, , - - - are constants
such that lim sup,..n°c, < «.

It seems somewhat customary in optimal stopping problems to try to verify
that the reward sequence (in our case h.(S,)) is majorized by a non-negative
random variable with finite expectation, and then to appeal to one of a class of
general theorems in which this regularity condition appears. In the problems we
consider we have found it easier to disregard this possibility and to use a direct
approach.

We begin with a formal presentation of the problem and a development of
preliminary results which show that the FER is optimal provided that it is
a.s. finite. In later sections we develop and exploit machinery for relating two
or more reward sequences and verify that the FER is a.s. finite for the basic
reward sequence.
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2. Formulation of the problem and preliminary results. Let (Q, F, P) be a
probability space and let {Z,, F,}o be an integrable stochastic sequence, i.e.,
let (F,) be an increasing sequence of sub-c-algebras of F' and for each n = 0, 1,
2, -+ let Z, be a rv measurable with respect to F, such that E|Z, < .
A stopping rule or stopping variable (sv) is a random variable ¢ with values
0,1, ---, + o such that

(i) P{t < =} =1,
(i) {t=n}eF,,n=0,1,2, ---.

We would like to determine an optimal sv, i.e., defining v = sup; EZ,, where the
sup is taken over all sv’s ¢t such that EZ, exists, we would like to determine a
sv 7 such that EZ, exists and equals v. We shall be interested mainly in the case
that Z, = h,(8S,), where S, is the nth partial sum of a sequence of iid random
variables.

Let v. = esssup E(Z,|F.), the ess sup being taken over all rules ¢ such that
P(t z n) = 1 and EZ; exists, n = 0, 1, --- . Then the FER is by definition
(see, e.g., [3])
firstn =2 0 suchthat Z, = v,

Q
It

= w if Z,<-<~vy, foralln.

In general P{c < «} < 1 and ¢ is not a sv. Siegmund [6] has shown, however,
that if we enlarge our class of procedures by dropping the requirement that
P(t < «) = 1, with the convention that Z, = Z, = lim sup Z, whent = «,
then v is not increased and under the condition E(sup Z,") < =, ¢ is optimal
in the class of extended sv’s. In general there is no guarantee that the FER is a
good procedure. However,

LemMma 1. If EZ,(= f.,<wZ, + f.,=°° Z) exists and

(1) lim infn—»oo f(4r>n) Yn é f(v='w) Zoo y
then o is optimal in the class of extended sv’s. In order that (1) hold it suffices that
(2) () P{Z,z 0} =1, (b) limu..Ev." =0.

Proor. By Theorem 3 of [6] it suffices to show EZ, = v. By Theorem 1 of
8, v = Eyoand v, = max (Z,, E(yn1 | F2)),n = 0, 1, - -- . It is easily seen
by induction that

v = f(agn) Yo + f(4r>n) Yn = f(a'g‘n) Z, + f(a>n) Yn
and the result follows on letting n — «.

Suppose now that X;, X,, - -~ are iid with EX; = 0. Let Fo = {¢, 2}, S, = 0;
F, = &X1, -+, X)), Sa = SPX:,m =1,2 ---; and assume that
Z, = h,(8,),n=0,1,2, --- . Wearein the stationary Markov case as defined in
[6], and, putting ’

Un(z) = sup; Elhpsi(x + Se)], —0o <z < o,
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we have by Theorem 6 of [6]

(3) Yo =Ua(Ss), n=012"--,

A case of particular interest in what follows is

(4) ha(z) = n%zff, n=1,2, .- (he = 0)
where

(5) 0<B<2a.

ProrosiTion 1. Suppose that (X,), (F.), (Z.) are as above and that (4) and
(5), hold. If E|Xy|™*%P < «,thenv < « and the FER s optimal in the class of
extended sv’s.

The proof is based on the following lemmas.

LEmMA 2. There exists a constant Ag > 0 such that

(6) EZ, = Apnﬂ'z"", n=12 -,
and hence
@) limu.. EZ, = 0.

Proor. If 8 = 2, (6) has been established by Brillinger [1]. If 0 < 8 < 2,
(6) follows from EZ, < E**(Z,2*) = E**(n **"*|8.").
LeMMa 3. LetB = 2. Forn =0,1,--- andallsv’st =2 1

(8)  Eln+ )8l = 427K — (k — 1P/ (n + k) < «.
In particular there exists a Bg > 0 such that forn = 1,2, ---
(9) El(n + )™°|S.Jf] = Bn* =
Proor. Since (|S,|?) is a submartingale, we have for any sv ¢ = 1
(10) El(n + )81 = 2ia (n + 9) Sz 1Sd# = [esin 18:4l?],
and (8) follows from (6) and the proof of Lemma 2 of [4]. To prove (9) we write
DI — (B = D) (n + b)®
const 23 K7 /(n + k)* £ const [§a?*7/(n + z)%dx

A

< const [§ (n + z)™*™*dr = const n**7

Proor oF ProrositioN 1. That v < o« follows from (8) with n = 0 in the
case 8 = 2 and from (8) and
E(8)%) = B (718"

in the case B8 < 2. ,
To complete the proof it suffices by (2) and (3) to show

(11) limpse EUA(S:) = 0.
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Suppose that 8 = 2. By the ¢, inequality
(12) Ua(z) = clUa(0) + n%zf], —w<z<w, n=12--.

It follows from (9) that U,(0) — 0, which combined with (12) and (7) proves
(11).
If B8 < 2, we may write

El(n + )™z + S/ = E**[(n + )"z + 8.)%

and apply the above results. This proves the proposition.
REMARK. A trivial generalization of the above argument shows that for every
realyandm = 1,2, ---,

o(m,y) = firstn = 0 suchthat (n 4 m) |y + Sul® = Unin(y + Sn)
is optimal in the extended sense for the RS(m + n) ™|y + Su/f’,n = 0,1, --- .

3. Comparing reward sequences. Sometimes by having some knowledge about
the behavior of a reward sequence Z, one may infer something of the behavior of
another reward sequence Y, , defined on the same probability space relative to
the same sequence of s-algebras (F,). We shall exploit two simply proved
principles.

PrincieLe I. Suppose Y, = Z, for all n and for some » point (in @) and some
index m, Ym(w) = Z.(w). If the FER for the Z, sequence says to stop at time
m with reward Z,.(w) then the FER for the Y, sequence will say to stop at time
m with reward Y ,.(w).

PrincipLE II. Let @ > 0 and b be two real numbers and Y, = aZ, + b.
The functional equation rules for both reward sequences are equal.

Let Z, = h.(S,). We will say that the FER ¢, stops at (n, y) if ¢z says to
stop at time n whenever S, = y. Let

(13) A.. = {y: 0z stops at (m, ¥)}.
Let Y, = ¢.(S») and define
(14) B, ={y:3a > 0,bsuchthatg.(z) £ ah,(2) +bforallzandalln = m

and ¢,(y) = ahn(y) + b}.

From an application of Principles I and II we find that the FER oy (for the
reward sequence Y,) stops at (n,y) whenevery ¢ A, n B,. Clearly oy < « as.if

(15) P{8S, e A, n B, for some n} = 1.
LeEmMA 4. A sufficient condition for (15) to hold is that

(16) lim sup P{S, e A, n B,} > 0.
Proor. '

P{S, ¢ A, n B, for some n}
2 P{S,c A, n B,i0.} = limu., P{S» e A, n By, for some m = n}
2 lim supn.« P{S. ¢ A, n B.} > 0.
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By the Hewitt-Savage 0 or 1 law [5] the second probability is 0 or 1, so the
conclusion follows.

LeMMA 5. Let Y, be a reward sequence with FER oy and Z,, a reward sequence
such that

Y.2aZ,+b forsome a>0,b, foratleastalllargen.

If 6y < » as., EY,, exists, and (2b) holds for reward sequence Z., , then oy is an
optimal rule.

Proor. Under the assumptions, one may easily verify condition (1) for oy.

Before considering applications we will state the following

Bastc TueoreM. Let Z, = n |8, where 2a > 8 > 0 and E|X|™®? < o.
The FER stops and s optimal. Specifically,

(1) Conditions (2a) and (2b) hold.

(ii) There existsa K > 0 for which the FER ¢ stops at (n, y) whenever |y| > Kn*.

Part of the proof is in Section 2, the remainder (condition (ii)) will be shown
in Section 5.

AppricaTioN 1. Let YV, = ¢.(S.1)® where lim sup n%, < o for some a > 8/2 >
0, and E|X|"**® < «. The FER oy is optimal. (¢, < 0 is allowed. )

Proor. Avoiding trivialities, w*ve assume ¢, > 0 i.0. There exists an o® > /2
(call it « also) for which n%," — 0 as n — . Let Z, = n%|S,|* and a. =
supksm k¢t . Referring to (13) and the Basic Theorem, we ha,ve

A, D (—Km, Kmb)°

form = 1,2, --- . Now, infinitely often a,, = m°c, . Therefore, identifying a,
with a for such m and 0 with b in (14), we have B,, = [0, «) i.0.

By Lemma 4 and the central limit theorem, we conclude that oy < « a.s.
Finally, since Y, < (supis1 k%ct)Z» , we have, by the Basic Theorem and Lemma
5, the optimality of o .

RemaArRk. Using the same type of argument, we can show that the FER
is optimal for reward sequences ¢.|S.|° and ¢,|S.|® sign (S.) under essentially
the same assumptions as in Application I.

AppricaTiON II. Let Y, = ¢n(Sn) = ¢ Pi(S,) where ¢, = 0, lim sup n%, < «
for some o > k/2 and where Py is a polynomial of degree k with positive lead co-
efficient. Let E|X,|™*®® < . Then the FER oy is optimal.

Proor. For some large r we can write

Piy)y =ty —n 4+ - +aly—1r) +&
with positive coefficients &, &, -+, &. Then let

ha(y) = 0 “(aly — " + -+ + &ly — o] + &)

and Z, = h.(8S,) where a > k/2 is chosen so that n, — 0 as n — . Define
Gm = SUPnzmnCy . Identifying a, with @ whenever a, = m%, and 0 with b in
(14) we have, for infinitely many m, B, = [r, ). By virtue of the Basic Theorem
and the following lemma, we have 4, D (— —Km? — 7, Km} — r)°.
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Lemma 6. Let 2« > B = 8 > 0, Z, = n%S.|° and Z,| = n%S,|*" with FER o
and oz , respectively. Then oz =< o5.

Proor or LemmA. Suppose o, stops at (n, y) and ¢ is any stopping rule.
Then
E(n + )y + 8/”

Eﬂ'/ﬂ(n + t)—aﬁ/ﬂ’ly + Stlﬁ < n—a(ﬂ—ﬂ’)/ﬁEﬂ’/ﬂ(n + t)—aly + Stlﬁ
n—a(ﬂ—'ﬂ’)/ﬂ{n—alylﬁ}ﬁ’/ﬂ

A~ 1A

=yl

Thus oz < 02.

The remainder of the proof that oy is optimal follows the same lines as in
Application I.

ArpricationN II1. Let Y, = ¢.(S.) = n % log" |S.], & > 0, and EX," < .
The FER oy s optimal.

Proor. Choose a (8 satisfying 0 < 8 < max (2, 2a) and define Z, = h,(S,)
= n7%8,/°. Then 4,, D (—Km}, Km?)". For y > 1, we identify 87 ° with a
and m *(logy — 8) with bin (14), and find that B,, D [¢/?, ). The optimality
of oy follows as before.

Remarks. (1) The success of the last application is closely related to the
concavity of the log function. We will not try to state a general theorem but
similar applications exist for many concave functions.

(2) A closely related and quite general result concerning concave functions
can be verified. Namely, if Z, is a reward sequence with optimal FER ¢, and
Y, = ¢g(Z,) where g is a non-decreasing concave function. Then the FER oy
of Y, is optimal and oy = 0.

4. Characterization of the stopping region. One is interested in characterizing
the stopping region of the FER for a given reward sequence for at least two
reasons:

(a) in order to construct close approximations to the optimal rule by back-
ward induction;

(b) in order to prove that the FER stops with probability 1.

We shall use the following characterization in proving the Basic Theorem.

Lemma 7. Let ¢, = 0 and ¢, > 0 10. Let 8 = 1. Consider the reward sequence
cn|Sal?. There exist sequences {a.} and {b.} of positive numbers (possibly + =)
such that the FER continues at time n when —a, < S, < b, and stops otherwise.
If the FER s a legitimate stopping rule then a, = b, = o f, and only of, Carr = ca
for some k = 1. If ¢, > 0 for all n, ¢, — 0 as n — « and the sequence {log c,}
s convex then {a.} and {b,} are monotone increasing sequences.

ProoF. Suppose Cnix = ¢, for some k = 1 (we may assume ¢,y > 0). Let

t = k. Then (using Jensen’s inequality)
Ecurdly + 8:° = cansBly + Sil’ > taaly + B = calyl’.

It follows that the FER will not stop at n for any vy, i.e., a, = b, = . Suppose
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Copk < Cnforallk = 1,2, ---.Lett = 1 be an arbitrary stopping rule. At time
n with sum y = S, it is better to stop than to continue with rule ¢ if, and only if,
(17) Eenidy + Sd° < ealyl’.

Let

g(z) = Ecnyi|l + 28" — ca.

(17) is equivalent to g(1/y) < 0 when y % 0. We observe that g(0) < 0 and
g(2) is a convex function in z. Thus, if 0 < 31 < y. and ¢g(1/11) < 0 we have
g(1/y2) = 0 and similarly for 0 > y1 > y.. It follows that there exist con-
stants 0 < a.(t), ba(t) < o« for which it is better to continue with ¢ if, and only
if, —a,(t) < Sn» < ba(t). Define a, = sup:a.(t) and b, = sup, b.(t). Since
¢, > 0 1io. it is easy to show a,, b, > 0. If FER ¢ is a legitimate stopping rule
then a, = a.(0), bx = b.(¢) and the above argument shows that a., b, < .
Finally, suppose that ¢, > 0, ¢, — 0 asn —  and {log ¢} is convex. Let ¢ be a
favorable continuation at (n, y), ie.,

Ecally + Sd° > calyl’.
Then
E6n+1+t|y + Szlﬁ = Ecn+tc,.+1+zc21tly + St|ﬁ = Cn+10n_1E0n+t|?/ + St|fJ > Cn+1|y|ﬂ-

It follows that a, < @ny1 and b, = bpyr -

ReMarks. (1) A similar characterization of the stopping region occurs for
reward sequence ¢,(S,")".

(2) The precise character of the stopping region when 0 < 8 < 1is not known.
It is difficult to believe the region is any more complicated than it is for 8 = 1,
but there exist times » and stopping rules ¢ for which the region of favorable
continuation (where one prefers to continue with ¢ rather than stop at time =)
is not an interval.

6. Proof of the Basic Theorem. The remainder of the proof of the basic
theorem is given by Lemmas 8, 9, and 10 below, which are closely related to
Lemmas 6,7 and 8 of [4]. The proof of Lemma, 9 is omitted; the reader is referred
to [4] for details. For a proof of Lemma 8, we could again refer to [4]. However,
Proposition 1, the subsequent remark, and Lemma 7 yield Lemma 8 immediately.

LemMma 8. Suppose that 8 = 1,y # 0, and for somen = 1,2, ---

n~yl’ < Ua(y).
Then there exists an extended sv t such that
t < =[S z 3yl
and :
(18) w3yl < E((n + )73y + SP).
LemMa 9. Supposethat 8 = 1,y ¥~ 0 and for somen = 1,2, ---
nylf < Ua(y).
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Then there exists an extended sv t such that (18) holds and
{19) El(n + )71 = (20)™ + ™ — (2n) "Hon/y".

LemMA 10. There exists a K > 0 such that ly| = Kn? = n™fy|f = U.(y),
n=12 .

Proor. Suppose the contrary. Then, for every K > 0 there exists ann = 1, 2,

- and an extended sv ¢ which by Lemmas 8 and 9 may be assumed to satisfy
(18) and (19) for some |y| = Kn!. First suppose that 8 = 2 and consider the
case ¥y > 0. By Lemma 7 we may assume that y = Kn'. From Lemmas 3 and 9
and the Minkowski inequality we have

n—u/ﬂ+%%K < %Kn%E”ﬂ(n + t)—a + El/ﬁ[(n + t)-"‘IStIB]
< 3K ((20) 7 4+ (27 — 1)"2(20) " (40") PntPK 0 7) 4 const n~PH,

Hence
1Kn ™71 — 27°%) < const K P L const n~/PH

a contradiction for K sufficiently large. The case y < 0 is handled similarly, and
the case 8 < 2 is an application of Lemma 6.
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