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By JANET M. MYHRE AND SaM C. SAUNDERS

Claremont Men’s College and Boeing Scientific Research Laboratories

0. Summary. The asymptotic chi-square distribution of the log-likelihood ratio
is used to obtain approximate confidence intervals for the reliability of any sys-
tem which may be represented by a monotone function of Bernoulli variates.
This generalizes the results of A. Madansky, Technometrics, November 1965, for
series, parallel and series-parallel systems. The method used is to parameterize
the log-likelihood equation so as to find the interval of parameter values which
keeps the log-likelihood less than or equal to the specified quantile of the chi-
square distribution., This is done by introducing an operator depending upon
the parameter, a fixed point of which is the solution of the likelihood ratio equa-
tion, and by showing the operator is a contractive map and hence has a unique
fixed point depending continuously on the parameter. The solution can be found
simply by iteration.

1. Introduction. Several approaches have been made to the problem of deter-
mining confidence limits for system reliability. Buehler [2] has given upper con-
fidence limits for the product of two binomial parameters using Poisson approxi-
mations with an accuracy believed to be adequate whenever both sample sizes
exceed forty. Buehler’s method has been extended by Lipow [5] and Steck [8],
for certain cases and short tabulations have been made. Madansky [6] has made
use of the log-likelihood ratio’s asymptotic chi-square distribution to obtain
confidence intervals for series, parallel and series-parallel systems. It is the ex-
tension of this last result to a much wider class of systems that we present here.

The reason for this effort is the acknowledged inadequacy in many practical
instances of the only known method of finding confidence bounds, from data on
the performance of the components, for the reliability of general systems. This
known method is the use of the asymptotic normality of the maximum likelihood
estimates. A comparison, for certain cases of practical importance, of the method
presented here with this alternative method is carried out in [7]. There the
authors have shown that the use of the asymptotic chi-square method to deter-
mine confidence limits yields results which are substantially better for small
sample sizes and equivalent for large ones for the cases considered.

In order to be specific about the class of systems which we consider here, it is
necessary to introduce some notation. For the sth component among m, let the
Bernoulli random variable Y; indicate performance by taking the value one for
success and zero for failure. The state of the components then is the vector ¥ =
(Y1, -+, Yn). By a coherent (monotone) structure we follow [1] to mean there
exists a non-decreasing Boolean function ¢ of the state of the components, which
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is the indicator of the state of the structure. If EY; = p; is the reliability of the
¢th component for ¢ = 1, -- -, m, then the vector p = (p1, -+, pm) is the
reliability of the components and E¢(Y) = h(p) is the reliability of the strue-
ture.

Our data consists of the vectors * = (21, -+, Tm) and n = (ng, -+, Nim)
where we have observed z; successes in #; trials of the 4th component. The num-
ber of successes z; has a binomial distribution given by

b(Gine, pi) = (F)pd(1 — pa)™™ for j=0,--,m.
The problem is to obtain confidence limits for A(p) without further testing of the

system.
Let L(r) be the logarithm of the likelihood ratio

L(r) = Supae=n [ 201 In b(x: ins, pi)] — suppee [ 201 In b(z: ins, pi)]

where 3C is the unit hypercube of dimension m.

Following the well-known theorem of Wilks [9] on the asymptotic behavior
of the logarithm of the likelihood ratio, a confidence set of level v for the system
reliability is approximately

{ri—2L(r) < xiy(1)}

where xi—,(1) is the yth quantile of the chi-square distribution with one degree
of freedom.

To maximize the joint density with respect to p subject to the restraint
h(p) = r we use the method of Lagrange and examine the system of equations
forj=1,---,m

(1.0) (8/8p)[ 227 In b(=: ini, pi) — h(p)] = 0

with

(1.1) h(p) =,

where 6 is a Lagrange multiplier. The system (1.0) becomes forj = 1,---, m
(1.2) g — (nj — 2;)(1 — p;)~ = 83;h(p)

where d; represents the partial derivative with respect to the jth variable. This
partial derivative always exists as can be easily shown from the definition of
h(p), see [1]. For given §, call p(8) = (p1(8), * -+ , pPw(8)) the vector solution of
(1.2), assuming it exists and is unique within 3C.

If for given (z,n) we define N on 3C by

(1.3) N(p) = 2 Zmilpi npi + (1 — ) In (1 — p,)]
where §; = z;/n; , we see that
L(r) = Np(s,) — N(p)

where we make the convention here and throughout that juxtaposition of func-
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tions indicates composition, and where p(8,) is the solution of (1.2) with 8, chosen
so that (1.1) is satisfied.
Let us define

(1.4) A(8) = Np(s) — N(p)

for those values of & for which p(8) exists. Presuming for the moment that the
existence of p;(8) implies that p;’ (8) exists, which we prove in Section 2, we have

A = 20 [m(pi(8)™ — (ni — =) (1 — pa(8))Ipi ()

but from (1.2) we see

(15) A'(8) = 2.7 89:h(p(8))pi (8) = 8(d/ds)hp(5).
Thus from equation (1.5) we have

(1.6) LeMMA. At each point & for which p(8) exists, hp(8) is monotone decreasing

iff A(8) ©s monotone decreasing for & > 0 and monotone increasing for & < 0.
From this follows the

(1.7) TuroreM. If hp(d) s monotone decreasing as a function of & across an in-

terval [6~, 8] where 8~ < 0 < 8" are two values of & for which

A(3) = —x1(1)/2
then

{rihp(87) > 1 > hp(37)} = {r:2L(r) < xi(1)}.

Proor. Since hp(d) is a 1-1 transformation the adjustment of 6 to satisfy (1.1)
is superfluous and we can replace the parameterization of L by r with that of
Abys. [J

The above discussion gives the general idea of the procedure that we have in
mind to obtain an interval estimate.

For a given coherent structure h with failure data (z, n) on the components
we seek to find, for a given confidence level v, the two values of the Lagrange
multiplier parameter, 8, one value being positive and one negative, such that the
log-likelihood evaluated at each of the two parameter points is equal to minus
one half of the yth quantile of the chi-square distribution with one degree of free-
dom. Moreover, we must assure ourselves that the reliability function, hp(s),
is monotone decreasing across the interval of parameter values. The confidence
interval is the interval of values included between the reliability function evalu-
ated at the end points of the interval of parameter values.

Since the problem of determining confidence intervals for the reliability of a
component when it has experienced either no successes or no failures must be
separately considered, unless one has some prior information which can be util-
ized with Bayesian techniques, it is not surprising that such cases should also
require special attention when they occur in the components of a structure. For
example, when a series structure has at least one component with no successes
the lower confidence limit is fixed at zero.
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It may be that for some structures and data we may be able only to find two
values & > &; across which Ap(8) is decreasing and then obtain the approximate
confidence level of the interval estimate (hp(81), hp(8:)) from i[Hi(—2A(8))
+ Hy(—2A(8:))], where H, is the distribution of the chi-square random variable
with one degree of freedom.

In order to limit our discussion in what follows to two-sided confidence inter-
vals (the necessary modifications are easily made for one-sided) we shall treat
the case

(1.8) O0<z<n for ¢=1,---,m.

Since as a practical matter we are usually interested in components of high re-
liability, the values z; should be nearer n; . Moreover, because this procedure is
based on an asymptotic approximation and its validity is in question if the sam-
ple sizes are too small; we are examining the most frequent and the most impor-
tant case.

Unfortunately, to solve the equations in general, we still find it necessary to
use an iteration procedure which requires the use of a computing machine at
least as sophisticated as the IBM 1620.

However, since the advent of contracts in certain industries which call for
vendors to demonstrate a reliability goal with at least a specified confidence,
economic importance in such applications easily justifies the use of computing
machines.

2. Iteration procedure for p(8). We now turn to the practical problem of finding
a method to obtain the solution p(8) of equation (1.2), as a function of 5. We
can then use it to obtain the graphs of hp(8) and —A(8) as functions of § from
which we can obtain an approximate confidence interval across any interval in
which hp(8) is decreasing.

One of the best methods, in that it lends itself readily to both machine com-
putation and to theoretical study, is to define an operator such that the solution
sought is a fixed point.

From (1.2) we have

gpi " — (nj — a;)(1 — p;)~ = op; as(p) for j=1,---,m,
where a;(p) = p;d;h(p). Now we introduce the transformation 4 where
(2.1) Ai(p, 8) = (x5 — da;(p))(n; — da;(p))™, j=1,--,m,

which is suggested by solving the equations above as if a;(p) were constant.

Note that if, contrary to (1.8), we had z; = 0 only values of § < 0 could be
used otherwise A4 ;(p, §) < 0. In such a case only an upper confidence limit for
the system reliability could be found. On the other hand, if some z; = n; then
A ; equals one. In effect, that component’s reliability is taken as unity and thus
the order of the structure reduced by one, essentially removing that component
from consideration. Thus by suitably modifying the structure our data would be
reduced to (1.8).
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This lack of symmetry in behavior is caused by our definition of the trans-
formation A and our choice of the form of the restraint. This discussion is taken
up again in Section 4.

It is easily checked that for each fixed & < min (&, ---, =) the operator
A(-, &) is a continuous transformation on 3C into itself.

We know immediately that a solution exists from Schauder’s principle, (see
e.g. Kantorovich and Akilov, p. 640, [3]), that a continuous operator mapping a
convex closed compact subset of a Banach space (in this case 3¢) into itself has a
fixed point. However, we desire more, namely, that the solution be unique and a
continuous function of 8. For such results additional information is generally
required either in the form of monotonicity of the operator or some uniformity
condition like the one of Lipschitz.

We will now prove that the transformation 4 is a contractive map of a com-
plete metric space 3C into itself and hence has a unique fixed point.

Define for a given coherent structure ¢ the constants forj =1, ---, m
(2.2) ¢ = 28(1;,y) — #(0;,9)
where we introduce the notation (1;,y) = (119, -+, ¥i=1, 1, Yj+1, - -+, Ym), With

the obvious meaning for (0;, y), and the summation extends over all 2" values
with y; = 0,1 for ¢ = j. (Note that for the class of structures called the quorum
or “k out of m” structures we have ¢; = (i) which gives some idea of the
magnitude of these constants.)

We now make the obvious

ReMark. If 8, ¢ ¢ (0, 1) and s, T are real, then

(2.3) [s8 — tT] = [S(s — &) + &S — T)|
<Sls—t+US—T| <|s—t| +|S— Tl

(2.4) THEOREM. For each given coherent structure ¢ (or correspondingly h) we
have for all & such that

(24.1) min (21, -+ ,%n) >8>0 and D 4 (n; — z;)8(n; — 8)%¢; < 1
or
(2.4.2) 8<0 and D7 (nj — z)ni8le; < 1,

the transformation A (-, §) ¥s a contractive map of the metric space (3¢, d) into itself
where d is the metric on the unit hypercube defined by

(2.4.3) d(p, @) = m™ 2270 |pi — qil.

Proor. Let § be fixed satisfying (2.4.1) or (2.4.2). We now must show that
there exists an r < 1 such that

d(Ap, Agq) = rd(p, q).

Of course both A and r depend upon é but we omit its mention in the remainder
of this argument. Take p # ¢ ¢ 3¢, then from (2.1)
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A;(p) — Ai(g) = (n; — z,)8lai(q) — a;(p)I(n; — da;(p))(n; — da;(q))]™
and
(2.4.4) d(Ap, Aq) =m™' 22 |A;p — Ayl .
By applying the remark above, we see since 0 < d;ap < 1
laj(p) — ai(@)| = |pidhp — qidihg| < |p; — gil + |8:hp — dihgl .
Now using the notation just introduced for coherent structures we have
d;hp = h(1;,p) — h(0;, p)
= 2 lo(1;,9) — 605, )1 Lows lysps + (1 — ) (1 — pi)]
and hence
ahp — dhg = 22 [6(15,9) — ¢(0;, )]
AT Liws lyips + (1 = yi) (1 = p)] = TLiws lyigs + (1 — ) (1 — @)1}
By applying the remark repeatedly, we obtain

9:hp — 8hgl < 22 [8(15,4) — &(0;, Y)] 2 iws P — qil -
Therefore

lap — ajql < Ip; — qil + ¢ 2 ps — ail -

Since without loss of generality in coherent structures each element is essential,
p. 64, [1], we must have ¢; = 1. Hence |a;p — ajq| < mc;d(p, q) and

d(Ap, Ag) < 225 (n; — ,)|8] cil(n; — dasp) (n; — das0)]™ d(p, g).

By taking into account that 1 = a;(p) = 0and thesign of §, we have the theorem
proved. [
We define for given p° e 3¢ the sequence

p°(8) = A(p*7(8),8) for k=12 ---.

(2.5) TuroreEM. For every § in the neighborhood of zero defined by the inequalities
(24.1), (2.4.2), the solution of the system of equations (1.2) exists, call it p(8), is
unique and can be found for any initial p° € 3¢ as

lim p*(8) = p(?).

Moreover, p(8) s a continuously differentiable function of & in that neighborhood.

Proor. That A(-, §), for é in a neighborhood of zero, has a unique fixed point
which is the limit of an iteration from any initial point follows from the known
behavior of contraction maps, p. 32, [4]. The fixed point p(8) is the solution of
(1.2) and is given by

p(8) = limp*(8) = A(limp*7(5), 8) = A(p(3), 5).
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Let F be the vector valued function defined by
Fi(p, 8) = 80h(p) — @pi " + (ni — ) (1 — pi) ™

We have just argued that to the equation F(p, §) = 0, a unique solution, say p,
exists for certain fixed 5. We assert that the Jacobian is not zero, i.e.

det 6,~Fi(p, 5) # 0,

for if this determinant were zero, there would either be infinitely many solutions
or none which is a contradiction. Now we can make use of the implicit function
theorem to assert that the continuous differentiability of the function F is in-
herited by p(8). Thus we have that if p(8) exists, it is continuously differentiable. []

We now show that any structure & and any failure data (z, n) there always
exists an approximate confidence interval of some level about the maximum
likelihood estimate of the structure reliability h(p).

In view of Theorem (2.5), we have merely to show
(2.6) TuEOREM. For any reliability structure h, and any failure data there exists
a netghborhood of zero in & across which hp(8) is decreasing in 6.

Proor. Letting pi (8) = (d/dé)p:(5),

(2.6.1) (d/d8)hp(8) = D 7 9:hp(8) -pi ().

From (1.2) by taking the derivative of both sizes with respect to § and setting
s; = a;p; 0 + (n; — z;)(1 — p;)~", where s;, like p;, is a function of 5, we
obtain

(2.6.2) —sipi — 827 dsh(p) o = ;h(p).

Multiplying by p;” and summing, we obtain
—(d/d8)hp(8) = 82 7ima 3:ih(P)piDS + 5= si(pi)",

Now clearly for § = 0, we obtain
8;(0) = zi(P) ™ + (n; — z;)(1 — §,)7 > 0,

and therefore —dhp(0)/dé > 0. []

ReMARK. It may not be that an approximate confidence interval of high level,
such as .99, can be obtained for every structure and every set of failure data but
we can always obtain an interval estimate of some confidence.

3. The effect of large sample size. What we wish to examine in this section is
the behavior of the approximate confidence limits as a function of sample size.
It is not surprising that these limits for structural reliability as computed using
p(8) are consistent. To be precise we state
(8.0) TuroreM. If at a given level v, using data (x, n) the equation

A8z, m) = —xi(1)/2

has two solutions 8:n(Y), dsn(v), then both these points tend stochastically to a
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common value as n increases. With probability one we have
{rihp(87) > r > hp(8")} = {h(r)} as 2Tnit—0

where m s the vector of true component reliability.

Proor. Suppose that one has values §, p(8) which satisfy (1.2). We omit the
argument of p in what follows:

By rewriting (1.2) in the form p; — p; = (8/n;)p;(1 — p;)d;h(p), substitut-
ing into (1.4) and expanding the logarithms, it follows after some tedious
manipulation that for Y n; ™ sufficiently close to zero,

A(S) = — {82 Be(n™ + & 2T Ba(i)ni + -+

where
(8.1) B(d) = [BA(P)Ipi(1 — pi) — 35:(1 — pi)* — (1 — Po)psl.

For j = 3 one can show |8;(7)| < 1. Thus by equating A(8) to %xi_,(1) and
neglecting terms of order ) .~ we can obtain an asymptotic solution, namely,

(3.2) 3 2 (X (1)/22°7 Be(D)ni )

It is sufficient to show that as »,n;" — 0 that |hp(s%) — A(p)| +
|h(p) — hp(87)| — 0. Following the same methods that were used in Section
(2.4) we see that h satisfies a Lipschitz condition and since |#; — p;| < [8|/(4n;)
we have

d(p(®), p) £ 116% 2Tt = 0(( ).

By the strong law of large numbers we have that § — 7 with probability one
as >, ni ' — 0 and hence that p(8%) — 7 with probability one, also. This com-
pletes the proof. []

From the equation (3.2) we can obtain an estimate for 7, by merely substi-
tuting g; for p; in (3.1) and using this estimate in (3.2).

For some numerical comparisons of the consistency of this procedure, see [7].

4. An alternative formulation. Suppose that in maximizing the joint density to
obtain the first term of L(r) we impose the restraint in the form In A(p) = Inr,
then we would have, instead of (1.2), the system

(4.1) zp; = (n; — ) (1 — p)~ = Mh(p))9;a(p)

where A is a Lagrange multiplier. We call the solution of (4.1), #(\), when it
exists uniquely within 3¢ in order to distinguish it from p*(3), the solution of
(1.2). Of course the use of the restraint in a different form serves only to re-
parameterize the solutions of (1.2).

We can obtain in a manner similar to that of (1.7) the
(4.2) TuroreM. Ifhp () is monotone decreasing as a function of X for X & A7, A7)
where N~ < 0 < AT are two values of N for which

Np(\) = N(p) = —xi(1)/2
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then an approximate confidence interval of level v is
(rihp(N") > r > hp(Z)}.

Remark. In the case of a series system h(p) = [T p:, and clearly
3;h(p)/h(p) = p; ", so the system (4.1) has the explicit solution obtained by
Madansky in [6], namely,

(4.3) Bi(N) = (z; — N(n; — N7

Clearly, p;()\) is a strictly decreasing function of A since it has a derivative of
—(n; — x;)/(n; — \). We restrict A to the range which keeps 0 = p;(A) =1
forj = 1, --- , m. From the monotone behavior of ~(p) in the series case, we see
the hypothesis of Theorem (4.2) is not vacuous. This is the method presented
by Madansky in the series case in [6].

Notice that for each & such that p*(8) exists it provides a solution to (4.1) for
the value A = 8hp™(8). To see this, merely multiply numerator and denominator
of the right-hand side of (1.2) by hp*(8) and relabel. But, moreover, for each A
such that p(\) exists for (4.1) there is a solution to (1.2) for the value § =
N/hp(N). These transformations from one parameter to another are from the real
line onto the real line but they are not always necessarily one-to-one. To see this
consider A/hp(\), where h is a series reliability function. This transformation is
increasing if A > 0 but one can show that for any N < 0, the derivative is negative
for the order m sufficiently large.

We now mention an advantage of p*. For every coherent structure ¢, there
exists a dual structure ¢, which is related by the condition

éo(y1, -+, ym) =1 — (L — g1, -+, 1 — ym)

see pp. 98-59, [1]. Hence if A(p) is a reliability function of a coherent structure,
then the dual structure has a reliability hp defined for pe 3, letting
W = (1,1,---,1) e by ho(p) = 1 — h(»* — p).
We now state

(4.4) TrEorREM. If p*(8) is the solution of (1.2) which exists for all § over an
interval [6”, 7] where 8 < 0 < 8" and hp*(8) is decreasing in & across the same
interval then hpp® (8) is decreasing in & over the reversed interval [—8%, —67], where
p*(8) is the vector solution of the dual system of equations in p

(4.4.1) zpi = (ny — 2;)(1 — p;)™" = 8d;ho(p)

with z; the number of successful trials of the n; made for the jth component.
Proor. Let ¢; = 1 — pi, y: = n: — 2z, then (4.4.1) becomes

(44.2) yigi - — (n; — yi) (1 — ;)7 = —38d;h(q).

Now by comparison of (4.4.2) with (1.2) it follows by hypothesis that hg*(—8)
is decreasing in & over the reversed interval where ¢*( —8) is the solution of
(4.4.2). Therefore, we have 1 — hg*(—8) is increasing and consequently, the
function hpp®* (8) = 1 — hg*(8) is decreasing in & which is the conclusion sought. []
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The transformation is thus
(4.5) p;i—1—p;, T —n; — xj, 6 — —4.

The first two we recognize as being characteristic of duality.

Consider h as a series structure reliability. Applying the transformation (4.5)
to (4.3), which we know holds for p*(3), we obtain formally an explicit solution
for the parallel case, namely,

(4.6) () = zi(n; +2)7L

This is a decreasing function of A and yields p* ¢ 3¢ whenever —min(n; — z;) <
A< o,
We now derive this parameterized solution. From (1.2) we write

zp; " — (n;— z;)(1 — p))™ = 8(1 — p,)7(1 — p;)dsk(p)
=81 — p)7'h(1;, p) — h(p)),

where as before h(1;, p) = h(p1, -+ , Pi=1, L, Diz1, - , Pm). But if h(p) =
1— It (@ — pi),let - = 6(1 — h(p)) and the above becomes

zpi — (ny—z)(1 —p))~ = 7(1 — p))7,

the solution of which is (4.6) with A replaced by 7. What we have done is equiva-
lent with imposing the restriction in the form 1 — A(p) = 1 — r and then re-
placing the Lagrange multiplier by its negative.

Acknowledgments. The authors wish to thank the referee for pointing out an
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