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LARGE DEVIATIONS THEORY IN EXPONENTIAL FAMILIES!

By Brapiey ErFron AnND DonarLp Truax?
Stanford University and the University of Oregon

0. Summary. We consider repeated independent sampling from one member
of an exponential family of probability distributions. The probability that the
sample mean of n such observations falls into some set S, is, by definition, a
“large deviations”, ‘“‘small deviations”, or “medium deviations” problem de-
pending on the location of the set S, relative to the expectation of the distribu-
tion.

We present a theorem which allows the accurate approximation of all such
probabilities under a wide variety of circumstances. These approximations are
shown to yield simple and numerically accurate expressions for the small sample
power functions of hypothesis tests in the exponential family. Various large
sample properties of exponential families are presented, many of which are seen
to be extensions and refinements of familiar large deviations results.

The method employed is to replace the given exponential family by a suitably
modified normal translation family, which is shown to approximate the original
family uniformly well over any bounded subset of the parameter space. The
simple and tractable nature of normal translation families then provides our
results.

1. Introduction and an outline of the paper. Exponential families of probability
distributions play a dominant role in parametric statistical analysis, embracing
almost all of the common univariate and multivariate distributions. In this
paper we represent a d parameter, or d dimensional, exponential family by

Po(A) — J’A 30’x—¢(0) d}.t(.’l))
for Borel sets 4 in Euclidean d-space E°, or more simply by
dPo(x) — ee’z—\ﬁ(ﬂ) dp(x)

for z ¢ E°. Here u(x) is a probability distribution on E?, and § takes values in
@, that subset of E? for which [zae’®du(x) is finite. The function () is the
log moment generating function of u(z), and yields the moments of Py by dif-
ferentiation, for @ in the interior of @. Letting N\(6) and =(6) be the mean vector
and covariance matrix of an observation X from Py,

NO) = EX, 2(0) = Cove X,
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we have
NO) = (3¢(0)/06”)  and  Z(8) = (9"¥(8)/90”96%),

superscripts indicating components of the 6 vector.

It is well-known [13], Section 2.7, that © is a convex set in E?, and we will
assume that it contains an open set in that space. (If not, it is always possible to
reparameterize to a lower dimensional exponential family where the condition
does hold). Likewise, there is no loss of generality in assuming that u does not
put all of its probability mass on any d — 1 dimensional hyperplane in E°,
which is equivalent to assuming that Z(6) is non-singular for all 6 £ ©. We will
occasionally perform linear transformations on 6 and X in order to simplify
our calculations. For example if 6, is a point of particular interest to us, we may
write

dPo(x) - 6(0—00)'::—(1#(0)—\#(00)) dPo (ID)
o .

Letting & = 6 — 6y, we see that we can take our special point 8, to be the origin
without loss of generality, in which case Py, becomes the distribution u. Section
2, in particular, is written from this point of view, and then regeneralized in
note 3. If we transform to § = [2(6:)]*(6 — 6o) and X = [2(6:)] (X — \(60))
our exponential family has mean zero and covariance the identity matrix at the
origin (assuming N(8,) and =(6,) exist).

If X;, X,, ---, X, are independent observations from Py, , the normalized
vector X = (2.7 X: — n\(6o)) /nt will fall into a set C in E* with probability
Py, +(C), say, which for large n approaches the probability of C under the normal
distribution 9(0, Z(6,)) (assuming that the boundary of C has measure zero).
If the X ; are chosen from Py , 5 6, , then X will have mean n(A(8) — \(8)), and
Py .(C) will approach zero at an exponential rate. This fact, of course, underlies
most tests of the hypothesis Hy : 0 = 6, versus H; : § £ 6§y, and it is known
[4], [14), that a complete class of such tests is those based on convex acceptance
regions C.

The main result presented in this paper is a theorem comparing the prob-
abilities P, .(C)—equivalently the power function of the test for H, based on
C—for different exponential families. Let us say that Py agrees with Py at a point
8o interior to both parameter spaces ® and @ if A(6)) = X(6y) and Z(8) = ().
Then our comparison theorem can be stated in the following way (ignoring
regularity conditions): If Py and P, agree at 6y, then

PO n(C)/PO n(C) — e—n([ll/(f?)—|l/(00)]—[1(0)—¢(00)])[1 + On(l)],

with the term 0,(1) approaching zero uniformly for ¢ in any bounded subset
of ® n 6, and C convex and contained within any bounded subset of E®. In par-
ticular, if we take as our agreeing family the normal translation family Py ~
S(N(Bo) + Z(60)[0 — 6o], =(60)) (the form of the mean being necessary to write

dP, in the form &= ¥® di(z)), the bracketed term in the exponential becomes
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I — 3J, where I is the Kullback-Liebler information Ej, log (dPg,/dP;)(X) and
J = Variances, (log (dPg,/dPy)(X)).

This theorem is derived under various regularity conditions in Sections 2
and 3, and stated in a number of useful equivalent forms. In Section 4 it is
employed to discuss two ‘‘large deviation” theorems. A sharpened version of
the Chernoff bound on the Bayes risk of the likelihood ratio test is given, and a
theorem of Hoeffding for large deviations of multinomial observations is
generalized to exponential families.

Section 5 is concerned with asymptotic properties of the fixed level « likelihood
ratio test of Hy versus H; . An optimality property for this test is given which is
the large deviations equivalent of a familiar result of Wald, along with a deriva-
tion of the large deviations power function.

The comparison theorem is a useful computational tool for investigating the
power function of likelihood ratio tests for both simple and composite hypotheses
in our exponential family. Section 6 discusses numerical approximation of power
functions in some detail, and offers several examples, including that of testing
for independence in a multivariate normal distribution.

We have chosen to present these results in the context of exponential families
for reasons of statistical relevance. An alternative presentation could be made in
terms of large deviations theory, which is to say the probability that an average
n™" D7 X, of independent, identically distributed random variables falls a large
distance away from its expectation. In a paper quite closely related to this one,
[5], Borovkov and Rogozin show clearly the relation between these two points of
view. Other papers of direct relevance are Bahadur and Rao [2], Efron [§],
and Hoeffding [11], [12].

2. The main results. The technical basis of our results is the local central
limit theorems of Rvadeva [16] and Stone [18], which we combine below as
Lemma 1. These theorems yield a useful approximation (Theorem 1) for con-
volutions of the distribution g, which is in turn the basis of our comparison
theory, Theorems 2 (and the following notes), 3, and 5.

To increase the generality of our results, we drop the assumption that p has a
finite mean and variance,® and assume instead that u belongs to the domain of
attraction of some non-degenerate stable distribution » in E®. That is, we assume
the existence of a sequence of vectors A, and positive constants B, such that if

Xy, X, -+, X, are independent random vectors from u, the distribution u, of
the normalized sum X = (D7 X; — A.)/B. satisfies
(1) limnsw pa(D) = limu., Prob, (X e D) = »(D)

for every v-continuity set D. (For convenience we will assume B, = 1. This
involves no loss of generality.)

Note. Throughout this paper we use X and the corresponding realized value
 to represent both the normalized random variable above, and a single prototype

3 In the language of the introduction, this allows 6 to be on the boundary of ©.
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observation X ~ P, from our exponential family, with the correct interpretation
being clear from the context.

Following Stone [18], we say u is non-lattice if |f(8] < 1 for all § ¢ 0, where
f(8) = [e"du(x). If lim sup ey |f(8)] < 1, uis called strongly non-lattice.
If the lattice generated by all differences © — y of points of E* having positive
probability under the discrete distribution u is a subset of the lattice of all points
of E* having integer coordinates, we say u is a 1-lattice distribution. Finally,
let K(z, h) bethecube {y e B* : 2: S ys < xs+ h, i = 1,2, -+, d}.

Lemma 1. (Rvadeva and Stone). (i) If u is non-lattice, then
pn(K(z, h)) = v(K(z, b)) + 6a(z, h)(h* + B, %),

where limy.o0.(x, h) = 0 uniformly in x and h;
(il) If p s strongly non-lattice and ¢ < c1, where ¢y is defined by e
lim sup o1« |f(6)[, then

(K (z, b)) = v(K(z, k) + 0a(z, h) (A" 4 ™),

where limy.» 0,(x, h) = 0 uniformly in = and h;
(iii) If u s a 1-lattice distribution

pa (K (z, Bn_l)) = »(K(z, Bn_l)) + on(x)Bn_d;

for Bat + An + (3,5, -+, %) in the lattice, where lima.«0.(z) = 0 uniformly
i such x.

Next, we will need a result on convex sets in E°. In Eggleston [9] one may find
an exposition on the mixed volumes of a linear array of convex sets. In the form
that we will need, the result says that if C; and C; are compact convex sets in
E? and C is the linear combination C = MCi + NC:, where ; = 0, A, = 0,
then the volume of C, V(C), is a polynomial of degree d in A1, A\, of the form

V(C) = 2350 (DV(C1, 8 Cy d — s)N'NT,

where the coefficients V(Ci, s; Cy, d — s) are called the mixed volumes. It is
also shown in [9] that if C; and C, are both contained in a convex set D, then
V(Ci,s;Coyd —3s) = V(D) fors = 0,1, ---, d.

In the following, the diameter of a set K in E* will mean sup{|jz — y| : z,
y € K}, and the distance from a point = to K will be d(z, K) = inf,x ||z — y|.
Let C be a compact convex set in B which contains a sphere of radius ¢ > 0, and
consider a grid of cubes of diameter ¢ < e covering C. (To be a covering the cubes
are non-overlapping, the union contains C, and each cube intersects C.) Denote
by @ the number of cubes in the covering, and by ¢ the number of cubes in the
covering which meet the boundary of C.

LemMma 2. q/Q =< 2"/

Proor. If a cube intersects the boundary of C, then that cube must lie in a
neighborhood of radius ¢ of the boundary of C. Thus, ¢/Q cannot exceed the
ratio of the volume of this neighborhood to the volume of C, which in turn

c1d
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implies
q/Q = 2(V(N(C, 1)) — V(C))/V(C),

where the t-neighborhood of Cis N(C, t) = {ye E*: d(y, C) £ t}.
Now, the right hand side is unchanged by a translation of C, so we may as
well assume that the sphere S < C is centered at 0. Then, we can write

N(C,t) = C + (t/e)S.
By the formula for mixed volumes we have
V(N(C, 1) = V(C+ t'8) = 2t (V(C,d — 8; 8, 8) (¢ )",

Also, since S © C, V(C, d — s; 8, s) < 2°V(c). Thus, taking note of the fact
that V(C, d; S, 0) = V(C),

(V(N(C, 1)) — V(C)/V(C)
S (OV(C, d— 88, 8)(V(C) (™’
S 20 (N £ 22 i (5) = 22,

Hence, ¢/Q = 27T (4™).

We are now in a position to state and prove

THEOREM 1. (i) If p is non-lattice and C is a compact convex set containing a
sphere of radius p2**"'d}/B, , then for all 0 < § < min [p, 1],

(2) lua(C)/2(C) — 1| £ (Mdp™" + 204(1)/6%)/m(1 — o)

where M denotes the maximum of the density p(x) corresponding to v over a closed
neighborhood of C of radius d*s /B, , and m the minimum over C,

It

m = m(C) = inf.c p(x).

The term 0.(1) = supsu |0.(x, k)|, where 0,(x, k) is as tn Lemma 1(i). Note that
0,(1) s independent of C and 8. (One should also note that every non-degenerate
stable distribution has a bounded density p(x) with respect to Lebesgue measure,
so that M can be uniformly bounded by supga p(x).) '

(ii) If u is strongly non-lattice and C contains a sphere of radius p2™+" d*/e"'?,
where ¢ < ¢, (see the definttion of strongly nonlattice for a definition of ¢1), then
(2) holds with 0.(1) = supzu |0.(x, h)|, where 8,(x, k) s as in Lemma 1(ii),
and M can be taken as the maximum of the density of v over a closed neighborhood
of C of radius d*s/e""°.

(i) If u is a 1-lattice distribution, and C contains a sphere of radius p d'2**™/B,
where p > 1, then

i (C)/2(C) — 1] = (M + pou(1))/m(p — 1).

Here 0,(1) = sup, |0.(x)|, where 0,(x) s as given in Lemma 1(iii), and
the supremum is taken over only those x such that Byx + A, + (3, %, ---, %)
18 in the lattice. M and m are as in (i) with § = 1.
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Proor. First suppose p is non-lattice. Let Ky, K, - - -, denote cubes of side
8/B. in a covering of C. Then

(Z - Z*)I-"n(Ki) = .Um(C) = ZV%(Ki);

where D and Y_* denote respectively the sum over all the cubes in the covering,
and the sum over only those cubes in the covering which intersect the boundary
of C. According to Lemma 1

(X — 2Z"w(K:) — QI(3/Bn)* + (1/B,)%oa(1)
< #a(0) £ 22 w(Ks) + QU(3/Bx)? + (1/Ba)%oa(1)
where Q denotes the number of terms in the sum . This implies
»(C) — 2" v(Ks) — Qon' (1)/Ba" = pa(C) S 9(C) 4 22" v(Ks) + Qo' (1) /B2,
where 0,/ (1) = (1 4 6*)0,(1) £ 20,(1). Thus,
(€ /2(C) — 1] = 2*»(K:)/»(C) + (2Qon(1)/B.%)/»(C).

Now, Z*V(K;) =< Mq(&/Bn)d, and

v(C) 2 (X — X*)w(K:) 2z m(Q — q)(8/Bn),
s0,

|1a(C)/¥(C) — 1| S (Mg + 2Qon(1)/5")/m(Q — ).
In Lemma 2, set ¢ = d’6/B., ¢ = pd'2™/B,, so ¢/Q < 8/p, and we have

un(C)/v(C) — 1| £ (M8/p + 204(1)/6")/m(1 — 8/5).

In the strongly non-lattice case everything is as above except that the cubes
in the covering are taken with side se~".

In the case p has a 1-lattice distribution, we restrict ourselves to cubes of side
1/B., centered at points of the lattice. If we insist that C contain a sphere of
radius p d*2""'/B,, then again we have

lun(C)/v(C) — 1] £ (Mg + 2Qo0.(1))/m(Q — q) £ (M + 2p0.(1))/m(p — 1).

CoRrOLLARY. If u is non-lattice (strongly non-lattice), and A.(K) denotes the
class of convex sets C which

(1) are contained within a fived set K not depending on n and

(ii) contain a sphere of radius B,™ (e~™%) then

liMnoe SUP cea, ) [1a(C) /2(C) — 1] = 0

provided that the density function p(z) of v has a positive infinum over K, m(K) =
inf.x p(x) > 0.

Proor. The corollary follows immediately from Theorem 1 by letting § go
to zero with n sufficiently slowly in (2), say 8, = [0.(1)]Y“".
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Using m(C) = m(K) for C contained in K, we then have

(M + 2)[0,(1)]"“
m(K)(1 — [oa(1)]t/@+D)

approaching zero at a rate independent of C in K.

The set K may be allowed to expand with n instead of remaining fixed, pro-
vided m(K,) does not converge to zero too rapidly. With &, chosen as above,
we could take any sequence of sets K, with m(K,) = [o,.(l)]”(d“) and still
obtain lima.w supcea, [pa(C)/»(C) — 1| = 0.

The corollary will also hold for p a l-lattice distribution provided that we
strengthen condition (ii) to state that each set C in A.(K) must contain a
sphere of radius p./B., where p, increases to infinity.

Another point worth noting is that if one were to impose stronger conditions
on u, for example that u has a characteristic function whose pth power is integrable
for some p = 1, and second moments exist, then one could conclude that the
density of the normalized sum converges uniformly to the normal density. In
this case the local limit theorem could be made much stronger. The convexity
condition is not needed, and the sets C can be taken as small as we please, i.e.,
we need not insist that they contain spheres of a given size. For an interesting
discussion of local limit theorems under these more restrictive conditions the
reader is referred to [5].

As in Section 1, we will let the probability measure u generate an exponential
family of distributions dPs(z) = €”* ¥ du(z). It is easily seen that the entire
family P, is non-lattice (1-lattice) if u is non-lattice (1-lattice). Suppose that u
belongs to the domain of attraction of », a stable distribution with density p(x),
and that A, and B, are chosen to satisfy (1). Denote by Pp,, the distribution of
(27 X — A.)/B.) when the X, have distribution Py .

Define the “support function” h(6) of a convex set C by

h(6) = sup.cct'z/|6]],
and for a given 0 ¢ ©, 0 > 0, and y > 0 let
Cy = {weC:6'z/ll6] = h(8) — y/l6ll}.

TuEOREM 2. For a given convex set C, suppose that Ci/s, contains a sphere of
radius k/B,, 0 < k < 1. Then in the case where p is a non-lattice distribution,

Py n(C) = exp (—np(6) + 6'An + Bu[l6]la(6))
[T v(C)Bue™™ dyll + 04" (1) /mk,

where 0,%(1) tends to zero uniformly in 6, C, and k. (As before, m = inf..cp(z),
where p(z) is the density of v. The asterisk on 0,* (1) is intended to distinguish the
symbol from the specific quantity tn Lemma 1.)

Proor. We have

IT5-1 dPo(e) /TTim du(z) = @+ Enii =D

|1 (C)/(C) — 1] =
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so that
dPyn(z)/dun(x) = exp (—ny(8) + 6'A, + B,0'z)
and
Pya(C) = exp (—ny(0) + 6'An + B.|9]|R(6))
[cexp (Ba('z — h(8)[6]])) dua(2).

Making the substitution y = [|6]|h(§) — 6'z, and using integration by parts it
is easy to see that the integral may also be expressed as the Laplace transform
[5 un(Cy) Bae™™ dy. We must therefore show that

JT un(Cy)Bue™ dy/ [§ v(Cy)Bae ™ dy = 1 + 0,%(1)/mk’.

It is here that the local limit theorem plays its role, since the integrating density
B.e " approaches a delta function at the origin as B, tends toward infinity.

Define e, = [0,(1)]V®*®, where 0,(1) is the sequence appearing in part (i)
of Theorem 1. [We assume, without loss of generality, that 0,(1) < 1.] Then by
convexity and the hypothesis of the theorem, for y = e./B. the set C, contains
a sphere of radius ke./B.. Letting 8 = k27" ¢—%¢,? in part (i) of Theorem 1
yields

lun(Cy) /v(Cy) — 1| £ M (mk*) "ea(1 — €,) "

for y Z en/Bn, where M' = M + 22t g2 being the supremum of the
bounded density p(z) over all of E°.
From this inequality we infer that

s mn(Co)Bue™™ dy/ [315,(C)Bue™" dy — 1] = 0/ (1) /mk",
where 0,'(1) = M'e,(1 — ¢,)~". In addition, note that
J67%" ua(Cy) Bue ™™ dy/ {215, v(Cy) Bue™™* dy
pn(Cer,) (¥(Ceyn,)) (1 — €7 ) (67 m) ™
< 1+ 0/ (1)/mk(1 — e (e7*n)

I\

and
J&P v(C)Bue™ dy/ [0, v(Cy)Bae™™ dy = (1 — &™) (7).
The elementary inequality
(a1 + @2)/(br + b2) — 1| = |ay/bi — 1] + |ar/ba|bo/by] + |ao/by
yields (with a1 = [&5, un(C)Bae ™ dy, @z = [ ua(C,) Bae ™" dy, ete.)
|7 #a(Cy)Bue ™ dy/ 7 v(Cy)Bue ™™ dy — 1]
< 0/ (1)/mk® + 21 + 0,/ (1)/mk’)(1 — &) /e~

This completes the proof, and shows that we can take 0,*(1) to be proportional
to en = [oa(1)]"/**%.
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Note 1. The class A(K, 7) of convex sets C which (i) each contain a sphere
of fixed radius + > 0, and (ii) are contained in a fixed bounded set K with
m(K) = inf,.x p(x) > 0, all satisfy the hypothesis of Theorem 2 with k = k,,
ko being a positive constant depending only on 7, ||0]/, and the diameter of the
set K. The approximation factor can therefore be expressed as 0,*(1)/m(K)k,’,
which approaches zero uniformly fast within the class A(K, 7), and uniformly fast
for all § within any fixed bounded subset of ©.

Note 2. f Sv(C)Be ™ dy = m f%’ Bn ca(ky) Bae " dy where cgr® is the
volume of a d-dimensional sphere of radius r. From this we conclude that there
exists a positive constant ¢’ such that f3° »(Cy)Bne ™ dy = mc'(k/B.,)". Letting
¢n = (d + 1) log B, , we observe that

ais bn(Cy)Bre " dy < e = (1/B,)*"

for any set C, . It follows that the conditions of Theorem 2 can be relaxed: it is
sufficient that C, /5, be convex for ¢, = (d + 1) log B, and that Cy,s, contain
a sphere of radius k/B,.. Then the conclusion of the theorem holds with
m = infseq, ,p, (), the new approximation term being proportional to

(mk") ™ (0a*(1) 4 1/B).
Notk 3. For an arbitrary point 8 ¢ ® we have
dPy(z) = exp ((8 — 60)'c — (¥(6) — ¥(6))) dPy,(z).

Suppose that for constants A, and B, , the distribution of (D 7 X: — A,)/Ba
approaches the stable law », for independent observations X; from Py, . Then
the statement of Theorem 2 becomes

PO,n(C)
=exp (—n(¥(9) — ¥(6)) + (8 — 60)'An + Bull6 — 6]|(6 — 60))
[ v(Cy)Bae™ dyll + 0,*(1)/mk?).

C, now being defined by C, = {zeC, (6 — 6)'z/||0 — 6o = h(6 — ) —

y/116 — Boll}.
If we suppose that 6o is in the interior of ©, then all the moments of the dis-
tribution Py, exist, and » must be a normal law. Using the notation

EoX = N\9)

for the expectation of a random variable X from P,, we take A, = n\(6o)
and B, = n}. Noting that the quantity (¥(6) — ¥(60)) — (6 — 8o)'N(6o) is the
Kullback-Leibler information number between Py, and P,

1(60,8) = Eo, log dPs,(X)/dPs(X),
the expression of Theorem 2 becomes, in this case,
Po.(C) = exp (—nl(6o, 6) + n}[l6 — 60|R(8 — 60))
5 v(CL)Bae ™™ dy[1 + 0*(1)/mk?].
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Nore 4. In the strongly non-lattice case it is sufficient to demand that Ce-n.
contain a sphere of radius ke ™",

In the 1-lattice case a less precise result is obtained as follows:

THEOREM 3. For a given convex set C, suppose there exists ¢ > 0 and
p > Mm™ + 1 such that Cys5, contains a sphere of radius pd%sz“/Bn. Then
in the case where u is a 1-lattice distribution,

Pyn(C) = exp (—np(0) + 6'A. + B.||6]|(8)) [T »(Cy)Bae ™™ dyle®"]

1
where ¢+

[1— (M + pon(1))/m(p—1D]e* < e>P < [1 + (M + pou(1))/m(p — 1)]e?,

0,(1) being the infinitesimal sequence of part (iii), Theorem 1.
Proor. Define

a = f:/s,, pn(Cy) Bre 2 dy, Gy = fg’/B» un(C) But™"™ dy,

and b; and b, the corresponding integrals with »(C,) replacing u.(C,). Theorem
1, part (iii) yields

s a factor bounded away from zero and infinity by

laa/by — 1| = (M + poa(1))/m(p — 1),
while from elementary calculations we have

a/or £ (1 —e®)/e® and by/by < (1 — e *)/e™.

The result follows as in the proof of Theorem 2.

Theoreins 2 and 3 allows us to approximate Py,.(C), which depends on u,,
with an integral involving only the limiting distribution ». Since our knowledge
of » is more precise than our knowledge of the distributions u., a large class of
accurate asymptotic expressions can be inferred from these theorems. A crude but
useful and suggestive example is the following:

THEOREM 4. Let A(K, 1) be the class of sets defined in Note 1 above, and let
©’ be any bounded subset of ©. Then there exists positive constants a and b such
that for all C e A(K, 7) and 6 ¢ ©,

Pyu(C) = exp (—ny(0) + 6'An + Bal|6]|h(6)) fon(C),
where the factor fo (C) is bounded by
a/B.} £ foa(C) £ b/B,.

(This theorem applies to both the non-lattice and 1-lattice cases.)

Proor. Simple geometric considerations show that there will exist a constant
ko, 0 < ko < 1, depending on 7, the radius of K, and the radius of ®’, such that
C, will contain a sphere of radius koy for 0 < y < 7. It is clear then that the
approximations for Py ,(C) expressed in Theorems 2 and 3 can be made to
hold uniformly. We complete the proof with a suitable approximation for
J5v(Cy)Bue™™ dy.

We note that by the comment above and the boundedness of the containing
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set K, there exist positive constants @’ and b’ such that the volume of C, satisfies
byt £ Vol (C,) £ d'y

for6 < y < min (r,1) and 6 £ @',
Letting ¢, = (d + 1) log B, as in Note 2, we have

[&%y(C)Bne ™™ dy = mb'B, [$7'" B,y ™" dy,

and the right-hand integral approaches the gamma function T'(d 4+ 1) as n
goes to infinity. This establishes the lower bound of the theorem, and the upper
bound follows in a similar way, making use of Note 2.

It is obvious from the above argument that with more specific knowledge of
the set C it is a simple matter to obtain more precise estimates of P .(C).
Such calculations are carried through in Sections 4 and 5 for the sets C correspond-
ing to acceptance regions of likelihood ratio tests.

3. Agreeing exponential families. Suppose now that we have two exponential
families,

dPy(z) = "V P du(z) and dPy(z) = Py di(z),

and we consider a point 6, in the intersection of the two parameter spaces,
~

00 & @ n E‘)

DrriNiTION. Py and Py are said to agree at the point 6, €@ n O if there exists
vectors A, & E* and positive constants B, such that under both Py, and P,
the normalized sum of independent observations X = (D7 X: — A,)/Ba
converges to the same stable law », (i.e., Py, and Py, are attracted to the same
stable law by the same normalizing constants). As before, we let Pj,.(Py.,)
represent the distribution of X under 6; in general, for § # 6, the Py, distribu-
tion will “move to infinity’’ as n grows large. Following the notation of Theorem
2, we have:

TuaeoreM 5. For a given conver set C, suppose that Cys, contains a sphere of
radius k/B, , 0 < k < 1. Then if Py and Py agree at 6y, and are both non-lattice
distributions,

Pﬂ,n(C)/PG,n(C)
= exp (—n[(¥(8) — ¥(6)) — (F(8) — F(60))D)-[L + o0a(1)/mk]

where 0,(1) approaches zero uniformly in 6 0 n ’(5, C, and k.
Proor. The proof is immediate from Theorem 2 as expressed in Note 3.
The approximating factor is seento be (1 + 0.*(1) /mkS) /(1 4+ 0.*(1)/mk?).
If either Py, or Py, (or both) is 1-lattice, then the hypotheses on C must be
strengthened as in Theorem 3, while the conclusion is weakened to

Pya(C)/Pon(C) = exp (—nl(¥(8) — ¥(6)) — (F(8) — ¥(60))])-[e™]

as in that theorem.
The most useful case of Theorem 5 for numerical approximation is that where
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Py is a normal translation family in 6, for then the denominator Py, (C) can often
be evaluated from standard tables. (This technique will be illustrated in Sec-
tion 6.)

If Py, has finite first and second moments, Eo X = \()), Cove, (X) = Z(60),
(which is always the case for 6, interior to @) then there exists an agreeing normal
family

Py ~ 9U(N(60) + Z(80)[0 — 6o, Z(80)),

(the particular form of the expectation as a function of § being necessary to
achieve the kernal ¢“™¥®). This distribution has the log generating function

F(6) = N[0 — 60] + [0 — 60]'Zel8 — 6],

where we have used the shorter notation N = A\(6) and Zo = Z(6,). The ex-
ponential term in Theorem 5 becomes

¥(8) — {¥(80) + N[0 — 6o] + [0 — 60]'Zel — Go]} = 26,(8)

in this case, which in just ¥(6) minus its second order Taylor expansion around
6o, a function we have chosen to call Ag(#). Thus for the normal agreeing
family,*

P (C) = exp (—n8g,(0)) Poa(C)[1 + 04(1)/mk?,

where P;.(C) is the probability that a 9t(n'Z0 — 6], =) random variable
falls in the set C. For § interior to ©, the function A, (8) will behave like ||§ — 6,|*
for @ near 6y, and we obtain the familiar result that P, behaves like a normal
translation family for “small deviations”, i.e., for |6, — 8 = o(n™*). Beyond
this point, Py.(C) deviates exponentially from Py .(C) as indicated, and it is
instructive to plot the function Ag (). Values of Ag,(8) > O indicate “supernor-
mal’’ behavior (faster convergence to zero), while Ag(6) < 0 is “subnormal”.
The function Ay, () may also be expressed as

B (8) = 1(60,0) — 3J(06s,0),
where I is the Kullback-Liebler information
I(80, 0) = Eg,(log (dPe,/dPy)(X))
and
J (80, 0) = Vare, (log (dPs,/dPs)(X)).

(This is the notation used in [8].)

In addition to its value as a computational device, Theorem 5 offers interesting
theoretical insights into the structure of exponential families. We offer two
immediate corollaries of Theorem b5:

4 Going back to Theorem 2, we notice that for the normal agreeing family the approxi-

mation given for Py.(C) is exact, that is 6.(1) = 0, so that all the error in this formula
comes from estimating the numerator Py,.(C) in Theorem 5.
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CoroLLARY 1. Let K be a bounded convex set, and let A(K, 1) be the class of
sets defined in Note 1 to Theorem 2. Then if both Py and Py are non-lattice and agree
at 0o, the conditional probabilities satisfy

Pyn(C|K)/Pon(C|K) =1+ o0n(1)

uniformly for C in A(K, 1) and 6 in any bounded subset of ® n ®.
COROLLARY 2. Suppose that Pg, has finite mean and covariance, and let P,
be the agreeing normal family to Py at 6o. Then if we define

6 =00+ (6 — 60)[21(6,0)/(0 — 60)'e(6 — 60)]},
where I(6o, 60) = Eo, log (dPs,/dPs)(X),
log Py..(C)/log P5 .(C) = 1 + 0.(1)

uniformly as in Theorem 5, in both the ngn-lattice and 1-lattice cases.
(Note that (6 — 60)'Z0(6 — 60) = 2I(60,0).)

4. On the Chernoff bound and a theorem of Hoeffding. We present two ex-
amples illustrating the use of the preceding theorems to obtain accurate approxi-
mations for the power function of a test of hypothesis. (A third, somewhat differ-
ent result is given in Section 5.)

First let us consider testing a simple hypothesis versus a simple alternative,
say Hy : P = Pyvs. H, : P = P;, where we assume that P, and P; are absolutely
continuous with respect to each other.

In a well-known paper [6] Chernoff has shown that there exists a positive
number, which we will call I, , with the following property: let &, and & = 1 — &
be the a priori probabilities for Hyand H; ,0 < & < 1. Then if a, and 3, represent
the probabilities of errors of the first and second kinds respectively based on n
independent observations, the Bayes risk satisfies

limy, -« (log (foan + &8:) 17" = —1I,.

To apply our results to this problem, we embed P, and P; in an exponential
family in the usual way: that is, we consider the real-valued sufficientstatistic
X = log (dP;/dP¢(Y)), and define the one-parameter exponential family

dPs(z) = € ¥? dPy(z)

with parameter space ® = [0, 1]. Here 6 = 0 (6 = 1) corresponds to Py(P1), and
¢(0) = ¢(1) = 0.

Let 6, be the point interior to ® where the convex function ¥(6) achieves its
minimum. It is easy to show that 7(6,,0) = I(6;,1) = I (say), where I(-, -) is
the Kullback-Liebler information defined previously. Note that EeX = dy(0)/do
is zero at 0 = 6.

The Bayes test versus a prior: probabilities & and & on Ho and H; rejects Hy for
> *X; > logk/t, or, normalizing under 6;, for Y.¢ X;/n' > t/n where
t = log&/k.
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Let us consider the case where X is non-lattice. To find 8, we apply Theorem 2
as in Note 3, with § = 1, 6, = 6, and C which we can take to be {(t — 2logn')/
n <z < t/n}} by Note 2. In this case it is trivial to approximate the integral
[ev(COBe® dy by [1 4+ 0.(1)]/(1 — 6)(2mnas’)?, (6" = Var, X =
dy(6,)/dé"), and noting that h(8) = ¢/n' for 6 = 1 we obtain

Br = exp (=nl + (1= 62)8) (1 — 6)7"(2mnoa") (L + 0a(1))
with the corresponding result for a, being
on = exp (—nl — 8at) 6,7 (2mno’) (1 — 0,(1)).
Thus Ba/e. = 6:(1 — 8;) &t (1 + 0,(1)), and the Bayes risk is given by
b + BB = &850 (1 — 6)7¢ ™ (2mmes) (1 4 0a(1))

uniformly for & bounded away from 0 and 1.° We recognize this as a sharpened
version of Chernoff’s theorem, so that I must equal I, .

For our second application of Theorems 2 and 3, we return to the case of the
exponential family dPs(z) = ¢"*¥® du(x), and consider the problem of testing
H,:6 = 6, versus the general alternative H, : 8 ¢ @ — {6,}, where 6, is a point
interior to ©. As before we indicate the expectation under 8 by A(8) = EyX, and
define the set of all possible expectations as A,

A= {\0):0¢0).

Given observations X; = #;, Xy = 25, - -+ , X, = z,, it is simple to show that
the maximum likelihood estimate of 0, (1, - -+, x,), is given by 6 : \(8) =
& = D 7 xi/n, provided that & ¢ A. (If not, § is a boundary point of ©.) More
precisely,

— ) .
dPO(xlyx2)“'7xn) =€ e dPa(xlyx27”.)x">>

under the condition % ¢ A, where I(-, -) is once again the Kullback-Liebler in-
formation. We see that the likelihood ratio tests of Ho vs. H; are of the form
“reject Hoford e Rp, where R, = {6 : I(0,6,) > D}”.

Hoeffding [12] has shown that in the case of the d-dimensional multinomial
distribution (d + 1 possible disjoint outcomes),

Py n(Rp) = n PP D).

(Here we are abusing our notation slightly by writing Py, .(Rs) for
Probg, (4(X1,--+,Xa.) € Rp).) For a general exponential family we now give the
analogue of Hoeffding’s theorem:

THEOREM 6. For a non-lattice exponential family, let 6, be a point in the interior
of the parameter space ©, let Rp = {6 : 1(0,0:) > D},andletD = sup {D : ® — R,
is contained in the interior of ®}. Then

Pol,n(RD) = n(d—Z)/Ze—nDkD[l + On(l)]

8 This result does not seem to appear in the literature, but it can be obtained easily from
results in both [2] and [15].
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uniformly in D for D in any range e £ D < D — ¢, ¢ > 0, where kp is a constant
not depending on n. (In the 1-lattice case, the 1 + 0,(1) factor must be replaced by
e D the uniformity holding as indicated.)

ProoF. We present the proof only in outline form: it is more convenient to
work in the A space, so let Sp be the mapping of R, under the transformation
N = N(0). It is not difficult to show that this mapping is one to one, continuous,
and increasing in the sense that for every 6 = 6 in O, (6 — 6) (A (6;)
— N(68:)) > 0. Moreover, for0 < D < D, theset Ap = A — S isbounded and
convex, with an analytic boundary, and if A\(6y) is a point on the boundary of
Ap,ie. I(6,6:) = D, then the outward-pointing normal vector to A » through
N(8o) is parallel to 8, — 6: . [Note: it is incorrectly stated in [5] that A p is convex
for all D.]

Let U be the unit sphere in the A space, centered at A\(6;), and for a boundary
point N(6) of Ap, let wo be the point on U given by we = (N(6) — N61))/
IN(80) — N(81)]. Let V,.(wo) be those points on U which are within n~** units
of wy. If (V) represents ordinary Lebesgue measure on the surface U, then
d(Valwo)) = kan 91 + 0,(1)] for some constant %; .

Define B.(wo) as the cone of vectors originating at N(6;) and passing through
Vaulwo), and let Cn(wy) = Bn(ws) N Sp. Theorem 2 is now used—in the non-
lattice case—to show that there exists a constant k(wp) such that

Py n(Cal(w0)) = k(wo)n™ T P11 + 0,(1)],
so that the ratio 7(wo) = [P, n(Cn(w0))]/¢(Valwo)) is given by
r(wo) = k(wo)ly n“ 22 ™P[1 4 0,(1)].

Finally, we note that the 0,(1) term can be made uniform over the choice of
wy on U (a compactness argument yields this easily, upon examination of the
proof of Lemma 1). Since Py, »(Rb) = [v 7(wo) de(wo), the theorem is verified in
the non-lattice case, with kp = f v k(wo)/k1dp(wp). A similar argument using
Theorem 3 gives the result in the 1-lattice case.

6. Asymptotic power and optimality of the likelihood ratio test at a fixed
significance level. In this section we consider testing the null hypothesis Ho : 6 =
6o versus the general alternative H; : ¢ © — {6} at a fixed significance level «,
0 < a < 1, using the likelihood ratio test “reject H, for I(8, ) > D,” as de-
seribed in Section 4. Here 6, will be taken in the interior of ©.

In order to achieve a fixed level o, the constants D, must approach zero at the
asymptotic rate x4’ () /2n, where x4*(a) is the upper a-point of the x’-distribu-
tion with d degrees of freedom. This follows from the Taylor expansion I(4, 6,) =
L(E — M) 20 (& — No) 4+ O(||& — No||*) holding for Z in an open neighborhood
R of N\o in the A space (where as previously we have written N = N(6,) and
2o = 2(6)). Transforming to the normalized statistic z = n}(z — o), as before,
the acceptance regions C, for the level « likelihood ratio test will converge to a
limiting region C' which is the ellipsoid

C={z:2'2" £ x(a)}.
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We shall first give an optimality property of the region C which is the “large
deviations’’ equivalent of a well known result of Wald [19]. There is no real loss of
generality in assuming that 6, = 0, Ao = 0, and =y = I, so that C becomes the
sphere ||z| S xa(a) = (xa'(a))".

Let B be any other fixed, (for all ), bounded, convex, asymptotically level o
test of Hy,ie., P(XeB) =1 — afor X ~ 9(0, I). By Theorem 4 we have

n log Po.n(B)/Pea(C) = [|6]](ha(8) — xa(@)) + O([lognln™)
uniformly for 6 in any bounded subset of @, where
hs(8) = sup..s 6'z/||6].

If the d-dimensional sphere Sq = {6: ||6]| = r} is contained in O, a natural
measure of how poorly the test with acceptance region B behaves on S; as a
whole, compared with the behavior of the asymptotic likelihood ratio region C, is
given by

Jsi10g (Ps.n(B)/Po.a(C)) da(6),

¢4(0) representing the uniform probability distribution on the surface S;.
TurEOREM 7. Under the conditions given above,

limgaw 77 [ 5,108 (Pon(B)/Ps.n(C)) dga(8) = 0,

with equality if and only of B = C a.e.

Proor. The limit equals ||8]| [ s, [ha(8) — xa(a)] dea(8), so it is equivalent to
verify the following statement: among all sets with 91(0, I) probability 1 — «,
the sphere C minimizes the integral [ s, hs(6) da(6). This statement is obviously
true for d = 1 (¢ is the distribution putting probability mass § on the points r
and —r). For d > 1, note that

[0 h5(0) dpa(8) = [, [f saty koo (8") da—1(8")] da(0),

where Sz(8) and B(6) are the projections of S; and B respectively into the d — 1
dimensional hyperplane orthogonal to 8. The theorem follows by induction on d.
An accurate large sample expression for the power of the level « likelihood ratio
test is given in the next theorem (better formulae for calculating the power in
moderate samples are discussed in Section 6).
TaEOREM 8. The power of the level a likelihood ratio test of Ho: 0 = 6y vs.
H; : 6 5 6y, 8o interior to ©, is given by

Po,n(Cn)
= exp {—nl(6, 0) + [x(2)(8 — 60)'Z0(0 — 60)]'} n~ @™ [¢2P], where

the factor e

subset of O.

Proor. Let us again assume that we have transformed the problem so that
6o = 0, N = 0, and Zo = I. The displayed expression for Py ,(C,) is easily seen
to be correct for Py,(C), (via Theorem 4), where C is the limiting set

s bounded away from 0 and « uniformly for 6 in any bounded
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llz||* £ x4’(a). It remains to show that Py .(C,)/Ps.(C) = ¢”®, which follows
immediately from the following lemma:
LemMA. There extists a constant © > 0 such that

{2l £ xa"(e) = m7} < Cu € {[fa]]" S x'(a) + ™

for all sufficiently large n.
Proor. Using our previous notation for the Taylor expansion of I(8, 6y), we
have

Ca = {2l + n70(jelf) = 1,

where in terms of the original constants D, , I, = 2nD, . Let xa’(a) = [, and note
that there exists a positive constant 71, such that

1

lall* < U = mn™) < {Je)* + n70(e]) = 1} < {Jlel® £ 0 + 17

for I’ in a bounded interval containing I.
Esseen [10] has shown that there exists a constant 7, > 0 such that

1Po, (|1 228 Xo/mi P £ 1) — (1 — a(l)] < 7%

uniformly for the I’ as above, where a(l') is the probability that a xs* random
variable exceeds I'. For any positive number j we have

Poy(2.1(8, 00) < 1+ (jro + m)n ™)
Peo(llZf )(1'/’)’1,%”2 <1+ j7.2n—%)

21 —a(l+jmm™®) —mm M 21 -«

v

for j sufﬁcierlltly large. Thus I, < | + (jr» + =)n? and likewise I, = [ —
(32 + m)n°. Going back to the set inequalities for a second time, we see that
the lemma holds with 7 = jr, + 27;.

6. Numerical approximation of power functions. Suppose we wish to evalu-
ate the power at the point 6 # 6, of the level « likelihood ratio test of Hy: 6 = 6,
versus H; : 0 # 6, based on n independent observations from our exponential
family Py. In the notation of Section 5, we wish to find the ‘“error rate”
Py.(C,). Unless n is enormous, the approximation given in Theorem 8 will
not yield useful numerical results since that theorem is based on very large
sample considerations.

Much more accurate approximations, which are useful in samples as small as
n = 10, can be obtained via the application of Theorem 5 and the remarks follow-
ing it in Section 3. In the notation of that section, we consider only the case
where Py, has finite mean and covariance, \o and 2, respectively, and let P be
the agreeing normal family Py ~ 9U(\o + Z¢(8 — 6), Zo). Our approximation
formula is then

(3) Py a(Cr) ~ e 20O Py . (Ch),
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where Py,(C,) is the probability that a 9t(n'=(6 — 6,), Zo) random variable
falls into C, , and as before,

Do (0) = ¢(0) — {¥(6o) + N'(6 — 60) + 2(6 — 60)'=0(6 — 60)}.

From the proof of Theorem 5 we know that there is only one source of error in
(3), that which arises from replacing the exact distribution of (D 7 X; — nho)n ™
under Hy , Peo ", by its limiting distribution » ~ 91(0, Z¢) in the integral
fo Poyn(Cn v)ne w Ydy.

Two contradictory tendencies are at work in this approximation: when 7 is
small, Po » may deviate considerably from ». On the other hand the integrating
kernel nle ™" is “diffuse” for small 7, so that our estimate is averaged over a
large set, and we would expect our error ratio to be not much worse than that for
the global central limit theorem, i.e., of the same order of magnitude as
Py, n(Cr)/v(Cr). As n grows larger, Py, . rapidly approaches », but on the other
hand n'¢ ™" approaches a delta function at the origin. As we have seen, the ulti-
mate error ratio depends on the local central limit theorem.

Of course the approximation (3) is of no use to us if we cannot evaluate the
normal probability Py .(C,).In general this is a difficult task, but if we are willing
to substitute the limiting set C = {z: 2’2, 'z < x4’'(a)} for C, we can simply
read Py ,.(C) out of a table of the non-central x* distribution. Let us denote by
E .[8"] the non-central x* probability

Eq,4[6"] = Prob (|Y]* £ xd'())

for a d-dimensional normal random vector ¥ ~ 9U(x, I), ||x|* = ¢°. Formula (3)
now becomes

(4) Py n(Cr) =~ e ™ OE, 4[n(8 — 60)'Z0(8 — 65)].

In addition to the ‘“probability error” discussed above, (4) involves a “‘set
error’’ arising from the replacement of C, by C. In general there does not seem to
be a simple correction for set error (though see [8] for the case d = 1). On the
other hand, since it is customary to use the approximate acceptance region C
instead of the more complicated set C,. when actually performing the likelihood
ratio test, what we have called set error may very well be quite appropriate to the
approximation procedure.

“Probability error,” on the other hand, can impair or destroy the accuracy of
(4), partlcularly for large values of ||§ — Ooll An obvious remedy for probablhty
error is to use an improved estimate of Py, » in the integral fo Py, n(Cn ont e dy.
Instead of » ~ 91(0, =), we might, for instance, modify » by the next term in the
Cramér expansion of Py, » . Such a modification [3] is computationally impractical
in dimensions higher than 1 since it involves the relation of the entire third order
central moment matrix to Z.

The nature of the integral we are trying to estimate suggests a simpler ap-
proximation. Since the variable y equals (8 — 6;)'(2o — ) in the original deri-
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vation of Theorem 2, where (6 — 65) 'z, = SUpzec, (8 — 6) 'z, the integrating
kernel nle ™" varies entirely along the direction & — 6, in the = space. Therefore
we may expect good results if we use Cramér type corrections to » only along the
direction 6 — 6, . By first transforming to the case Zo = I, it is simple to carry out
this calculation using the familiar expansions [7] for the central limit theorem in
one dimension. We obtain the improved approximation formula

(5) Py, n(Ca) =~ € "4V E1,o(8") + 3yn EZa(8")]
where, as before,
& = n(6 — 60)"Zo(8 — 60),
v is the skewness coefficient
¥ = Eo[(8 — 60)' (X — N)I'/[(6 — 60)"Z0(6 — 60)""
and, using superscripts to denote components,
Era(8) = [jerrexto exp (=3P — )" + 228 (a)%)
(@) = 32V)(2r) ™ de® dz® - - - dx®.

A table of Ej«(8%) for « = .05 is given below. The function Es (") can be ob-
tained from the Pearson and Hartley non-central F tables [17] by setting v = d,
» = ,and ¢ = (8°/(d + 1))’ All the other quantities involved in (5) can be
calculated by differentiating the function ¢: let
¥o(t) = ¥(6 + t(6 — o)),
and let ¢4(¢), ¥o(t) and ¥o(¢) indicate the first three derivatives of ¥o(¢) with
respect to the real parameter ¢{. Then we have
$0(0) = (6 — 60)Na,  ¥s(0) = (6 — 60)'Ze(6 — 60),
and
;;0(0) = Eg,[(6 — 60)' (X — No)I*.

The efficacy of (4) and (5) in a univariate situation is illustrated by the follow-
ing computations for the case dPs(z) = ¢ * dz, x = 0, with parameter space
® = (0, »). Taking 6y = 1, alternative 6 = .6, and o = .05, we obtain:

Sample size n 10 20 30 50
actual value Py, .(C,) .465 .241 .120 .0270
approximation (4) .518 .264 .130 .0287
approximation (5) .468 .242 1120 .0270

(Here the set C, is actually the acceptance region for the level o one-sided test
of 8 = 6, versus 0 < 6, . Moreover, the effect of ‘‘set error” has been removed by
calculating the E and E* terms for the actual region C, instead of for C.)
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We now discuss, briefly and heuristically, the problem of testing a composite
null hypothesis Hy : 6 ¢ O, versus the general alternative H; : 6 ¢ ® — 0O, , where
o is a dy dimensional subspace of 0, dy < d, or more generally a dy dimensional
differentiable manifold.

For a point 8¢® — ©,, we would like to evaluate Py(X ¢ R,), where
X = >°7 X./n and R, is the acceptance set in the & space of the level « likelihood
ratio test of Ho versus H; . A general method or procedure would be to partition
the Z space, or equivalently the space A, into small blocks K; of diameter approxi-
mately 1/n*, and for each block choose a point fy; such that A(6q;) € K; . The prob-
ability Py(Z ¢ R, n K;) is then approximated by re-normalizing to the random
variable (2% X: — M(6q;))/n* and applying one of the previous theorems, the
total probability Ps(X & R.) being obtained by summation over the blocks K;
(ef. [8]).

Asymptotically the dominant factor in the expression for Py(X & R, n K;) will
be ¢ ™ ®?  Suppose now that there exists a unique point g+ in @, which is
“nearest’’ to 6 in the Kullback-Liebler distance,

I(6o+ , 0) = infoee, 1(60, 0).

It is seen that the shape of R, near N(6¢+) will determine the asymptotic behavior
of Po(X ¢ R,). As n grows large this shape approaches that of R, the acceptance
region for Hos : ‘0 — 6o exists in a given dy dimensional subspace,” under the
agreeing normal family at ¢ .

This reasoning suggests the following approximation for the power of the
level a likelihood ratio test:

(6) PG(X e R”) ~ e-—nAgOa(O)‘Ed1 ,a(62),

where di = d — do and 8 = n(6 — 0¢+)'Z(00+) (8 — 6o+). Taking skewness into
account as in the case of the simple null hypothesis yields the estimate

(7) Py(X e R.) & € ™" O[By, o(8") + tyn 'E7 2 (8D)],
where
v = Eopel(8 — 000) (X — Not)IP/[(6 — 60)"Z0r (6 — 600)1%.

Note. We are assuming here that 6o+ is in the interior of ©. Then the gradient
relations dGO'A,,OI (80, 6) = 0holding for a set of infinitesimal vectors df, locally
spanning ®o near 6, must be satisfied by the point 8. Using A, (6, 8) =
=(60) (6o — 6) and d\(8) = =(8) df, this becomes d\o' (6o — 8) = O for a set of
infinitesimal vectors locally spanning Ao, the image of ©¢, near Ny = A (6,). In
certain cases these equations have a trivial solution:

LemMA. Suppose that Hy s 0g, = 0, where 8 = (6q), 0))’, 0y being the first
dy coordinates of 8. Then if the cross-covariance matrixz Z:2(0) between 0ay and 0 s
identically zero for 6 ¢ ©q , the gradient relations will have as their unique solution
Oor = (0, 0(2))If07' any 0ec0,

An example which allows us to easily assess the accuracy of (6) is the familiar
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student’s ¢ problem. We have n independent observations from a univariate
normal distribution with unknown mean and variance, X; ~ 9(u, ¢°), and we
wish to test Ho : p = 0. Applying the theory to the relevant two parameter ex-
ponential family yields the approximate error rate P, &~ Eyo((n/c)*). That is,
instead of obtaining the actual non-central F probability Fy ,_1..(8"), we get the
non-central x* probability F .«(5"). If we take u/c = %, the numerical approxi-
mation is quite good:

n 16 32 48 64
Actual error probability .53 .22 .079 .024
Approximation (6) .48 .19 .066 .020

(In this example, ¥ = 0 so approximations (6) and (7) are identical.)

It may be shown that if the problem of testing H, is invariant under a group
of transformations, then approximations (6) and (7) will depend only on the
maximal invariant in the parameter space, e.g. (u/c)” in the case above.

TABLE OF E;, (8®), « = .05

d

1 2 3 4 5 6 7 8 9 10

|

—.4035| —.4164| —.2239| —.1243| —.0704| —0.403| —.0233|—.0134|— .0077|— .0044
—.6207| —.5352| —.1977| —.0447| .0202] .0435| .0475] .0435 .0367| .0295
—.5956| —.2994| .1267| .2866| .3177| .2930| .2481| .2004| .1570] .1205
—.4174] .0819] .5539| .7121 .7055|  .6261 .5225| 4199 .3290| .2530
—.2215 .3417| .8115] .9842| .9759| .8778|  .7448| .6085 .4842| .3779
—.0891| .3751 7783 .9628)  .9868]  .9171 .8017| .6729| .5486| .4375
—.0266) .2631 5474 L7122 .7667|  .7445| 6765 .5875 .4939| .4049
.0055| .1334] .2934| .4084| .4665( .4771) .4536] .4101] .3572] .3024
—.0007| .0510| .1218| .1833| .2239| .2427]  .2427| .2295| .2081| .1827
.0150, .0394| .0647| .0850] .0981 .1037) .1030] .0976| .0892
.0034) .0100{ .0180| .0255  .0315  .0353| .0370| .0367} .0350
.0006] .0020( .0039{ .0061) .0080| .0096/ .0106{ .0111
.0003| .0007| .0011{ .0016| .0021| .0024| .0027
.0002] .0003| .0004/ .0004; .0005

VOO GO R W WO
SCLMOUO MO LO BT O ;O W
|

We conclude with an application to classical multivariate analysis: testing for
independence between the components of a normally distributed vector. Let
Yy, Ya, -+, Y. be independent 97(0, 6™) vectors in p dimensional space,
n = p, where 6 is a positive definite matrix and thus has p(p 4 1)/2 = d inde-
pendent components. The Wishart matrix S = > 1. Y,V is a sufficient statistic,
and a change of variables to X;; = —S;;/(1 + 8:;) yields an exponential family
of our form,

dPy(z) = exp (X i<; 0swi; + dnlog 0]) du(x).
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(Note that we can think of having either n independent observations Y.Y/, or
one observation of S. The approximation theory is not affected by such groupings,
and in this case we prefer the latter because of the known form of the Wishart
distribution for n = p.)

Let us divide the components of the Y vectors into two classes, say thefirst
p1 components in one class and the last p, = p — p: components in the other.
We partition the matrix 6 in a corresponding way,

Ou O
9 =
(921 022) !

where 6 = 62, and we wish to test the independence hypothesis Hy : 65, = 0.
To compute the approximate power of the level a likelihood ratio test [1],

Chapter 9, we first note that the conditions of the lemma are satisfied. Then for

any 6 ¢ Hy, 0 positive definite, the ‘“nearest point” in the null hypothesis is

simply
. 011 0
or = (0 022) )

(Here it is not possible for the minimum of I(6,, 6) to occur at the boundary of
the © space—it is easily seen that I(6,, 6) approaches infinity as 6, goes to the
boundary.)

The computations can now be completed in a straightforward manner, either by

differentiating
(011 teu)
wﬂ 022

or computing the required quantities directly from the properties of the Wishart
distribution. Applying (6), the approximate error probability is found to be

P, =~ exp (—inflog [I — D| 4 %tr D)) Eq, «(8° = ntr D),

Ys(t) = —3n log

)

where D = 0162361677 , and d; = pip.. We note that this expression depends
only on the eigenvalues of D, that is on the squares of the canonical correlations,
which are the maximal invariant in this problem.
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