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MULTIVARIATE TWO SAMPLE TESTS WITH DICHOTOMOUS AND
CONTINUOUS VARIABLES. I. THE LOCATION MODEL!

By A. A. Arrri aAnD R. M. ELASHOFF?

Unaversity of California at Los Angeles and Harvard University

1. Introduction and definition of the model. In this paper we study a test-
ing problem that arises with vector random variables having both dichotomous
and continuous components. We consider a probability model for the dichoto-
mous and continuous variables called the location model (see Olkin and Tate
(1961)). Alternative models will be defined in later work. In the location model,
the set of dichotomous random variables is represented by a random variable
X with the multinomial distribution m(x; p) = [[4— p;? where x = (1, 2.,
.-+, z4)’, z;is one or zero, > oy z; =1, p; = Pr(z;=1), D> tup; =1 and

p= (p1, p2, -, pa). We denote the continuous variables by y = y1, ¥2,
-+, 4.), and assume that the conditional density of y given x is multinormal
with mean vector depending upon x and denoted by w; = (u1j, maj, = » Mes)

when z; = 1, and covariance matrix = independent of x. The unconditional
distribution of y, then, is a mixture of multinormal distributions. For brevity,
we call the dichotomous and continuous variables the response variables.

Our problem is to test the null hypothesis, known as the location hypothesis,
that the parameters (p, w1, - - - , wa) are equal in two different populations. This
testing program grew out of the authors’ consulting experience with medical in-
vestigators. The following are three examples on which the methods described
in this paper were used: (1) Greenblatt et al. (1962) compared several treatments
for depression using for the response variables total scores on questionnaires
designed to measure intensity of depression, and an overall assessment of psy-
chiatric improvement (yes or no); (2) Elashoff and his colleagues at the Kaiser
Multiphasic Screening Program obtained significant differences between non-
diabetics and drug diabetics on the vector variable composed of blood pressure,
cardiac enlargement (yes or no), serum cholesterol and used this and other results
to develop a diabetic profile in the upper age groups; (3) Shubin and Weil (1967)
successfully discriminated between shock patients with favorable prognosis and
those with unfavorable prognosis using such variables as cardiac output, arterial
blood pressure and cyanosis (yes or no). In all three examples the distributional
assumption of the location model regarding y was consistent with the data. The

Received 8 July 1966; revised 16 July 1968.

1 This work has been facilitated by grants from the Ford Foundation and from the
National Science Foundation NSF G-13040, a contract with the Office of Naval Research
Nonr 1866(37), a Final Year Fellowship from the Graduate School of Arts and Sciences,
Harvard University, by the Clinical Research Center of the Massachusetts Mental Health
Center, Public Health Grant GM-10525, University of California, Berkeley, and by
U.S.P.H.S.-FR-00122-04.

2 Now at University of California, San Francisco Medical Center.

290

Y‘Jg
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Mathematical Statistics. RIKOIRS ®

Www.jstor.org



MULTIVARIATE TWO SAMPLE TESTS 291

behavior of systolic blood pressure and cardiac enlargement is typical. The
presence or absence of cardiac enlargement separates individuals into two sub-
populations. When the distributions of systolic blood pressure in these sub-
populations are plotted side by side, we find that individuals with cardiac en-
largement generally have a higher mean systolic blood pressure than those with
no cardiac enlargement. The two distributions are approximately symmetrical
and have approximately the same variance. After the two distributions are
combined, we find a bimodal curve with a long right tail.

In subsequent sections we discuss related work on such testing problems, and
then derive an information-theoretic test and a likelihood ratio test for location
hypotheses. We derive the small sample distribution theory for these tests and
make some brief comparisons between them.

2. Related work. A large literature exists for mixed continuous and dichoto-
mous variable problems for d = 2, ¢ = 1, but only a few papers consider the
problem for ¢ larger than one or d larger than two. Moustafa (1957) studies a
multifactor experiment where the response variables follow the distribution
specified in Section 1, except that X depends upon x in an arbitrary way. He
constructs likelihood ratio tests for location hypotheses and for equality of
covariance matrices using, exclusively, the asymptotic theory of these tests that
Ogawa, Moustafa and Roy (1957) show to be valid in this situation. Roy and
Bhapkar (1959) derive asymptotically nonparametric tests for several location
hypotheses by categorizing the continuous variables and representing the result-
ing variables by the product multinomial. Such tests are consistent against the
location hypotheses considered in this paper and utilize the limiting x? approxi-
mation to the cumulative distribution function of the test criteria.

Olkin and Tate (1961) have attacked another type of problem with dichoto-
mous and continuous variables. They derive a test for independence between x
and y by use of canonical correlation theory. Das Gupta (1960) has also studied
tests for independence with d arbitrary and has given sound advice on some
practical aspects of such tests. Hannan and Tate (1965) consider multivariate
biserial problems.

3. Tests for location-hypotheses. We wish to test the null hypothesis
(3.1) Ho: (0%, 4") = 0%, v,”), =124,
against the alternative hypothesis
(32) Hy: (0%, w®) # (0%, w®)  for some j,

when the location model holds. We discuss the use of Hotelling’s T* for testing
(3.1) against (3.2) with mixed dichotomous and continuous variables. Then in
Sections 4 and 5 we derive an information-theoretic test and a likelihood ratio
test for this location hypothesis and obtain the exact distributions of the test
statistics.
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Let
n; = sample size from population ¢,7 = 1, 2;

r; = the number of observations from population ¢ with z;=1;

£ = (1@, P, Y
and
(3.3) 7P =Py B = HO, RSP, -, w .
Define
(34) 7, = sample mean of y based on observations with z;

= 1 from population ¢;

(3.5) 79 = > 7%y,? = sample mean of y for population <.
We write T” as
(3.6) P = nma(ng +me) (2P — 2®)87 (2% —2?)
where

—(i)
. g S.: S
y Sllz Sllll

S.s, Say, Sy are the covariances matrices of x* = (y, 25, - -, %ay), X" and
y, and y respectively. ‘
The following theorem gives the null and nonnull distribution of T%:
TuarOREM 3.1. Suppose the location model obtains. Then, the exact distribution of
T in (3.6) depends upon nuisance parameters. Furthermore, if ny, na— o such
that i/ (ny + ma) = N > 0, and p;*® > 0, all 5 and 7, then the limiting nonnull
distribution of T when

(3.7) pP =p® =p= (1,02, -+, 1),
Z?==1 Piw‘(l) = Z?—l Pn.lfm

is a central x* with ¢ + d — 1 degrees of freedom.
ProoF. As n; — ©, S converges with probability one to
<2uzx,,>“
Eﬂzzﬂll
which always exists for our model. A typical element in Z,, , say o;» , is equal to
pilpin(1 — Pi) — Doiss iopi]. Also, the z? is the sample mean vector of inde-
pendent and identically distributed vector random variables. Hence, by the
multivariate central limit theorem given in Anderson (1958), page 74, the asymp-
totic distribution of 7 is a noncentral x* with ¢ 4+ d — 1 degrees of freedom and
noncentrality parameter (g'z“g - nne(ny + ng)”", where the first (d — 1)
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components of w are (p;” — p;®), 7=1,2, ---, d — 1, and the remaining
¢ components are given by
(3.8) [225-1 0P8 — 2251 2 %w ).

Thus, if condition (3.7) holds, T” is distributed asymptotically as central x* with
¢ + d — 1 degrees of freedom. But, this is also the null asymptotic distribution of
T?. Hence, T” is not a consistent test of H, vs. Hy . It is clear that the exact dis-
tribution of T% depends upon the unknown parameters.

4. An information-theoretic test for location hypothesis. We derive a test of
the null hypothesis (3.1) against the alternative hypothesis (3.2) using an in-
formation-theoretic approach. The information-theoretic method is based upon a
particular estimate of the directed divergence (see Kullback (1959)).

(4.1) I(1,0) = [, Inlfi(z; 8)/fo(z; 0)] - fu(2; 8) dz

between the null-and-alternative-hypothesis distributions of z, fo(z; 6) and
fi(z; 0) respectively. Unbiased, sufficient estimators are substituted for the
parameters 0 in (4.1) and the derived expression becomes the test statistic. For
our model such estimators always exist. The set of unbiased, sufficient statistics
is given by the estimators defined in (3.3) and (3.4) and by

(4.2) S: = (Siw); u,v=1,2, --- | ¢ denote subscripts for the
continuous variables

Siww = D_te1 Dtei (Yiur — P50 ) (Wit — G52 ) (ni — gi) ™

wherej = 1,2, - - - , g; denote those 7 such that 7; = 1, .., denotes the sum-
mation over all individuals with z; = 1, y:.: denotes the observations on the Ith
individual on variable u in population ¢, 7{% is the uth component of (3.4).

NotEe. It might not be possible to estimate all the vectors yj(i) in a given sam-
ple, i.e., z; = 0 for all individuals [ in the sample from population ¢. This situa-
tion does occur frequently in problems where d is large and the n; are relatively
small. One effect is the non-testability of the null hypothesis u,® .

We substitute these statistics for the parameters in the expression (4.1) com-
puted under (3.1) and (3.2), and derive the information test statistic

I=1(1,0) = 25~ rVr,22;)™
(4.3) (30 - 12)sT Y - 7.0) + AEP)
where both 7, and r;? = 1 only for j=1,2, ---, ¢

= A(r®) if at least one of r,, 7']’(2) =0 forall j
where
Ax®) = 204 24 (n) In )
ianinn — X (5 +0,2) In (n® +1,%)

I



294 A. A. AFIFI AND R. M. ELASHOFF

+ (ny 4+ n2) In (ng 4+ ne)
ti =" + 1,2,
and
S = (sw); u-v=12 ... ¢
Suv = Di=1 (i = g:)Siun/ (M1 + 12 — g1 — o).

We study the distribution theory of the test statistic in two parts. First, we
assume that d = 2 and ¢ is arbitrary. Second, we suppose that ¢ > 1 and d > 2.
This breakdown is required to facilitate the use of these statistics.

To proceed with the distribution theory of I when d = 2, we use this notation:
r® = number of observation with z; = 1 in population 7, ¢ = r® + »®. Let
f(r®| t) denote the general term in the hypergeometric distribution with param-
eterp = p(1 — p®)/(1 — p®)p®. Also, let dFy . denote the density and
differential element of a noncentral F random variable with degrees of freedom k
and h and noncentrality parameter r, and let dU® denote the density and
differential element for the sum of the latent roots of the determinantal equation

|T(1)T(2)t_1'(}-’1(1) _ yl(Z))(yl(l) _ 3-,1(2) )'
+ (n — 1) (e — 1) (g + 12 — )T(FY — 2.2) 3" — 7.2) — 68| =0,

(given by Hotelling (1951) when the null hypothesis holds; otherwise, no ex-
plicit density has been derived). We summarize our results in Theorem 4.1.
TrEOREM 4.1. Suppose that the location model obtains and that d = 2. Then,
the cumulative distribution of I conditional upon t = (r“) + r®), when S exists
and p®, p(z) > 0, takes the following forms:
(a) If

(44) 2=2t=m=n—1; or 2=m<t<n,
hen
Pr(120b[t) =70 = 0]¢t) [5o-a0)udFe,rinpron
(4.5) + 25D f(r1| 1) [Fomaewy dUP
+ 7 = t8) [Fo-awia AF e, ayimg—en
where M = (ny + ny — 3)c/(ny + ny — ¢ — 2).

(b) If

(4.6) t = min (n1,n2) = n; = 2; n < ny,

then

(4.7) Pr(Izb[t) =f(r® = 08) [So—s)/n AF e,y ny—o2y

+ 20Dt frO18) JTomacen dUP + 10 = m| )52
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where

v
S

& =1 if AE™)
= 0 otherwise.
The situation for 2 < ny < t = ny follows from (4.6) very easily.
(¢) If
(4.8) 2
then

lIA
lIA

nm=n <t t < n+ ng,
Pr(Izb|t) =70 =t —m) [30-scudFe ning—o2

(4-9) + Z:(lsit—n2+l f;o(b—A(r(l))) dU(Z)

+ f(nl | t) f;o(b-—A(nl))/M dFC,n1+n2—c—2 .

(d) 1f
(4.10) t=n1 4+ ny; 2 =4,
then
(4.11) Pr(I2b[t) = [Fo-amniae AFe,nytnyoms
where M* = (ny + ne — 4)c/(ny + ne — ¢ — 3). If, in place of (4.10) we have
(4.12) t=mn = mne; 2=t
then

(413) Pr(Izb|t) =2(r" =0][t)-8*“
+ 2205 S0P 1) [Foacary dUP.

Other combinations of t, n;, ny may be found by a relabeling of populations 1
and 2.
Proor. We outline the proof of (4.5). Define the following statistics:

(414) T =730 = 5?73 - 7

(415) T3 = (ny — r)(na — 1)1 + 12 — )7 FERY — 7:2)STFD — 7:27);
(416) T = T + Ty

Then I = 3Ty 4+ A (™). Since the distribution functions of T\%, Ts* and T are

known, we determine the Pr (I > b) by summing the probabilities for the three
events

(1) If0 < r < ¢, then, I = bif and only if T5* = 2(b — A(r®));

(2) If ¥® = 0, then I = b if and only if T2* = 2(b — A(0));

(3) If ' = ¢, then I = bif and only if T;® = 2(b — A(t)).
The probability that (3) obtains, for example, is given by the last term on the
right hand side of (4.5).

|
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1
® and

The conditions on 7, , ns , and ¢ define the set of integers over which r
7® may vary and, thus, define when the statistics T5%, T exist.

The details of the distribution theory for the information statistic are too
long to present for d > 2 and ¢ > 1. Due to this fact, we do not give full details;
rather, we consider two cases. Before we state the next theorem, let us define

t=(ti,t, - ,ts), and f( r(1)| t) to be the multivariate hypergeometric function

given by
le:(p)]™ H:—l( (1)> KA
(4.17) pi = p (1 — ‘2’)/(1 ;") %,

(1)
elp) = JT5=1 2w (1) P,

dU“™ to be the density and differential element for the sum of the (d — k)
nonzero latent roots of the determinantal equation

(418) | 25 1n%r /6@ — 703 - 3,2 — 68| =0
where S has (n1 + ns — 2d + k) degrees of freedom.

TurorEM 4.2. If the location model obtains, then the cumulative distribution of
I conditional upon t when p;® > 0 all j may take the following forms:

(1) If 2 < tj, all j, D2 t; < min (ny, na) where the summation exiends over
any (d — 1) 7’s, then
(419) Pr(f20b|ty) = 2 odf(r®|t) 64"

+ 20058 2207 1) [Fomacrna_p AU
where v means the summation over all % such that d of the ;¥ are greater
than zero and k of the r,-(z) = 0, and

Myg=cni+n—2d+k)/(ni+n —2d+k4+1-—c¢).
(2) If 2 £ t;,allj,n < min ) ¢; < max ) t; < naorng < np < min ¢,
< max E tj, then
(420) Pr(I=0b|t) = Diu Z"f(r<"| £)-54c"”
+ D0 Do Dk f(£P] 8) [ ooty 2002 au*»

and My = c(ny+ns—d— (h—k))/(mi+n.—d—h+k+1-—c¢c).

(3) The expression for Pr (I = b|t) may be obtained for any other condition
by arguing along the lines suggested in the derivation to Theorem 4.1.

An examination of equations (4.19) and (4.20) clearly shows that unless d
is small experimenters will not compute the Pr (I = b |¢) from the right hand
side of (4.19) or (4.20); instead, experimenters will want to employ some com-
putationally simple distribution theory for the I statistic.

If sample sizes are “large”, d is “small,” and the p; are not “extreme,” the
asymptotic distribution of I may give a usable approximation to the exact
distribution. It is straightforward to show that I is asymptotically distributed as
(x*/2) under (3.1) where x* has (cd + d — 1) degrees of freedom; a rigorous
proof may be constructed along the lines of Ogawa, Moustafa and Roy (1957).
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Another approach to simplifying the computation of the percentage points of
I in the general situation is to use the device suggested in studying Theorem 4.1
and 5.1 in Olkin and Tate (1961). For our problem, we condition not only on t
but on the relations 7;¥ = 1 for all 7 and all J. Thus, all of the components of
(8.1) are testable and we state the distribution theory as follows:

TarorREM 4.3. If the location model obtains, then the cumulative distribution of
I condition upon t and such that r;'° = 1 all ¢ and j is given by

(421) Pr(Izb|t,r®21,1? 2 1) = .0 @ 8) [To-acwryag dU?

where
POt = f6P1 0/ (1 = Ty f:P| 1))

Z,j(s) is the sum over all r;” such that r;* , rj(2) = lallj.

The right hand side of equation (4.21) may be evaluated approximately by
methods due to Pillai and Samson (1959). The I test is a consistent test of (3.1)
against (3.2). Questions of admissibility and asymptotically most powerful un-
biasedness are open.

6. The likelihood ratio test. We now apply the likelihood ratio method to test
(3.1) against (3.2). The likelihood ratio test statistic is
L=1Inx

(61) = ((+n)/2)In[1 4+ 20 r P47 (7,0 — 7,28 7(F,* — §;,2)
‘(4 n — g1 — g) + AGE®)

if at least one r;* = 0 forj = (¢ + 1), -+, d in at least one population; g, , g»
are the number of categories 7 in which there is at least one observation in popu-
lation 1, population 2 respectively; or

(5.2) L=1In\=A@GY)

if at least one of r;*, r,¥ = 0 for all J-
If weobserve L = a, T* = D2 %y T/ (ny + ne — dy — do)™", A(x®) = A°, then

(53) Pr(Lza|t)="Pr[T" 2 exp ((a — A(x®))2/(n1 + m2)) — 1[t].

Hence, the distribution theory of the likelihood ratio statistic can be obtained
in a similar way to that of the I statistic.

The likelihood ratio test is not equivalent to the I test, since we can write
(5.3) in the form

Pr(Lzalt)
=Pr{3 20 T8 2 Hm+ ns — g1 — g2)(exp (a — A(1?))
(5.4) 2/(m1 + mp) — 1)[ ]

=Pr[} 20 TS 2 3(m + ma — g1 — go){[exp (b — A(rP) — 3T
4+ (ny+n) In (1 + To*/(ny + ng — g1 — 92))2/(n1 + ny))] — 1} [ t]
where D%, T, has the observed value Ty’ and the observed value of I is b.
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Both I and L have the same limiting null and non-null distributions. Bahadur
efficiency may be a possible way to choose between these tests in large samples.
In addition, it may be of interest to compute the Pitman efficiency of the Roy
and Bhapkar test with respect to the I or L test. The limiting power function of
I or L is easy to compute for Pitman alternatives. Since the likelihood ratio
test requires a longer computation than the I statistic, one would ordinarily
prefer to use the I test unless small sample power studies indicated otherwise.
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