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ON ROBUST LINEAR ESTIMATORS

By Joserr L. Gastwirte! AND HERMAN Rusy’

The Jokns Hopkins University and Purdue University

1. Introduction. The problem of finding robust estimators for the location
parameter of symmetric unimodal distributions has been the subject of much
recent research (e.g. [2], [3], [6], [8], [9], [13], [15]). This paper is concerned with
finding robust estimators which are linear functions of the ordered observations.
Thus, the robust estimators proposed by Hodges and Lehmann [8] and Huber [9]
are not considered in detail. The spirit of the present work is similar to a previous
paper of one of the authors [7] and is also related to the fundamental work of
Tukey [13], [14].

We assume that the density function of the population sampled is a member of
a class F of densities. For every member f, (v runs through an index set I'), there
is an asymptotically efficient estimator S, which is a linear combination of the
ordered observations [1], [5], [10]. The asymptotic efficiency of any estimator D
for samples from the density f, is the reciprocal of the ratio of the asymptotic
variance of D to the asymptotic variance of S,. Throughout the paper the
asymptotic variance of an estimator will mean the variance of its asymptotic
normal distribution.

An estimator will be called a maximin efficient estimator within a class C of
estimators for a family of densities if it maximizes the minimum asymptotic
efficiency over the family . In Section 2, we demonstrate that within a large
class C of linear estimators, there is a unique maximin efficient linear estimator
for general families of densities. Under somewhat more restrictive conditions on
the family & of possible densities we show that within the class C of linear esti-
mators the Bayes estimators are the minimal complete class. These results are
asymptotic generalizations of the work of Birnbaum and Laska [3].

In Section 3 we discuss, in detail, the special case when § contains the logistic
and double-exponential distributions. The maximin efficient linear estimator
(m.el.e.) is found and is compared to the best convex combination of the indi-
vidual optimum linear estimator and also to a Hodges-Lehmann type estimator
based on the corresponding maximin rank test [7].

In general, the m.e.l.e. for specific families of densities is quite difficult to
compute. It seems appropriate, therefore, to look for a maximin efficient esti-
mator in smaller classes of linear estimators which are easy to use. Two such
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ROBUST LINEAR ESTIMATORS 25

families of linear estimators are the trimmed means and linear combinations of a
few (r) sample percentiles. Under suitable regularity conditions, a maximin
efficient estimator for each of these classes exists (see Section 4). Some numerical
examples are also given. A more detailed numerical study of some robust esti-
mators is due to Crow and Siddiqui [6).

2. Maximin efficient linear estimators and admissible linear estimators. The
purpose of this section is to prove the existence of an asymptotically maximin
efficient linear estimator (a.m.e.l.e.) and determine the family of all admissible
linear estimators of a parameter § when the observations come from one member
of a family § = {f,} of density functions. In practice, 6 is usually a location or
scale parameter. We shall restrict ourselves to estimators which are linear in the
order statistics, i.e., they are of the form

(2.1) Tn = n—l Zz;l Wik (s)

where zgy < @ < --- = Zm are the ordered observations and the weights

w; are determined from a measure u on (0, 1), of variation 1, by setting

wi = nu((C — Dn ™).

Bennett [1] and Jung [10] considered linear estimators to be specified by a func-
tion w on (0, 1) such that fé w(u) du = 1 and set w; = w(z/n + 1). When u
is sufficiently smooth both methods lead to asymptotically equivalent linear
estimators, however, the present method is more general as it allows us to con-
sider statistics which are linear combinations of a few sample percentiles.

For any cdf F with density f, define the function 4 by
(23) h(u) = fIF (u)].

When p is composed of an absolutely continuous part and a finite number of
atoms, then under mild restrictions [5], the estimator determined by p has an
asymptotically normal distribution with variance given by

(2.4) 2™ [ [ [(min (, v) — w)/h(u)h(v)] du(u) du(v).

This formula holds for more complicated measures p but the exact conditions
are under investigation. Of course, the reciprocal of the asymptotic efficiency of
the estimator u to the optimum estimator is the ratio of (2.4) to the Cramér-Rao
lower bound.

In order to apply the results of the theory of games to our problem we must
define precisely the strategy spaces involved. Nature’s action space is the set of
all densities {f,}, ¥ ¢ T and each strategy can be thought of as a probability
measure {(y) on I'. If ¢, denotes the Cramér-Rao lower bound for samples from
fy, then the risk function for the efficiency problem when nature uses ¢ and the
statistician uses the estimator determined by u is

(2.5) R(t,w) = J [ [ [(min (u,v) — w)/cyhy(u)hy(v)] du(u) du(v) di(y).



26 JOSEPH L. GASTWIRTH AND HERMAN RUBIN

If this risk function is just the variance of the estimator the c,’s are omitted in
expression (2.5). In both problems the statistician desires to minimize the risk.

The class C of estimators that the statistician will be allowed to use will be
those linear estimators which are specified by measures u of variation one,
satisfying

(26) , J5ldu(u)l/g(u) = 4,

where ¢ is a positive, continuous function on (0, 1) vanishing at 0 and 1 and A
is an arbitrary constant. Unfortunately, the authors have found this condition
necessary to ensure that the estimator u does not place too much weight on the
extreme observations. The reason that we require [ |du| < o in addition to the
condition [ du = 1, is due to the existence of density functions whose optimal
linear estimators are specified by measures whose total variation is infinite. For
example, the best linear estimator for a sample from the density f(x) = ce'™ is
given by a measure placing infinite mass at 4 and an infinite negative measure
elsewhere. Once g is chosen the set of measures corresponding to the linear esti-
mator is given the weak™ topology with respect ¢~ du. A sequence {u.} of meas-
ures converges to u in this topology, if for every continuous function g(u) such
that g(0) = g(1) = 0,

(2.7) [o9q7" dua— [39¢7 du
as o —> .

It is convenient to discuss the case when the risk function is the asymptotic
variance of the estimator. The main existence theorem is the following:

TaeoreM 2.1. Let C be the class of measures satisfying Condition (2.6) and
suppose that C is not empty. For any family § = {f,} of continuous densities there is
a linear estimator in C which minimizes the maximum asymptotic variance over all
the densities in 5.

Proor. Since lower semi-continuity and convexity properties of functions are
preserved when they are mixed by a probability distribution it suffices to show
that each of the functions

(2.8) R(fy, #) = [ [s[(min (u, v) — w)/hy(u)hy(v)] du(u) du(v)

is convex and lower semi-continuous in u. Convexity follows from the fact that
the variance is a convex function. The kernel [min (u, v) — wv]/hy(u)h,(v) is
continuous and positive in the interval (0, 1). If we write du = g dv, then weak™
convergence of the measures (u) in our topology corresponds to the ordinary
weak™ convergence of dv. Since

(29) liminf, [5 [o g(u)[(min (%) — uv)/hy(u)hy(0)lg(v) dra(u) dva(v)
2[4 [ q(w)[(min (u, v) — w)/hy(u)hy(v)la(u) dv(w) dv(v)

as dve — dv in the weak™ topology implies dvo x dv. — dv x dv, the function
R(fy , u) is lower-semicontinuous in p. The existence of a linear estimator achiev-
ing the minimax asymptotic variance follows by applying Sion’s theorem [11].
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If all the densities in § are normalized so that they have Fisher information
one, then Theorem 2.1 implies that an asymptotically maximin efficient linear
estimator (a.m.el.e.) exists. In order that it be non-trivial it is necessary to
assume that the non-normalized densities have Fisher informations which are
bounded away from zero. Rather than state a general theorem we present, in
detail, an existence theorem for an a.m.el.e. of the location parameter from
families of symmetric density functions. Precisely, we have

THEOREM 2.2. Let § be a family of symmetric density functions whose Fisher
informations are bounded away from o« and such that f,(0) = e for some ¢ > 0.
Then there is a class C of linear estimators satisfying condition (2.6) and an
a.m.e.l.e. within the class C exists.

Proor. The conditions of the theorem imply that the median is an estimator
with non-zero relative efficiency for all members of §. Let u denote the measure
generating the median. Since [ du = 1, there is a continuous positive function g
such that fgd/.c < « and g(0) = g(1) = . Taking ¢ = ¢, a non-empty
class C of estimators satisfying Condition (2.6) exists. The existence of an
a.m.e.l.e. within the class C follows by applying Theorem 2.1 to the densities of F
normalized to have information one.

Theorem 2.2 does not depend critically upon the assumption that the efficiency
of the median relative to the best estimator for each member of & is bounded
away from 0. The existence of any estimator with this property will suffice for
our purposes. The choice of the function ¢ also is quite arbitrary. In general, ¢
should be chosen so that the class C of linear estimators is as large as possible.

So far we have shown that the game has a solution and that the statistician
has a strategy attaining the value of the game. In order to show that nature
also has an optimum strategy (rather than just an e-optimal one) we introduce
the following assumption on the family § = {f,} or equivalently on the functions
{hy(u)}.

AssumpTioN 1. The informations I, corresponding to the densities f, are
bounded away from 0 and «, i.e., constants I; and I, exist such that

(2.10) 0<I,<I,<I, forall 7.

AssumptioN 2. For all % in the open interval (0, 1) h,(u) > 0, and the func-
tion h* defined by

(2.11) B*(u) = inf, ky (u) > 0.

From Assumptions 1 and 2, we can derive the following:

LemMma 2.1. The functions hy are equi-continuous on the interval (0, 1).

Proor. For any function h, and any partition 0 = w < wy < -+ < Un
< Upy1 = 1 of the interval (0, 1),

(2.12) Iz 20 h(ws) — ho(uicn) (i — wia) ™
Thus,
(2.13) B (us) — Bo(uica)| < I (us — wica).
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Since the right side of inequality (2.13) isindependent of v the functions &, are
equi-continuous. It should be noted that if a density f has finite information,
then lim,.o or 1 A(u) = 0.

We topologize the set of functions 4. , nature’s strategy space, by the compact
open topology, i.e., h, — h if the convergence is uniform on all compact subsets
of (0, 1). This is equivalent to the topology of the pointwise convergence of the
h functions. The last condition we require on the A functions is the following:

AssumpTioN 3. The set {h,} of nature’s strategies is compact in the compact-
open topology in the space of continuous functions on (0, 1).

The natural choice for the function ¢ is

(2.14) g(u) = [w(l — w)/h*(w).

Clearly, q(u) is continuous and positive in (0, 1). The following lemma shows
that g(u) — o« asu — 0 or 1. Specifically, we have

Lemma 2.2. For any family § of densities whose h functions satisfy Assumptions
1 and 2,

(2.15) limusoor: (1 — w)/R*(w) = w.

Proor. Since £*(u) £ h,(u), the lemma will be proved if (2.15) holds for any
h, (written as h for convenience). In order to show that (2.15) holds as u — 0
suppose to the contrary that u*/ h(u) does not approach « asu tends to 0. Then
there is a decreasing sequence u; converging to 0 such that

(2.16) h(us) > cuss

where ¢ is a positive constant. Since lim..¢or1 (%) = 0, a sequence u; satisfying
(2.16) can be chosen that also satisfies

(2.17) h(ugip1) < h(ue:)/2.

The information in the fractiles corresponding to the partition u; of the interval
(0,1) is

(218) 2 [h(uz) — h(uginn)(uei — i)™ 2 % 20 Cuptni™ = oo

This contradicts the first assumption, i.e. all the informations are uniformly
bounded by I5( < « ). The proof for the case when » — 1 is similar.

If u is any measure of variation one, then Lemma 2.2 implies that [ ¢~ dp is
also finite. Then the constant A in Condition (2.6) can be chosen so large that
the class C of estimators, where ¢ is given by (2.14) is non empty.

The following theorems tell us under what conditions nature has as optimum
strategy when the risk is asymptotic variance of the estimator.

TrroREM 2.3. If the family f, of densities satisfies Assumptions 1, 2 and 3 and
if the set C of linear estimators satisfying Condition (2.6), where q s given by (2.14),
contains a member with finite asymptotic variance for all densities f., , then the game
has a value and nature has a strategy, ¢, which attains the maximin asymptotic
variance.
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Proor. Letting &, = h,/h*, the variance of the estimator based on the measure
p on data from the density f, is

(2.19) R(hy 1) = fo [o7(u, ) (du(w)/q(w))(dp(v)/q9())

where f(u, v) = [min (%, v) — w]u(l — w)v(l — )y (w) k@)™

The function fR (hyw) dé(y) is convex in the statistician’s strategy space
(measures p) and is linear in nature strategies (the measures { over the func-
tions h,).

Since nature’s strategy space is compact the results follow from the Kneser-Fan
minimax theorem [11] if R(k,, u) is continuous in h, (or equivalently #,) for
fixed u. The function

(2.20) (min (%, v) — w)u(l — w)] (1 — v)

is a bounded continuous function on (0, 1) x (0, 1) and 1/h,(u) < 1; therefore,
the integrand in expression (2.19) is a bounded function on (0, 1) x (0, 1).
Since ¢ du is a measure with finite total variation, for any ¢ > 0, there is a
compact set K = K; x K;in (0,1) x (0, 1) such that

(2:21) I e f(u, 0) (du(w) /g(u)) (du(v)/q(v))

where ( K; x K;) is the complement of K; x K; , and f(u,v) = [min (u,v) — w]-
(1l — w)] (1 — o)Ay (u)fy ()] ™. Since the topology on the functions A, is
the compact open topology, the functions in a neighborhood of hyyhyw) are
uniformly close to h,(u)h,(v) on compact sets. Thus, the integral

(2.22) I xaxry £, v) (dp(u)/g(w)) (du(v) /g(v))

is a continuous function of A,. Since the risk of function (2.19) is the sum of
(2.21) and (2.22) it is continuous in A, .

ReMARK. In the uninteresting case where the class C of linear estimators does
not contain a member with finite asymptotic variance for all members of & the
value of the game is « and nature has an optimum strategy.

So far we have not used the hypothesis that the informations I, are bounded
away from co. This condition is required for the existence of an a.m.e.l.e. The
result is a rewording of Theorem 2.3, where the conclusion now is that nature
has a strategy which attains the maximin risk. (The risk is the reciprocal of the
asymptotic relative efficiency). The proof consists of normalizing the densities to
have Fisher information 1 and applying Theorem 2.3.

The remainder of this section will be devoted to showing that the Bayes’ strate-
gies form a minimal complete class. It should be mentioned that Birnbaum and
Laska [3] were the first to discuss complete class theorems for robust estimators.
They dealt with finite sample sizes and their loss function was the variance of
the estimator. In the asymptotic case, we show that the Bayes’ strategies for the
problem form the complete class of linear estimators. Formally, we have

THaEOREM 2.4. If the assumptions of Theorem 2.3 hold, then the Bayes strategies
for the statistician form a minimal complete class where the risk function s either

]—‘}
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asymptotic variance of a linear estimator or the reciprocal of the efficiency of a linear
estimator to the best possible one.

Proor. Since the proofs for both risk functions are similar, consider the case
where the risk is asymptotic variance. Since the risk function (2.19) is strictly
convex in p a Bayes strategy is unique and thus admissible. Suppose wo is an
admissible strategy. Consider a new game with risk function

R*(h’ F‘) = R(h7 I-") - R(h7 F‘O)’

where R(h, u) is given by (2.19). Since the new risk function R*(h, uo) differs
from R(h, u) by a constant (depending on %) under the conditions of the theorem
the new game satisfies the hypothesis of Theorem 2.1 and 2.3. Hence, the new
game has a value and both players have good strategies. By Theorem 5.6.5 of
Blackwell and Girshick [4] the Bayes strategies are complete for the first game.

REMARK. Under the conditions of Theorem 2.4 the class of Bayes strategies
for the statistician is the same for either loss function. However, any particular
strategy p will usually be Bayes against different strategies of nature for each of
the two risk functions.

AppENDIX TO SECTION 2. The conditions of Theorems 2.1 and 2.3 were quite
complicated because both strategy spaces were infinite. When nature’s strategy
space consists of a finite number of density functions with finite Fisher informa-
tions, the statement of Theorem 2.1 becomes much simpler. Precisely, we have

TrEOREM 2.1%. Let C be the class of measures p such that [ du = 1 and suppose
that there 1s a member of C with finite asymptotic variance for all the densities
§ = {f1, :, fa} tn nature’s strategy space. Then the game has a value and both
players have good strategies, i.e., there vs a linear estimator which minimizes the
mazimum asymptotic variance over the family § and there is a probability measure
{D1, **, Da} on the family § so that nature can achieve the maximin asymptotic
variance.

The proof follows from the following minimax theorem of Stein [12]. We
have

TuaEOREM (Stein). Let X be a finite set, Y an arbitrary set and K a bounded real
valued on X x Y. If K is pseudo-convex in the second argument (y), then

(2.1%) sup; infy K*(¢, y) = infy sup; K*(¢, v),

where ¢ is a set in the space of probability measures on X and K*(¢, y) =
D wex K(, y) ¢z . Furthermore, the infimum on the right-hand side is attained.

To prove Theorem 2.1* from Stein’s theorem note that the existence of an esti-
mator v in C with finite asymptotic variance for all members of & allows us to
consider only those members (u) of C satisfying

(2-2*) supy R(fy, n) < A = supy R(fy, »).

Then the risk function is a bounded real valued function on X x Y. Since the
space C of measures is convex and the risk function is convex the set of esti-
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mators satisfying (2.2) is convex and R is pseudo-convex in y. Thus, Stein’s
theorem applies. Moreover, the proof that the Bayes estimators are a complete
class when & is finite is almost identical to the previous proof and will be omitted.

3. An example. Although an a.m.e.l.e. exists for most families § it is usually
difficult to obtain explicitly. In this section we shall obtain the a.m.e.l.e. when
nature presents the statistician with either double-exponential or logistic data.

The a.m.e.l.e. is found in the following manner. For each of nature’s strategies
(M, M) (M + N2 = 1, A is the probability of nature using logistic data) we ob-
tain the statisticians best strategy, i.e. the linear estimator maximizing the
efficiency against the Bayes mixture of the two densities. Varying natures
strategies in order to minimize this efficiency yields the a.m.e.l.e. Thus, given
M and A2 we must find a measure u minimizing

(3.1 Jo [o[min (u, v) — wlB\e(u)er(v) + Nopa(w)ea(v)] du(w) du(v),

where ¢;(u) = 1/h;(u) and h;(u) is defined by (2.3). The factor 3 enters into
expression (3.1) because the Cramér-Rao lower bound for the logistic cdf is 3n.
Since we are dealing with symmetric densities it suffices to determine x on [3, 1].
Thus, we must find a measure u* such that [} du* = % which minimizes

(3.2) 2f} [i[1 — max (u, v)]B\er(u)er(v)
+ Nepa(u)ee(v)] du(u) du(v).

By the calculus of variations it follows that p* yields the minimum of expres-
sion (3.2) if

(33) [i[l — max (u, 0)](3Ner(w)er(v)+ Mapa(Wea(v)) d*(u) = ¢

where ¢ is a constant. In our example ¢;(u) = 1/u(1 — u) and ¢2(u) = (1 —
u) ™%, Without loss of generality, we may assume that \; = 1/1 + 3% and X, =
8'/1 + 36 For simplicity, we shall omit the factor (1 + 38°)™" in the com-
putation of x*. Finally, it will be convenient to write

(34) dp*(w) = u(l — u) du(u).
Thus the problem is to find a measure
(3.5) dv(u) = c8(3) + f(u) du,

where 8(%) is the measure placing mass 1 at % and 0 elsewhere, satisfying (3.3).
Differentiating the resulting expression and solving the differential equation
obtained for the absolutely continuous part f(v) of the measure » yields

(3.6) F(v) = K(8 + M7

Substituting f(») into the differentiated version of (3.3) allows us to evaluate ¢
and we obtain K from the fact that u* is a measure of variation one-half on
(%, 1). Finally, we obtain that the measure generating the Bayes linear estimator
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against nature’s strategy (1, 8) is

(3.7)  u*(v) = Kv(1 —0)/ (8 + V)7, if 0<v<l. o=}
= 3¢5(3), v =14
where
(3.8) K = [2s(1 + 8Y/4)]7, ¢ = Ks/B
and
(3.9) s = (48 4+ 1) — (28)7 tan™" (8/(26° + 1)).

The relative risk is

q/(1 + 369,

where
(3.10) g = Bls(8 + DI + Us(8 + DI

By varying 8 we can obtain all of nature’s possible strategies. The a.m.e.l.e.
achieves a relative efficiency of about 92 % when 8 is about .61. This compares to
94.3 % for the Hodges-Lehmann type of estimate based on the maximin rank
test [7].

It is interesting to compare the a.m.el.e. to a convex combination of the
median (M is the a.b.l.u.e. for double exponential data) and the best estimator,
L, for logistic data (it is based on the measure du(u) = 6u(l — u) du). Using
formula (2.4) the asymptotic variance (times n) of the best estimator for logis-
tic data when the data is from a double exponential distribution can be shown to
equal 1.425. The asymptotic variance (times n) of pM + ¢L is 1 + 425 ¢*
when the observations are from double exponential data and 1 + p°/3 for logis-
tic data (scaled to have Fisher information 1). The variances will be equal when
p ~ .53, ¢ ~ 47, and the asymptotic efficiency of this estimator is 91.43 %
relative to M for double exponential data and to L for logistic data. In this
example, the a.m.el.e. is only a slight improvement over the optimum convex
combination of the best estimators. In general, this will not be true as the best
estimator for one cdf may not even be consistent for another member of &.

We should like to mention that Yhap [16] has obtained a general formula for
the Bayes’ solution for a finite number of densities and has studied contami-
nated normal distributions in detail. As far as the authors know, there is no ex-
ample of an estimator which has analytically been demonstrated to be an a.m.e.
Le. for an infinite family of possible densities.

4. Smaller classes of linear estimators. While a maximin efficient linear
estimator exists for most families & that are possible densities for a set of ob-
servations, we have seen that it is usually difficult to find explicitly and that its
efficiency is not much larger than that of an estimator based on a few order
statistics-or a suitably chosen combination of the relevant best estimators. A



ROBUST LINEAR ESTIMATORS 33

practicing statistician might prefer to choose a class C of linear estimators that
are easy to work with and use the maximin efficient estimator in C. In this sec-
tion we show that maximin efficient linear estimators of the location parameter
for families of symmetric densities exist within the class of trimmed means and
within the class of estimators which are linear combination of £ sample percen-
tiles.

Let zqy = -+ = xwm be an ordered sample of size n from a symmetric cdf
F(z). Since the estimators we discuss are translation invariant we may assume
that the location parameter 6 equals 0. The a-trimmed mean is defined as

(4.1) To= (1 — 2)]7 20 2,

where r = [an] + 1. It is known [2] that the trimmed mean has an asymptotic
variance given by

(4.2) ve(a) = 0 (1 — 22) (2B’ + [Z5 £ dF(1)],
where
B=F'1—a) and —B = F '(a).

We now show that under rather weak conditions on the family $¢ maximin
efficient trimmed mean exists. Specifically, we have

TuaeorREM 4.1. Suppose that all cdf’s in a family F of symmetric cdf’s have finite
Fisher information, satisfy the conditions for the trimmed mean to have asymptotic
variance gien by (4.2), have a Dint derivative at 0 (the location parameter) and
are strictly monotonic for all « in (F(0, 1)). Then, amongst all trimmed means, a
mazimin efficient one exists.

Proor. For each F ¢ F, vr(a) is a continuous function of a for 0 < « < 3.
The last assumption is required since it eliminates the possibility of the density
being zero in a one-sided interval about F'(a) or F~ (1 — «) which would
make vp(a) discontinuous. When « approaches 0 vr(a) approaches either

®» t* dF(t) or infinity continuously. When o tends to %,

(43) (3 — @)B™ = lims-o [F(B) — F(0)]B™ = F'(0)
80 that

(4.4) Ve(a) = {F(0)}"

Thus, the function

(4.5) V(e) = supr Ve(a)/cr,

where cy is the variance of the best estimator for samples from F(z), is a lower
semi-continuous function of o and therefore attains a minimum.

REMARKs. If we let cr be an arbitrary number so that expression (4.5) is a
risk, then we can drop the condition that all members of & have finite information
and also allow F(z) to have a jump at 0 or a Dini derivative there. The proof
proceeds in the same manner as before. The extension is of interest when cr is a
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gcaling parameter so that our objective is to minimize the maximum asymptotic
variance of a trimmed mean when all the populations have equal scale. It should
be noted that all symmetric unimodal cdf’s either have a jump at 0 or a Dini
derivative there. ‘

A theory of admissible trimmed means analogous to the theory of Section 2
can be developed, however, we shall just discuss some examples. When § con-
sists of the Cauchy and normal distributions the best choice of o is approxi-
mately .275 and the ARE of this trimmed mean to the best estimate is 81.78 %.
A numerical search in the neighborhood of a = .275 yielded an efficiency of
81.801 %.

Since the Hodges-Lehmann rank type estimator based on the maximin rank
test [7] has ARE 82.8 % it appears that this trimmed mean is very close to the
a.m.e.l.e. Since this trimmed mean has ARE 83.5 % compared to the median
for double-exponential data, it is the maximin trimmed mean when the double-
exponential distribution is added to &.

An interesting contrast to the situation of the Cauchy and normal distributions
is provided by considering F to consist of the logistic and double-exponential
distributions. The maximin efficient trimmed mean has efficiency of about 82—
83 % relative to the best estimators. The maximin efficient linear estimator was
about 92 % as efficient as the b.l.u.e.’s.Thus, restricting oneself to a trimmed
mean can lead to a considerable loss of efficiency. Intuitively, this is not surpris-
ing. When § contains distributions which are not too disparate, the a.m.e.l.e.
should be closely approximated by a convex combination of the relevant a.b.l.
u.e.’s rather than by a trimmed mean. If § contains widely different distribu-
tions, then the a.m.e.l.e. will not have components that are a.b.l.u.e.’s for some
of the densities. Some sort of weighted average of the middle portion of the or-
dered sample would be the only reasonable linear estimator to use and the
trimmed mean is an average of the middle portion of the data. As an illustration
consider the case where § contains the Cauchy and normal densities. The a.m.
e.l.e. can’t behave like the sample mean in the tail as the mean is not consistent
for Cauchy data. In fact, the a.b.L.u.e. for Cauchy data puts negative weights
in both extreme fourths of the sample so this estimator behaves poorly for nor-
mal data. Intuitively, it appears that the a.b.l.u.e. would put positive weight
in the middle half of the ordered observations and essentially very little weight
elsewhere. It is not too surprising, therefore, that the asymptotically optimum
trimmed mean averages only the middle 45 % of the data.

Recently [15] Tukey proposed the mid-mean, which averages the middle 50 %
of the data as a robust estimator for general use. He cited the numerical work of
Crow and Siddiqui [6] in support of his suggestion. Since the mid-mean is quite
close to the asymptotically optimum trimmed mean when sampling from either
normal or Cauchy data, it seems to us that the practitioner would be overly
cautious if he used it when he thought his data was nearly normal with some
possible contamination.

The second class of robust linear estimators which are computationally con-
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venient are linear combinations of a few sample percentiles. Let 0 = w, =< u; =
<o Uy £ Upqy = 1 be r-fractiles and let n; = [nw;] 4+ 1 so that z(n.) is the sam-
ple 100r;th percentile. The estimators in this class C are representable in the
form

(4.6) S = Z:=1 Wi (n;) 5

where Y i w; = 1. For any continuous density function f (with corresponding
h function given by (2.3)), the asymptotic variance of S is given by

(47) V(h, @) = e 2jm lwawi/hehslmin (us, us) — us,
= 2 (s — wi)[(1 = w) (1 — )]
(i wi(l — up)h™)? = 2= ASS,
where
(4.8) A= (ui — ) [(1 — w) (1 — wssa)]7,
8i = 2i=iwi(l — uy)h;

Uy = 0, h, = h(u,) and ho = 0.

We now state the main result of this section

TaEOREM 4.2. If the h functions corresponding to the members of a family F
of density functions satisfy

(4.9) B*(w) = inf h(u) >0  for ue(0,1),
(4:.10) [h, - h1:_1]21'£—1 kg 0,

where i = u; — i — 0 uniformly for all the h functions, and if there vs one
estimator in the class C of linear estimators using at most r percentiles with bounded
variance for all members of F, then C contains an estimator which attains the mini-
max variance for samples from any member of the family §. Moreover, if the den-
sities in § satisfy Assumption one of Section 2, then C contains a maximin efficient
estimator for .

Before presenting the proof we shall show how the assumption that an esti-
mator with uniformly bounded asymptotic variance for all members of F exists
implies that a robust linear estimator does not place all its weight on the ex-
treme order statistics. We shall treat the smallest order statistics in detail. For
any estimator based on r fractiles (r < m), the maximum information possible
to achieve is

(4.11) I, = Z:=1 (hi — hia)'ri

Thus, the asymptotic variance of any estimator based on s, - - , u, is always
greater than or equal to I, . As V(h, w) < Q, where @ is the uniform bound of
the variance, and since (h; — hi_1)?/7i — 0 as 7; — 0, there is a constant ¢ > 0
such that u, > c.
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Proor oF THE TuroREM. By hypothesis there is an estimator » € C satisfying
(4.12) supr V(h, v) = @
so it suffices to consider those estimators x £ C such that

(4.13) R(u) = supa V(h, n) = Q.

As R(u) is a number in the interval [0, Q], there is a sequence u? = (@, B?)
of estimators in C, obeying Condition (4.13), such that

(4.14) R(u?®) — ¢ = inf R(u).

Since each coordinate u,” of u'” is in [0, 1], there is a subsequence (also written
as u”) of estimators which have mu/s and such that u,® —v;,7 =1, ---, m.
Although some of the v’s may be identical, for any ¢ > 0 there is a ¥y > 0
such that

(4.15) A lui? — ;| < e
where
(4.16) o —w| =0

oris >y

if j is sufficiently large. It will be shown that for any » > 0 the estimator u‘”
can be approximated by an estimator x**” whose u’s are close to the distinct
v;’s, i.e.,

(4.17) V(h, u*?) £ V(h, u?) 4+,

for all A, if j is sufficiently large. Once this has been demonstrated, since the
weights w;*” are bounded (the estimator has asymptotic variance <Q), there
is another subsequence u'” = (u;”) converging to u’ = (u;, w;:). Since the
{u/} are separated, ie., |u; — wia| > v/2, i =1,---, r < m and since the
variance (4.7) is a continuous function of the w; and w;, for every A, V(&,
w*®y = V(h, u'). Thus for any 7 > 0

(4.18) V(h, b') S limjse V(h, u) + 7
or
(4.19) V(h, 1) £ lim sup V(h, u*?) £ lim sup R(x*?) = ¢.

The definition of ¢ means that R(x') = ¢ so that R(x") = ¢. The proof will be
complete once (4.17) is proved. When there are r distinct separated v.’s, the
result follows from the continuity of the variance (4.7). The difficult part con-
sists in showing that if several u.’s are close to one another, then replacing them
by one point (or deleting them if they are close to 0) and renormalizing the
weights given to the remaining fractiles does not increase the variance by more
than 7.-Consider the case when several u;’s are near 0 and are deleted, i.e., it
will be shown that for any n > 0 and v > 0 if 7,41 > v then thereisa é > 0
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such that if u;, -+, w; < 8, the estimator u* formed from the original esti-
mator u by deleting the fractiles u;, - - - ,u; and renormalizing the weights satis-
fies

(4.20) V(h, u*) < V(h,u) + 2.

The asymptotic variance of the estimator u = (4, W) is given by
(4.21) Dim ASE + Dimin ASE.
Now let S; = 8,41 + S:j. This defines S;; . Consider the quantity
(4.22) Z = 2ia A

Letz = >.iw;.Ifz % 0, Z is 2° times the asymptotic variance of the estimator
based on the fractiles u , - - - , u; with weights w;/z. However, the information
in these quantiles is uniformly small if all the u; are small. Thus, for any ¢ > 0
there is a positive § < % so that if u; < 8, then z* < Z. By the Minkowski
inequality

(423) Z < [(FASH 4 (wi/(1 — )Y Sisal < QL + 2697
Therefore, when u; < 8
(4.24) l2| < €QH1 + 26%7H).

Now the estimator given by (wj41, ==+, %r; wipa(1 —2)7% -+, w,(1 —2)™)
has asymptotic variance

(4.25) (1 — 2)( X ASE + us(1 — uy) 'Sin).
This can exceed (4.21) by at most
(4.26) 2Q(le] + 28/7)/(1 — l2])’,

which can be made arbitrarily small by choosing & sufficiently small. A similar
argument shows that we may also assume that the w’s are bounded away from
one.

Now suppose %; and u;41 are close but uiye > uip1 + v/2. Let us consider
the effect on the asymptotic variance if w41 is deleted and w; is replaced by
wi + Wiga - Since |[Sipe| < (2Q/7)} and [Sina| < (Q/(wirs — ui))?,

(4.27) lwisa/hisa| < K(Q/(uisa — us)).
For the new u’s and weights w’s, which will be denoted by primes, A; = A;

forj < 4, Aty = 0, Aige = Auye + (win — w)[(1 — ) (1 — uip)]™, 85 =
Sjforj =i+ 2,and forj < <
(4.28) 87 — 8 = wipn((1 — wipr)hih — (1 — wus)h™)
wiya(1 — %) ((hi — hig1)/hihita)
+ wina (Ui — Uig1)/hiza).

We have placed weight w; 4+ w;41 on u; and have made the new ;4 equal to
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the old u; with no weight. The validity of formula (4.7) is unaffected by these
changes. Therefore,

(429) 18] — 8i < Kilhi — honal(uiss — u) ™ + Ka(uinn — i),

J# i+ L
As u;41 approaches u; , the first term on the right side of (4.29) approaches zero
because of the finiteness of information (Condition (4.10)) and the second term
clearly goes to zero. Hence, the difference in the variances of the two estimators

tends to zero as ;.1 approaches u; . Thus, in at most finitely many steps we may
reduce the problem to the case where the u,’s used are separated by at least v/2.

6. Discussion. The existence proofs given in this paper are mainly of theoretical
interest and the reader may ask what are their implications for further research
which may lead to practical procedures.

The assumptions of the present article were unrealistic in that the statistician
had to choose one estimator and could not change it as the data accumulated.
Originally, we had hoped that the maximin asymptotic efficiency would be higher
so that one might recommend these procedures for moderate sample sizes.
Indeed, we have seen that for some families of possible densities a suitably
chosen trimmed mean is quite efficient. The numerical work of Crow and Siddi-
qui [6] also support this conclusion for small sample sizes.

There are several ways one could modify his estimate as the data accumu-
lated. One procedure would be to reduce the family & of possible densities for
the observations. This could also be combined with the Bayesian approach of
Birnbaum and Laska since Yhap [16] has obtained the Bayes estimate for a
prior distribution over a finite family of densities. At present the authors are
working on estimating the optimum weights for a linear combination of a finite
number of percentiles directly from the data. This can be done since these
weights only depend on the density function at these percentiles. As the sample
gets larger one would use more percentiles. Thus, eventually one would have a
fully efficient estimator.

Since procedures, such as the one proposed, would be more complicated to
use than a linear function of the ordered observations, it is useful to obtain a
lower bound on the maximin efficiency attainable by various simpler types of
estimators over families § of densities which are likely to arise in practice. The
results of [7] applied to Hodges-Lehmann estimators constructed from the
maximin rank test for a family F of densities gives another lower bound on the
maximin efficiency obtainable by using a non-linear function of the ordered
observations. In the example given in Section 3, we noted that the maximin
efficiency of the Hodges-Lehmann estimator based on the maximin rank test
was higher than that of the maximin efficient linear estimator. We conjecture
that this is generally true.
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