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0. Summary. A general method for determining stopping rules to obtain a
fixed-width confidence interval of prescribed coverage probability for an un-
known parameter of a distribution is obtained. Asymptotic theory in the sense
of Chow and Robbins [4] is discussed. The sequential procedure obtained is
asymptotically consistent and efficient in the sense of Chow and Robbins [4].

1. Introduction. Fixed-width confidence interval estimation for the mean of a
normal distribution has been considered by Ray [6] and Starr [7] etc. The anal-
ogous problem for the variance of a normal population has been considered by
Graybill and Connell [5] by using two stage sampling. Chow and Robbins [4]
have considered the problem of determining a confidence interval of prescribed
width and preseribed coverage probability for the unknown mean of a population
with unknown finite variance. They constructed a stopping rule and thereby de-
veloped an asymptotic theory in a certain sense. When there are some nuisance
parameters present, presumbaly unknown, fixed sample size procedure will
usually not work to obtain a fixed-width interval with a given coverage proba-
bility. But there are examples where there are no nuisance parameters and still
the fixed sample size procedure does not work, e.g., for the variance of a normal
population with zero mean. In all such cases a stopping rule can be adopted which
will provide a bounded length confidence interval of given coverage probability.
However, bounded length confidence intervals with prescribed coverage proba-
bility have been treated in few special cases. The object of this note is to give a
general method of constructing sequential procedure for obtaining fixed-width
confidence intervals of prescribed coverage probability for an unknown parameter
of a distribution involving possibly some unknown nuisance parameters. The dis-
tribution involved will be assumed to be known except for the parameters. For
the sake of simplicity, the discussion is restricted to the case of a single nuisance
parameter since the case of several nuisance parameters is immediate.

Let p(z, 61, 6;) be the probability density function of a random variable X
(for convenience with respect to Lebesque measure) with real valued parameters
6; and 6, where 6, is regarded as nuisance parameter. We want to determine a
confidence interval of fixed-width 2d (d > 0) for 6; when both 6; and 6. are un-
known, with preassigned coverage probability 1 — a (0 < a < 1).

AssumrrioN. We assume that all the regularity assumptions of maximum
likelihood estimation are satisfied.
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NotaTioN AND PrRELIMINARIES. N will denote a bonafide stopping variable (i.e.
N is a positive integer-valued random variable such that the stopping set {N =
n} ¢ §, where §, T sub-o-algebras are the s-algebras of subsets generated by

X" = (X1, -+ ,Xs)and P(N < «) = 1).n will denote the fixed size of a ran-
dom sample. Fisher’s information matrix is

I(n) = n(lii)’ l,j = 1,2,
where

li; = —E(8" log p(x, 61, 6:)/90:99;).

We assume (1;;) to be positive definite. And (4;;)™ = (\i;) = A, ie. I (n) =
A/n.

61(n) and :(n) will denote maximum likelihood estimators (possibly un-
biased which can be done in most of the cases by trivial modification of the MLE,
though unbiasedness is not essential for our discussion) of 6; and 6, respectively
based on a random sample of size n. It should be noted that #;(n) is asymp-
totically normal N (61, Au/n) where Ay = Au(6:, 6;) since in general the I;;’s are
functions of 6, and 6, .

Let {a,,n = 1} be a sequence of positive constants converging to a con-
stant a such that

(27r)—1/2 f:a 6—3212 dr = 1 — a.
Let
I, = [by(n) — d, bi(n) + d] and
(1.1) ng = smallest integer = ™\ (6;, 6:)/d” = ng.
From (1.1) it follows that limg.o s = ~ and
lima.o [d na/a" (61, 62)] = 1.
Therefore,
limg,o Pr {61 £ In,} = limg.o Pr {na”|fi(na) — 6:)/M1% < d(na/Mu)"?
= Pr{|N(0,1)| < d},d Za
=z1—oa

We will treat ny as the optimum sample size if 6, and 6, were known. This is
not justified in the strict sense but will serve as a standard for comparison with
the stopped random variable in the sequential procedure to be adopted. And in
some cases 7o might turn out to be optimum if only 6, were known and A (6:,
6:) = Au(6s), for example, in the case of a normal distribution N (g, ¢°) where
0, = pand 0, = 0.

2. Stopping rule and the asymptotic theory. Now when 6; and 6, are unknown,
a fixed n such as that determined by (1.1) will not be available to guarantee
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fixed-width 2d and coverage probability 1 — a. So in analogy to (1.1) we adopt
the following sequential rule. Let m be a given fixed positive integer.
R: Starting with n = m, stop whenever for the first time

(2.1) n = a/n2)\11(él(n)7 92(71'))/‘12;
ie. N = inf {n = m:n = an25\11(n)/d2} where 5\11(’";) = )\11(91(’";), éz(n))

LemMma. Under the sole assumption An(61, 02) < o, the sequential process termi-
nates with probability 1.

Proor. Under the regularity assumptions, Ayi () — Mu(61 , 6;) with probability
1. Hence the lemma follows from the fact that the right hand member of (2.1) —
1o with probability 1 which in turn implies Pr {N = «} = 0.

Before discussing the asymptotiec theory in the sense of Chow and Robbins
[4] we state the following due to Anscombe [1].

Let {Y,, n = 1} be an infinite sequence of random variables and suppose
that there exist a real number 6, a sequence of positive nubmers {w,} and a dis-
tribution function F(z), such that the following conditions are satisfied:

(A1) Convergence in law of Y, : For any continuity point z of F(z),

Pr{Y, — 0 £ z w,} —¢ F(x) as m— o,

(A2) Uniform continuity in probability of Y, : Given any ¢ > 0 and n > 0,
there is large » and small positive ¢ such that, for any n > »,

Pr{|Y, — V.| < &, simultaneously for all integers

n' such that [n" — n| < en} > 1 — gy

TuroreM (Anscombe). Let {n} be an increasing sequence of positive integers — oo
and let {N (1)} be a sequence of positive integer-valued proper random variables such
that N (t)/n.— 1 in probability as t — . Then if the sequence of random variables
Y. satisfies conditions (Al) and (A2),

Pr{Yww — 0 < 2w,,} —¢ F(2) as t— oo,

In our case, Y, = fy(n), F(z) = &(z) = (2r)~ [Z., ¢ " du and note that
the condition (Al) is evidently satisfied by 6:i(n) upon taking w, = (\u/n )t
and 6 = 6;. As demonstrated by Anscombe [1], 8i(n) also satisfies (A2) (The-
orem 4 of [1]).

TuroreM 1. Under the assumption E(sup, Mi(n)) < o,

(i) limg,oN/my = 1 a.s.,
(ii) limg.o Pr. {1 Iy} = 1 — a, asymplotic consistency,
(iii) limg,o E(N)/ne = 1, asymplotic efficiency.
Proor. To prove (i) let yn = Au(n)/A\u, f(n) = nd’/a,’ and ¢ = a’\u(6;,
62)/ d> = ny — » as d — 0. Then the conditions of Lemma 1 of Chow and Rob-
bins [4] are satisfied and hence

lim;,o N/t = lmg.oN/ng = 1 a.s.

To prove (ii) we observe that N(¢)/t — 1 a.s. as { — » and hence N(t)/n, — 1
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a.s. as t — o where n; = [f] greatest integer < . We have already noted that
f1(n) satisfies conditions (A1) and (A2) and hence by the theorem of Anscombe
it follows that

(na(6r, 0)H(B(N(D) — 6) —e N(0,1)  as t— .
Further,
(N(£)/ (01, 6) (BN () — 6:1) = (N (2)/n:)}(ne/ M) (Bu(N (2)) — 61).

Now since N(t)/n;— 1 a.s. as t — o, therefore a well known theorem of Cramér
[3] implies

(N )/ M6, 62))}(Bu(N(t)) — 61) > N(0,1)  as t— .
Also from (i) it follows that d(N /A1) —as. @ as d — 0. Therefore
limg,o Pr {6, € Iy} = limso Pr (N M) (N () — 6 = d(N(t)/™M1)}
=Pr{|N(0,1)| = a} =1— a.

And finally, (iii) follows from Lemma 2 of Chow and Robbins [4].

It should be noted that (i) and (ii) are universally valid and the assumption
E(sup, Mi(n)) < o is required only for the validity of (iii). However, in some
cases it might be possible to establish (iii) without the hypothesis

E(sup, Au(n)) < o
by using Lemma 3 of Chow and Robbins [4].

3. Examples. (a) N(4, 0?) (0 < o® < ): Taking 61 = p, 6 = o%, it is easily
found that the information matrix is

" 0
(L) = and M(6s,0:) = 6 = o

0 306
The maximum likelihood estimators of 6; and 6, are, respectively,
fi(n) = Xp = () 2 imwi and fy(n) = n Yo (X — X))

Instead of using 6x(n), we can use &, (n) = (nx(n))/(n — 1) = S, which is
an unbiased and consistent estimator of 6, . Hence we obtain the following stop-
ping rule.
R:N = inf {n = 2in = a,°8."/dY}
and  mo = (dd”)/d".

(b) N(p, )0 < o* < )i = o’, 6. = . Then the information matrix is

0.7%/2 0
(L) = and A, 0:) = 2012 = 2",
0 6"
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R:N = inf {n = 2:n = (20,28,')/d}
and no = (20°0*)/d".
(¢)' p(«'|0) = exp (—6z),2 = 0,0 < § < ». Then
i(0) = —E( log p(x | 6)/86°) = 6  and
R:N = inf{n = 1:n = a,)/(X,)d")} and n, = o’0*/d".

That the hypothesis E(sup,s2 Mu(n)) < o is true in (a) and (b) follows
from the following lemma which is proved from Wiener’s theorem. However, the
hypothesis is not true in (¢) and hence (iii) cannot be concluded from Lemma 2
of [4]. We first state Wiener’s theorem without proof which can be found in [8].

TueorEM (Wiener’s special case). Let { X, ,n = 1} be a sequence of iid random
variables with E|X,|" < » or E|X,|" log*|X,| < « according asr > 1 orr = 1.
Then

E(supazin”| 2t Xi7) <

and conversely.
LemMA. Under the assumption 0 < ¢° < o,

E(supnz2 8,Y) < © for ¢ =2

where S, is defined in (a). )
Proor. Forg = 2,8 = (n — 1)7 2 (Xi — X.)' = (n — 1) 20 X/
—n(n — 1)7'X,’. Since

822 (n— )72 X — an — D7E + (n — 1)7X + 2%
SX+ (- DT XX+ X
Therefore,
SUPnz2 S’ £ X1 + Supnse (n — 1) D 70 X + supasin (i Xi)o

Therefore, E(sup,s: S.°) < » if EX* log*|X|* < « and EX* < «. But EX®
log" X" £ EX* < » and EX* <  are true for normal distribution with finite
variance. Now assume ¢ > 2. Then,

an = (Snz)qlz = [(n - 1)_12:';1 Xi2 + an]qlz

or

IIA

27%[(n — 1) (i XN + | Xl
< 272 {IX] + (n = 1T XA + X,
Therefore,
SUDaz2 St < 2771277 {|X\ + supaze(n — 1)™( i X))
+ suppz1n 7Y 25 Xl
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Therefore, E(supnzz S»’) < « if E|X;|* < « which is true in a normal dis-
tribution with finite variance. This completes the proof of the lemma.

REMARK. It should be noted that in case of a single parameter family of dis-
tributions, the stopping rule R as determined by (2.1) takes the form:

R*:N = inf {n = m:n = a,/d%(6,)}

where i(8) = —E(8" log p(X | 6)/86") and 6, is the MLE of 6. However, if
2(0) is independent of 6, no sequential procedure is required since the bounded
length confidence intervals of given coverage probability can be based on normal
theory. More generally, no sequential procedure is required when Ay (6, 62) =
Mi(62) and 6, is known. As an example where this is the case, is a normal dis-
tribution with the unknown mean and known variance. The discussion of the
note has been restricted to the case of a single nuisante parameter. However,
this was done only for the sake of notational simplicity and the generalization to
the case of k nuisance parameters is immediate.
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