The Annals of Mathematical Statistics
1969, Vol. 40, No. 1, 152-161

THE ORTHANT PROBABILITIES OF FOUR GAUSSIAN VARIATES

By M. C. Cuenc

University of Adelaide

1. Introduction. Let X;, X, X; and X, be four normal variates with zero
means, unit variances and correlation matrix {p:;}. The orthant probability i.e.
the probability that all X/’s are positive has not in general been expressed in
closed form. However, several series expansions have been given, see for examples
[9], [11], [15]. In many cases, these expansions converge slowly, so that some
alternative approach appears desirable, David [6].

When the correlation matrices of the quadrivariate are of certain specific
forms (e.g. when p;; = p for all 7 # j), the orthant probabilities have been tabu-
lated [1], [8], [18], and approximate expressions [2], [12], [16], [2C], [21] for the
orthant probabilities have also been given. In particular, Abrahamson [1] has
shown that the general orthant probability of the quadrivariate can be expressed
as a linear combination of six orthoscheme probabilities. She has also derived a
relation between one particular orthoscheme probability and the orthant proba-
bility of the equicorrelated case.

David [6] and, earlier, Schlifli [19] derived a recurrence relation which permits
the orthant probability of five normal variates to be expressed in terms of the
orthant probabilities of one, two, three and four normal variates. In general, they
showed that the (2n + 1)-dimensional orthant probability is expressible in terms
of lower dimensional ones.

This paper describes a method which leads to closed form expressions for the
orthant probabilities of the quadrivariate in terms of the inverse trigonometric
functions, the dilogarithm function [10] and its real part [10], when the correlation
matrices are of specific forms. The dilogarithm function and its real part have
been studied and tabulated, see, for example, Lewin [10]. The orthant probability
of five normal variates is deduced when the off diagonal elements of the correla-
tion matrix are equal.

2. Orthant probabilities of the quadrivariate normal distribution. A method,
similar to that used by Cheng [3], [4] will now be used to find the closed form
expressions of the orthant probabilities for the quadrivariate normal distribution
having certain specific forms of correlation matrices. The orthant probability of
n Gaussian variates is denoted by P, in each case.

(i) Consider the following correlation matrix.

1 a ab adb
a 1 ab ab
(2.1) C=lab ab 1 al
ab ab a 1
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where —3 < @ < 1 and [b| £ 1. The orthant probability of the four Gaussian
variates with the above correlation matrix C can then be denoted by ®(a, b)
ie. ®(a,b) = P[X; > 0,X, > 0,X; > 0, X, > 0/C]. From the identity

(2.2) &(a,b) = ®(0,0) + &(a,0) — ®(0,0) + ®¥(a, b) — ¥(a, 0),

&®(a, b) can be expressed as

(23) 2(a,b) = 2(a, 0) + [5~0 (8/08)%(a, B) dB.

Denoting ®(a, 8) = ®*(p12, p1s , p1a, P23, p2a, pua) = &, we have

(24) (9/08)8(a, B) = a{(3/0p1s)®" + (8/0pu)®* + (8/3p2)®* + (8/9pua)®™}.

Applying Plackett’s reduction formula [17], the integral in (2.3) can be evalu-
ated as

®(a,b) = £ + {arcsin (a) + 2 arcsin (ab)}/4r + [arcsin (a)]’/47
- [fa - )t arcsin ¢ (2 )dz

where

(@) = {all = 2/(1 + &)l [1 — 267/ (1 + )] 7).
Using (A10) of the appendix yields

®(a, b) = 5 + {arcsin (a) + 2 arecsin (ab)}/4r

(2.5) + {larcsin (a)I* — 2 [arcsin (ab)]} /4"

+ {2Laf, arccos (ab)] + 3Lal— ] — Lalf’, arccos (a)]} /7,
where ' ‘
26)  f=fab)={(1+a)=I[(+a) — 4ab}/20b,

with f(0,b) = f(a,0) = 0;

Liyx] and Li,|r, 6] (following Lewin’s notation [10]) is the dilogarithm function
and its real part defined in the appendix by (A5) and (A6) respectively. It can
be shown that P, is given by (2.5) for the region [b| < 1, —% < a = 1. Outside
this region, C is not a correlation matrix and ®(a, b) is complex valued.

David and Mallows [7] gave a series expansion of this orthant probability for
a=32andb = p.

By setting b = 1, we obtain readily the orthant probability of the equicorre-
lated case which has received considerable attention [8], [12], [18], [20], [21], [22].
We have

27) Pis=3(a,1) = ¥(a)
= 7 + [3 arcsin (a)]/4r — [arcsin (a)]'/4x"

+ {2Liym, arccos (a)] 4+ 3Li[—m’] — LiJm’, arccos (a))}/=°



154 M. C. CHENG

where
(28) m=m(a) =[14+a— (1+ 3a) (1 —a)']/2a, with m(0) = 0,

and —3(=<a=1

I

The orthant probability of five normal variates when the off diagonal elements
of the correlation matrix are equal can be deduced from either the recurrence
relation due to Schlifli [19] and David [6], or the differential relationship con-
necting Ps and P; due to Ruben [18]. In either case, it is found that

(29) Py = 4 + [5 arcsin (a)]/8r — 5 [aresin (a)]/8x°
+ 5{2L[m, arccos (a)] + iLiy|—m’] — Li[m’, arccos (a)]}/2x",

where E[zz:] = a,71 # k; —3 £ a £ 1.

(ii) Abrahamson [1] has shown that the general orthant probability of four
normal variates can be expressed as a linear combination of six orthoscheme
probabilities of four normal variates whose correlation matrix is of the form

1 P12 0 0

0 0 P34 1
In order that the determinant of this matrix be positive, it is necessary that
pzs < (1 = pL2)(1 — psa).

Using the method demonstrated above, we obtain readily two integral expres-
sions for the general orthoscheme probability V (p1z , p2s , pas) as:

(2.10) V(pz, p2s, pus) = 7 + {arcsin (pr2) + arcsin (pes) + arcsin (pa)}/87
+ 377 [5 (1 — ¥") arcsin gs(v)dy
where
g2(7) = ol (1 = ")/ (1 = 7" = o}
(2.11) V(piz, p2s, pss) = 15 + {arcsin (p12) + aresin (pz3) + arcsin (ps)} /8
+ [aresin (p1z) arcsin (ps)]/47"
+ " [§° (1 — o) arcsin ga(v)dvy
where
ga(7) = bveupa/ (1 — v* = ph)(1 — " — pin)}.
Equation (2.10) was first derived by van der Vaart [23]. From (2.10) and (2.11)
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it is readily verified that
(2.12) V(pz, p2s, —pu) = 1% + {arcsin (p1a) + arcsin (o)} /47
— V(s pas, P34)
(2.12) V(p1z, —p2s, pss) = arcsin (pes)/4w + V(p1a, p2sy pas),
(2.14) V(—p1z,ps, —pss) = V(pz, p23, psa)
— {aresin (p12) + aresin (pss)} /4.
Abrahamson [1] has shown that
(2.15) Via, —{(1 — a)/2}}, —%] = ¥(a)/6, where ¥(a)
, is now given by (2.7).
Using the method shown above, it is found that for [b| < 1,0 < a* < 1,
VI(1 — a®), a%, (1 — a")'] = ®u(a, b),
where
®1(a, b) = &% + [aresin (1 — @*)})/4r + [arcsin (1 — a®)Yf/4x°
+ 3772 [3 (1 — 2*)* arccos gy(z)dz
where
gu(z) = {a(1 = 1/a")(1 = 2*/a")7}.
Using (A13) of the appendix, we obtain
®(a,b) = 1% + {arcsin (1 — @’)* + } arcsin (a’b)}/4r
(2.16) + {[aresin (1 — a*)** — %[arcsin (a’b)]’} /4"
+ {2Lislc, arccos (a’b)] + 3Ll —c’)
— Li)[c*, arccos (2a° — 1))}/4x",

where ¢ = ¢(b) = [1 — (1 — b*)"]/b, with ¢(0) = 0. Ata = Oand b = %1,
the correlation matrix is singular. By the continuity theorem [5], V is a con-
tinuous function of @ and b in the closed region |a| £ 1, [b| = 1. Since &;(a, b)
is continuous in the same region, and equals V in the open region [b| < 1, 0 <
a® < 1, then they must also be equal in the closed region |a| < 1, [b] < 1.

From (2.12), (2.13) and (2.14) closed form expressions can also be found for
cases:

VI—(1 — o, a®, —(1 — ¢®)}] and V[(1 — a®)}, &, —(1 — a®)}]
where |[a| £ 1, [b] £ 1;
Via, —{(1 — a)/2}}, 3], Vla, {(1 — a)/2}}, —3] and Ve, {(1 — a)/2}}, 3]

where —3 < a = 1.
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(ili) David and Mallows [7] have given a series expansion for the orthant
probability of four normal variates whose correlation matrix is

1 % % 0
i 1 0 %
i 0 1 i
0 % i 1

where [b| < 1. It can be shown that the orthant probability P, is then given by
¥,(b), where
V(b)) = & + 7 [§7 (1 — 2*)? arccos [—z/(1 — 2¢%)] de.
© (A14) of the appendix yields
(2.17) ¥y (b) = 7 + [arcsin (b/2)]/2r — [arcsin (b/2)]%/24°
+ {2L4jc, arceos (b/2)] + 3Li[—c] — Li[—c'/4} /7%,

where ¢ = ¢(b) = [1 — (1 — b*)!]/b, with ¢(0) = 0, [b| < 1. For b = 1, it can
be shown that ¥;(1) = % which agrees with the result obtained by Plackett [17].
By a continuity argument, the orthant probability P, is given by (2.17) for
|p] = 1.

(iv) Closed form expressions for the orthant probabilities of the quadrivariate
normal distribution can be obtained for at least two other cases. The first has
correlation matrix

1 a b ab

a 1 ab b

b ab 1 a
ab b a 1

where |a| £ 1, [b] £ 1. Cheng [3] has shown that the orthant probability P, is
given by ®,(a, b) where

(2.18) ®y(a,b) = {% + {arcsin (a) + arcsin (b) + arcsin (ab)}/4r
‘ + {[aresin (a)]* + [arcsin (b)]* — [arcsin (ab)]} /4x’.

David and Mallows [7] obtained the closed form expressions for the cases a =
+1, b = p. This orthant probability was applied by Cheng [3] to the clipping
loss problem in signal detection.

The second case has correlation matrix

1 b a ab
-b 1 ab a
a ab 1 b

ab a a’ 1
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where |a| £ 1, [b] £ 1. Cheng [4] has shown that P; is given by ®;(a, b) where
&3(a,b) = &
+ {arcsin (a) + arcsin (ab) + % arcsin (b) + % aresin (a’b)}/4x
(2.19) + {[arcsin (a)]} /47 — %{[arcsin (a’)]} /47
+ {2L4y[c, arccos (a’)]}/4n"
+ {3 Lij[—¢") — Lic, arccos (2a° — 1)]}/47%;
c=cb) =[1—(1—>b)Yb with ¢(0)=0.

This orthant probability has been applied by Cheng [4] to the theory of non-
linear transformation of random processes in deriving the closed form solutions
of the output autocorrelation functions of half-wave smooth and hard limiters.
Previously, McFadden [11] gave a series expansion for the orthant probability
M (p12 , p23 , paa) of a Markov process whose correlation matrix is

l_ 1 P12 P12p23  P12P23P34
p12 1 P23 p23paa
P12p23 Pz 1 pas
P1P2p3s  Paspss P 1

®;(a, b) is also the orthant probability of a Markov process when
P12 = p3 = @, ps = b;
ie.
(2.20) &;3(a, b)) = M(a, b, a).
Our method gives an integral expression for M (p12, ps3 , pas) a8:
M(p2, p2s s pus) = 75
-+ {arcsin (pi) + arcsin (pes) + aresin (psa) + arcsin (paspss)
(2.21) + arcsin (p1zp2s) + aresin (pizpespss)}/Sw
+ [arcsin (p12) arcsin (ps)]/4n”
+ g7 [52rees (1 — o) aresin go(y) dy
where
g5(v) = {(r(1 = pi) (1 — pia)lompus(1 — 7/0k) (1 — /p3e)'T7'},
and where |o12] < 1, |o2s] £ 1, |pse] = 1. It is then easily verified that
M(—=p1z, p23; p2e) = 7%
(2.22) + {arcsin (ps3) -+ arcsin (pss) + arcsin (pgspss)} /4w

= M(p12, pes, p3a)-
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From (2.20) and (2.22), closed form expression for M(—a, b, a) can also be
deduced.

In concluding, we remark that the method illustrated in this paper can also
be combined with other methods, such as the transformation used by McFadden
[11], to obtain closed form expressions for more orthant probabilities of four
Gaussian variates.

3. Discussion. A method has been demonstrated and applied to obtain closed
form expressions for the orthant probabilities of the quadrivariate normal
distribution when the correlation matrices are of certain specific forms. Many of
these orthant probabilities have practical applications. However, this method
does not appear to yield closed form solution for the general orthant probability
of four Gaussian variates. Since the general orthant probability is of considerable
importance in many fields (see, for examples, [13], [14]), it appears desirable and
challenging for mathematicians to continue the search for solution of this
problem.

APPENDIX
To evaluate
I(a,b, k) = [& (1 — 2*)™ arcsin go(z) dz
where
go(2) = {a[l — 2K"/(1 + a)]-[1 — 2K'2%/(1 + )]},
or equivalently
I(a,b, k) = [ arcsin g;(0) db
where
g:(8) = {sin 61 — 2k*/(1 + a)]-[1 — 2K sin® 6/(1 + a)]7}.
Put
(A1) u(6,a,k) = arcsin {sin 0[1 — 2k°/(1 + a)][1l — 2* sin® 6/(1 + a)] '},

and define u(6, a, k) = 0 whenever 2k* = 1 + a, then it can be verified that
u(6, a, k) is a well defined, real-valued function in the region where |k| < 1,
[b| £ 1and =87 < a = 1. u(6, a, k) may be complex valued outside thisregion.
Moreover, the integrand and its partial derivative with respect to k are con-
tinuous in the same region, therefore differentiation under the integral sign is
permissible and

(8/0k)I(a, b, k) = [ 4.(9) do
where
gs(8) = —4k sin 6 cos /(1 + a)
A1 — 4k* sin® 6/(1 4+ a)''[1 — 2k sin’ 6/(1 + @)}~
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Integrating with respect to k, we obtain

(A2) I(a,b, k) = [§ [ go(6, 2) d0 dz + I(a, b, 0)
where
gs(6, 2) =
—4z sin 0 cos 6/(1 + a){[1 — 42*sin” /(1 + a)*[1 — 22 sin’6/(1 + a)]}
In particular
(A3) I(a,b,1) = [5 [ 9:0(6, 2) d6 dz + I(a, b, 0)

where g10(0, 2) is as in (A2). Substituting
242 sin 0/ (1 + a)},
22" sin 6/(1 + a),

t

s
the Jacobian of the transformation is
(1 + a)/[2s(1 — ¢/8")),

whence

(A4)  I(a,b,1) = [ [&hm gu(t, s) dt ds + I(a, b, 0)

where

gu(t, s) = —24(1 — £)70s(1 — &)
thus
I(a,b,1) = [+ g5(s) ds + I(a, b, 0)
where
gi(s) = {In (1 — abs)ls(1 — &) — In {1 — (1 + a)s"/2}[s(1 — &)™}
The dilogarithm function [10] has been defined as:
(A5) Lifel = — [§1n (1 — v)/v dv,

where z may be real or complex. Following the notation of Lewin [10], the real
part of the dilogarithm function is

(A6) LiyJr, 6] = RLp[Re™], = —%[51In (1 — 20 cos 8 + o )/v dv

where ® denotes the real part of the function followed. The properties, including
series representations, of these functions have been discussed, and these functions
have also been tabulated; see, for example, Lewin [10].

By means of the transformation

s = 20/(1 +9°),
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we obtain
(A7) [3 In (1 — abs)[s(1 — &) ds

= —2La[f, arccos (ab)] + LLi[—f7,
(A8) [3/4 In[1 — (1 4 a)s¥/2l[s(1 — )™ ds

= —La[f’, arccos (a)] + Lu[—f7,

where

(A9) f=1(a,b) = {(1+a) = [(1 +a) — 40"} /2ab,

with £(0, b) = f(a,0) = 0. Substituting (A7) and (A8) into (A4), we get
(A10) I(a, b, 1) = [arcsin (ab)]’/2 — 2L, arccos (ab)]

—3Li[—f"] + Lif’, arccos (a)].
From (A2), it is readily verified that
(Al11) 2Liy[c, arceos (b)] + 2Li[—c] — Lic’] = [arcsin (b)])%/2,
where
(A12) ¢ =c¢(b) =[1— (1—0)p,
with ¢(0) = 0.
This method has been applied by Cheng [4] to show that in the region |a| < 1,
1b] = 1, and defining gn(z) = {z(1 — 1/a’)(1 — &*/a’)7},
[t (1 — &*)™ arccos gis(x) de
(A13) = ir arcsin (a’) — [arcsin (a’0)] + LLi[—¢]
— L&, arccos (2¢° — 1)] + 2La[c, arccos (a’b)].
In particular, for @® = %,
f?,” (1 — 22) P arccos {—z/(1 — 2%)} dz
(A14) = 1z arcsin (b/2) — %[arcsin (b/2)] + 3Li—c]
— Li[—c')/4 + 2Li[c, arccos (b/2))].
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