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AN OPTIONAL STOPPING THEOREM

By BeEnTON JAMISON AND STEVEN OREY

Unaversity of Minnesota

Let Y = (Y., ., n = 0) denote a stochastic sequence of integrable random
variables such that each Y, is measurable with respect to &, , (F,) being an in-
creasing sequence of sub-o-fields of the o-field of the underlying probability space.
The notion of stopping time will be relative to (5,). It may or may not be true that
there exists a constant M such that

(1) |B[Yq) = M

for every bounded stopping time 7'. In Theorem 1 it is shown that for a certain
very special class of sequences a suitable M does exist. This fact is used in Theorem
2 to obtain a result in the ergodic theory of Markov chains. Related results have
been observed before, see for instance [1], but the present result seems new and the
proof is short and intuitive.

Let X = (X,.,%,,n = 0) denote a Markov chain with state space (S, ®) and
stationary transition probability function P(z, B). Write P*(z, A) for the k-step
transition probability function.

TaEOREM 1. Let g be a real valued measurable function on (S, ®) which is bounded
in absolute value. Suppose

Gg(z) = limye Zl?=l (P*9) (2)
exists for all zeS, and that Gg s bounded in absolute value. Let
Y =(Y.,%,n20),Y, = > ng(Xs). Then there exists an M such that (1)

holds for every bounded stopping time T.
Proor. Write

Zn = 2iog(Xi) + Gg(X,)
and observe that Z = (Z,, §,,n = 0) is a martingale. For bounded stopping

times 7' the optional sampling theorem for martingales implies E[Z7] = E[Z,],
hence

|E[Y 1] — E[Z| = sup. |Gg(x)].

The Markov chain X is recurrent in the sense of Harris if there exists a o-finite
measure 7 on (S, ®) such that 7 = 7P and B ¢ ®, 7(B) > 0 implies

(2) limp.e Po[Uimo [Xz e B]] = 1, zeS.

If the convergence in (2) is uniform in z, X is uniformly recurrent. The measure =
is unique up to a constant factor, and in the uniformly recurrent case it is neces-
sarily finite and will be assumed to be normalized to be a probability measure.
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(X is uniformly recurrent iff it satisfies hypothesis (D) on page 192 of [2] with a
single ergodic set.)

COROLLARY. If X is uniformly recurrent and g is a real valued measurable function
on (S, ®) which is bounded in absolute value and satisfies fs g(z)w(dz) = 0, the
conclusion of Theorem 1 holds.

Proor. It follows easily from known properties of uniformly recurrent chains
that Gy exists and is bounded in absolute value. For the general case can easily be
reduced to that in which there are no cycles (aperiodic case), and then P*(z, -)
converges to = in variation, uniformly in z and geometrically fast [2].

Let X be recurrent in the sense of Harris, D e ®, #(D) > 0. Let 1, T2, - - - be
the first, second, - - - entrance times of (X,) into D. If the chain Xr,, X r,, -+ is
uniformly recurrent, call D a Doblin set.

TurorEM 2. Let D be a Doblin set, Ae®, Be®, A © D, B & D. Then
|3 Yo P[X, e Aln(B) — P[Xy ¢ Blw(A)| is bounded uniformly in N.

Proor. It suffices to prove the result under the assumption that A and B are

disjoint. Let Vo = (Xo, X1 +++, Xz,), Vi = (Xrp1, Xrpga, -0+, Xy), oo
Observe that V = (Vi ,%r, , k = 0) is a uniformly recurrent chain. A typical state
for this chainisv = (2o, 21, -+ , ), wherez, e D, 2, €S — D for0 = m < =n.
Let

g(v) = w(B), z.c4
= —w(4), z.¢B
=0, z.eD — (AUB).

Furthermore let ¢(v) = n + 1, so that ¢(v) equals the “length of »”. One easily
verifies that if # is the invariant measure for V, f g(v) # (dv) = 0. For given N
let Ty = sup {n: 2t q(Vi) < N}.Evidently T < N so the corollary applies to
give a uniform bound on [E[Zfi’o g(Vy)]| and this implies the truth of the
Theorem.
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