ON THE MONOTONICITY OF $E_p(S_t/t)$

By Y. S. Chow and W. J. Studden¹

Purdue University

Let $S_n = X_1 + \cdots + X_n$ be the partial sums of iid random variables X_n with $P(X_n = 1) = p = 1 - P(X_n = 0)$. Let t be a stopping time relative to the sequence $\{X_n\}$. The following result was conjectured by H. Robbins: If $P_p(t < \infty) = 1$ for every $0 , then <math>E_p(S_t/t) \leq E_{p'}(S_t/t)$ for $0 . In this note we verify this result when the <math>X_n$ are iid with density belonging to an exponential family, which includes the binomial, poisson and normal distributions. In the proof, Wald's equation $E_pS_t = E_pX_1E_pt$ for a bounded stopping time t is utilized.

THEOREM. Let X_n , $n=0, 1, \dots$, be iid with exponential density $C(p)e^{Q(p)x}$ with respect to some σ -finite measure $d\mu$ on $(-\infty, \infty)$ where Q(p) is continuous and strictly increasing on some open interval $I \subset (-\infty, \infty)$. Let $S_n = X_1 + \dots + X_n$ and t be a stopping time such that $P_p(t < \infty) = 1$ for every $p \in I$. Then

(1)
$$E_p(S_t/t) \leq E_{p'}(S_t/t)$$
 for $p < p', p, p' \in I$.

PROOF. Since Q(p) is continuous and strictly increasing we may assume without loss of generality that Q(p) = p. Moreover, since $P_p(t < \infty) = 1$ and $E_p X_n^2 < \infty$, it follows that if $t_n = \min\{t, n\}$ then $\lim_{n\to\infty} E_p(S_{t_n}/t_n) = E_p(S_t/t)$. Therefore it suffices to prove (1) for bounded stopping rules t. The result is then immediate from the following lemma.

Lemma. If Q(p) = p, t is a bounded stopping rule and the conditions of the above theorem hold then

$$(\partial/\partial p)E_p(S_t/t) = E_p(S_t - tE_pX_1)^2t^{-1}.$$

Proof. If A_k denotes the projection of the set [t = k] onto the first k coordinates then

$$E_p(S_t/t) = \sum_k k^{-1} \int_{[t=k]} S_k = \sum_k k^{-1} \int_{A_k} S_k C^k(p) e^{pS_k} d\mu_k$$

where $d\mu_k$ is the k-fold product of $d\mu$. Therefore since the summation is finite and differentiation under the integral is permissible (see Widder (1946), p. 240)

$$\begin{split} &(\partial/\partial p)E_{p}(S_{t}/t) \\ &= \sum_{k} k^{-1} \int_{A_{k}} S_{k}(\partial/\partial p)[C^{k}(p)e^{pS_{k}}] \, d\mu_{k} \\ &= \sum_{k} k^{-1} \int_{A_{k}} S_{k}[S_{k} - kE_{p}X_{1}]C^{k}(p)e^{pS_{k}} \, d\mu_{k} = E_{p}S_{t}t^{-1}[S_{t} - tE_{p}X_{1}] \\ &= E_{p}[S_{t} - tE_{p}X_{1}]^{2}t^{-1} + E_{p}X_{1}E_{p}[S_{t} - tE_{p}X_{1}] = E_{p}[S_{t} - tE_{p}X_{1}]^{2}t^{-1} \\ \text{since } E_{p}S_{t} = E_{p}X_{1}E_{p}t. \end{split}$$

REFERENCES

WIDDER, D. V. (1946). The Laplace Transform. Princeton Univ. Press.

Received 11 March 1968.

¹ This research was supported by the National Science Foundation Grant GP-06073.

1755