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Carnegie-Mellon University

1. Introduction and summary. Suppose that a fixed total number N of ob-
servations are to be made in a population IT which is composed of two strata
II; and IT,. For z = 1, 2, it is assumed that each observation in the stratum
II; has a normal distribution with unknown mean 6; and specified precision
r; (r; > 0). It should be kept in mind that the pre(31s1on of any normal distribu-
tion is the reciprocal of the variance.

Let p denote the unknown proportion of the total population II which is
included in the stratum II; . Then the mean § of the population II is given by the
equation § = pb; + gb,, where p + ¢ = 1. In this paper, the problem of estimat-
ing the value of § will be studied.

It will be assumed that the loss which results from any estimate § is the squared
error (8 — 6)°. It is well known that for any prior distribution of 6, 6;, and p,
the Bayes estimate of 4, after all of the observations have been taken, will be
the mean of the posterior distribution of §. Furthermore, the expected loss from
this estimate will be the variance of the posterior distribution of §. Therefore,
we must find a sampling procedure for which the expected value with respect to
the prior distribution of this posterior variance will be minimized.

Throughout this paper, it will be assumed that the joint prior distribution of
01, 0;, and p is as follows: 6;, 6., and p are independent; the distribution of p
is a beta distribution with parameters « and 8 (e > 0,8 > 0); and for¢ = 1, 2,
the distribution of 6; is a normal distribution with mean u; and precision ;.
This joint distribution has the following fundamental property: After any num-
ber of observations have been taken from II, IT; , or II,, the posterior joint dis-
tribution of 6; , 61, and p will again be of the same form and, in particular, 6, , 6, ,
and p will again be independent under their posterior distribution.

We assume that sampling will be carried out in two stages. At the first stage,
a random sample of size m (0 £ m < N) will be taken from the whole popula-
tion II. At the second stage, the remaining observations N — m are to be allo-
cated between the two strata IT; and II, . Hence, at the second stage, n; observa-
tions are taken from the stratum II;, where n, + n, = N — m. The problem is
to find an optimal choice of the design constants m, n;, and ny. Note that the
value of m must be chosen in advance of any sampling, whereas the constants
n, and 7, need not be chosen until the values of the first m observations obtained
from the whole population have been studied.
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In this paper, we shall develop effective approximations to the optimal sampling
procedure for situations in which the total number N of available observations
is large and, therefore, the optimal number m of observations which should be
obtained at the first stage will also be large. The techniques which will be pre-
sented can be extended for studying populations which are composed of &
strata (k = 2), in each of which the observations have a normal distribution.
However, although the theory can be extended without difficulty, the actual
computations become somewhat more complex, and we shall not consider these
extensions.

The optimal allocation of observations from the Bayesian point of view has
also been studied by Ericson [2], [3] and Draper and Guttman [1]. Ericson [2]
studied a related optimal one-stage stratified sampling scheme in which the
proportion in each stratum is known. Draper and Guttman considered the
optimal allocation at the second stage of a two-stage process, extending [2].
Ericson [3] investigated an optimal two-stage design different from ours in a
nonresponse context. Here we shall study the basic problem of finding the op-
timal choice of m at the first stage.

2.The allocation at the second stage. Suppose that a fixed number ¢ of observa-
tions are to be allocated between the two strata IT; and Iz, and let n; be the num-
ber of observations which will be taken from II,;, where n; = 0 and n; + n2 = ¢.
In this section we shall find the values of #; and n. for which the expected loss
is minimized. In Section 3 we shall let ¢ = N — m and regard these results as
specifying the optimal allocation for the second stage of the two-stage process
described earlier. There, the prior distribution of the three parameters 6, 6,
and p for the problem of choosing n; and n. will actually be the posterior dis-
tribution of these three parameters after the first stage of sampling has been
completed.

For any distribution such that 6;, 6;, and p are independent, it can be shown
by a routine computation that

(1) Var () = E'(p) Var (6,) + E*(g) Var (6:) + Var (p)E[(6: — 6)’].

After n; observations have been taken from II; for z = 1, 2, it follows from
Bayes’ theorem that the posterior distribution of p will be the same as its prior
dlstrlbutlon but the posterior distribution of 6; will be \normal with mean
ui and precision h; where

(2) pi = (hawi + nar&s)/(hi + had), ki = hi + nas.

Here, ; is the average of the n; observations from II;.

For any given values of n; and n., and any random variable W, let E' (W)
and Var’ (W) denote the expectation and variance of W under the posterior
distribution after # and Z. have been observed. Furthermore, let E(W) and
Var (W) denote the expectation and variance of W under the prior distribution.
In these terms, we must find values of n; and n, which minimize E[Var’ (8)].
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It can be shown that
(3) E{ET(6 — 6)°]} = El6: — 6)"] = b + by ' + (1 — )’ = A, say.

It is important to note that the value of 4, as specified by equation (3), does not
depend on the choice of n; and n..

It now follows that for any given values of n; and m., the expected loss is
specified by the equation:

(4) EVar' (0)] = B(p)/(l + mn) + E*(¢)/(he + man) + A Var (p).
Let
(5) p = (r/r)'E(9)/E(p).

Then it can be shown that, subject to the constraints that n; = 0 (¢ = 1, 2)
and m + ny = t, the value of n; which minimizes (4) is specified as follows:

(6I) n=0 if < (ph — h2)/r2;
(6II) ny = (hy — phy + lra)/(pr1 + 7o) if

¢t 2 max {(phy — h2)/r2, (ha — ph1)/pr1};
(6I1I) no=1¢t if t < (he — ph)/pr1.

One interesting property of the solution (6) is that the optimal values of m
and 7, depend on the distribution of the unknown proportion p only through its
expectation E(p). In particular, the optimal allocation when it is known that
p has a certain value po will be the same as the optimal allocation when the
value of p is unknown but E(p) = po. This property has also been noted by
Draper and Guttman [1] in their problems.

3. The expected loss for two-stage sampling. Suppose now that a total of N
observations are to be taken. A certain number m of them are first taken from
the whole population I and the number k; which lie in stratum II; are noted
(ky + k. = m) as well as the values of these observations. The remaining
t = N — m observations are then to be allocated between the two strata.

Suppose again that the prior distribution of 61, 6;, and p is as specified in
Section 1. After the m observations have been taken in the first stage of sampling,
the posterior distribution of p will be a beta distribution with parameters
¢ =a+kand B =B + k. For i = 1, 2, the posterior distribution of 6
will be normal with mean u; and precision k;, where u;” and &, are specified by
equation (2) with n; replaced by k;. Furthermore, 61, 6., and p will still be
independent under this posterior distribution. Again, for any random variable
W, let E'(W) and Var' (W) denote the expectation and variance of W with
respect to this posterior distribution.

Now suppose that the remaining N — m observations will be allocated op-
timally between the strata II; and II,, as prescribed by equation (6). The ex-
pected loss from this allocation, as computed at the end of the first stage of
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sampling, can be found from equations (4), (5), and (6). Let p’ denote the
value of p specified by equation (5) with E(p) and E(q) replaced by E’(p)
and E’(q). The expected loss will depend on which of the three conditions given
in equation (6) is correct at the end of the first stage of sampling when
t = N — m, pisreplaced by p’, and A, is replaced by 2. (i = 1, 2). Let S; denote
the event that the inequality in (6I) is correct when the indicated replacements
are made. Similarly, let S;; denote the event that the inequality in (6II) is
correct, and let Sy;; denote the event that the inequality in (6III) is correct.
Then the expected loss L’ as computed at the end of the first stage of sampling,
can be expressed as follows:

(7 L' = [E'(9)"/(h + k1) + [B'(9)/ (ks + (N — kn)rs) + A" Var’ (p)
) if S; occurs;

(711) L' = B (p) + r*E (/s + hon + Nrm) + 4’ Var' (p)
if Sir oceurs;

(7I1) L' = [E"(0)/ (4 (N — ko)1) + [E' (@)} (hy + ko) + A’ Var’ (p)

if Sy oceurs.

Here, A’ denotes the value of A specified by equation (3) with 4; and p; replaced
by k¢ and p fori = 1, 2.

We must now find a value of m such that E(L’) is minimized, where L’ is
specified by equation (7) and the expectation is computed under the prior dis-
tribution of 6;, 6,, and p. The variable A’ which appears in equation (7) de-
pends on the actual values of the first m observations and not just on the num-
bers k. and k. of these observations which belong to each of the two strata.
Therefore, the first step in the computation of E(L") will be the computation
of the conditional expectation E(A’ |k, ky) of A" when the numbers %; and k.
are known (k; + k2 = m) but the values of these observations are not known.
The result of this computation is

(8) E(A |k, ko) = A4,

where A is specified by equation (3).
The posterior distribution of p is a beta distribution as specified earlier. There-
fore,

9  E(p)=(a+k)/(a+B+m)=1—E(g) and
Var' (p) = (@ + &) (B + k)/(a + B+ m)(a + B+ m + 1).

It now follows from equations (8) and (9) that, for any given values of &, and
ke (k1 + ko = m), the expected loss L is as follows:

(101) L = (a+ B+ m)*{(a + k)*/ (7 + Fury)
+ (B + k) /ha + (N — k)]
+ A(a + k) (B + k) /(a + B+ m + 1)};
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(10I1) L = (a4 B8+ m){[rs'(a + k) 4+ (8 + ko) I/ (hars + hary + Nrars)
+ A(a + k)(B + ko) /(e + B+ m + 1)};
(10II1) L = (a + B8 + m) (a + k)b + (N — k)i

+ (B 4 2/ (P + Tears) + A + ) (B + ko) /(@ + B +m + 1)}.

The value of L is specified by equation (10I), (10II), or (10III) according as
S, S, or Sy oceurs.

We must now find a value of m which minimizes E(L). For any given value of
m, this expectation is computed under the distribution of k; and k, determined
from the specified prior distribution of p. Because of the appearance of the random
variables k; in the denominators of some of the ratios in equation (10), and be-
cause of the fact that L has a different form on eath of the three events S;,
S, and Siyr, the value of E(L) does not seem to be computable in a form that
is suitable for minimization with respect to m.

However, a few simple results should be noted. If sy — o« and Ay — « in
the prior distribution, then the values of 6; and 6, are known with high precision,
and the only uncertainty about the population II which remains concerns the
value of p. For this reason, all N observations should be taken in the first stage
from the whole population II (i.e., m = N).

Also, if @« — © and 8 — o in the prior distribution then the value of p is
known with high precision, and the statistician should not take any observations
from the whole population II (i.e., m = 0). He should allocate all N of the
available observations in an optimal way between the two strata.

We shall now develop some approximations which are appropriate when the
values of 41, hs, @, and B are not too large, and a large number N of observations
are to be taken.

4. Approximations for large samples. Suppose now that we let N — o,
The value of m which minimizes E(L) must also become infinite, for otherwise
the posterior variance of p would be bounded away from 0 and, hence, so also
would the minimum expected loss. As m — o, then with probability 1,

(11) ki/m—p, k/m—gq, and o —cg/p,
where ¢ = (7‘2/7’1)%. Furthermore, as N — o and m — « we shall let
(12) s = lim (N/m)

and shall assume that s is well defined (1 £ s £ «).
It can now be shown from equations (6) and (10) that the value L* = Nr,L
can be approximated as follows, when N — o« and m — «:

(181) L* =sl’p + ¢/(s — p) + Bpgl if s < p + (g/c);
(13II) L* = (ep + ¢)* + Bspg if s 2 max {p + g/c, cp + q};
(13III) L* = s[(ep)’/(s — q) + ¢ + Bpql if s < cp + g

Here B is a constant specified by the equation
(14) B = nd = n[(1/h) + (1/hs) + (1 — w)’].
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TABLE
Optimal value s* as a function of b (@ = 8 = 1)
¢ =125 ¢ =150 ¢ =175
b s* b s* b s*
0.000 1.250 0.000 1.500 0.000 1.750
0.010 1.181 0.011 1.380 0.012 1.579
0.050 1.138 0.075 1.288 0.055 1.481
0.101 1.114 1.150 1.242 0.309 1.318
0.506 1.046 0.750 1.114 1.237 1.154
1.012 1.016 1.500 1.056 3.094 1.051
=y = 1.6875 1.000 =y = 3.750 1.000 =y = 6.1875 1.000
¢ = 2.00 ¢ = 3.00 ¢ = 5.00
b s* b s* b s*
0.000 2.000 0.000 3.000 0.000 5.000
0.018 1.758 0.024 2.521 0.072 3.759
0.090 1.609 0.240 2.076 0.504 2.920
0.450 1.400 1.200 1.644 2.880 2.020
1.800 1.187 4.800 1.268 7.200 1.594
4.500 1.060 12.000 1.079 43.200 1.058
=y = 9.000 1.000 >y = 24.000 1.000 =v = 72.000 1.000

We shall assume, without loss of generality, that »1 < 7, and, hence, that
¢ = 1. With this assumption, the inequality in equation (13I) can never be
satisfied since s must be a least 1. Therefore, if f(p) denotes the prior beta pdf
of p, then it follows from equation (13) that

(15) V(s) = E(L*) = [i (cp + )*f(p) dp

+ s [ol(ep)’/(s = @) + qlf(p) dp + bs.
Here
(16) s’ = (s—1)/(c—1) and b= BE(pq) = BaB/(a+ B)(a+B8+1)

We have introduced the notation V' (s) in equation (15) to indicate that we shall
now be primarily interested in studying the behavior of E (L*) as a function of
s. Among all values of s (s = 1), we must find a value s* which minimizes
V(s) = E(L*). It does not seem to be possible to obtain s* as an explicit func-
tion of the given constants b, ¢, @, and B. However, various properties of the

optimal value s* can be developed.

5. Properties of the optimal procedure. Let b, ¢, a, and B be fixed constants
such that b > 0,¢ = 1, a > 0, and 8 > 0, and let s* be a value of s which mini-
mizes V(s), as defined by equation (15), over the set where s = 1. Then, in
problems with a large number of available observations, a proportion 1/s* of
the total number of observations should be taken from the whole population
IT at the first stage.
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It is shown in the next lemma that s* is never greater than c. Therefore, ac-
cording to the approximations which we are using, at least the proportion 1/¢
of the available observations should be taken at the first stage from the whole
population II. However, we have already remarked that if the value of p is
known with high precision then the optimal procedure will specify taking very
few observations at the first stage. These remarks serve to emphasize that our
approximations are appropriate only when the values of a and 8 are not very
large.

*

IA

LeEMMA. s c.

Proor. For s = ¢, V(s) can be written in the following form:
(17) V(s) = [o(ep + @)% (p) dp + bs,

This is an increasing linear function of s. Therefore, V(¢) < V(s) for s > c.

Since s* > 1, it follows from Lemma 1 that s* = 1 when ¢ = 1. This result has
a highly interesting interpretation: If r; = 7y, then, regardless of the prior in-
formation about 6;, 62, and p (within the range of the approximations which are
being used), all of the observations should be taken from the whole population
II at the first stage and no observations should remain to be allocated at the
second stage.

Next, let v be a non-negative constant defined as follows:

(18) vy = (¢ = 1DE(g) = (¢ = 1)8/(a + B).

Then we can establish the following result.

THEOREM. If 0 < b < v, then V(s) has a unique minimum at o value s* such
that1 < s* < c. Ifb = v, then s* = 1.

Proor. A straightforward computation shows that for 1 < s < ¢, the deriva-
tive V'(s) can be expressed as follows:

(19) V'(s) =b — [3[(ep/(s — q))" — Llaf(p) dp.

It can be seen from equation (19) that V'(s) will be strictly increasing over the
interval where 1 < s = ¢, and that

(20) V(1) =b—+~ and V'(¢) =b.

The theorem now follows from these facts.

It can be seen from equations (19) and (20) that s* — ¢ as b — 0. However,
it should be kept in mind that the approximations which have been developed
here are appropriate only when %; and %, are not too large and hence, by equa-
tions (14) and (16), they are appropriate only when b is not too small. It also
follows from (19) and (20) that the value s* which minimizes V (s) is a decreas-
ing function of b, for 0 < b < . Thus, s* decreases from ¢ to 1 as b varies be-
tween 0 and . This observation has a highly interesting interpretation. Since
b varies inversely with the precisions h and ks, then s* varies directly with
h1 and A, . In other words, the less we know about 6; and 6, (as measured by the
prior precisions of these values), the smaller will be the proportion of observa-
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tions we reserve for allocation at the second stage. This feature of the solution,
which appears to be contrary to intuition, can be heuristically explained as
being a consequence of the expression (1) for the variance of 8. The last term in
this expression is Var (p)E[(6; — 6:)’]. We have noted that the value of
E[(6: — 6,)"] does not depend on the choice of m, 7, , and ny, and that this value
varies inversely with A; and A, . Thus, the smaller that #, and &, are, the greater
the factor which multiplies Var (p) will be; hence, the greater will be the im-
portance of reducing this variance by taking a large number of observations
from the total population.

6. Numerical results. When 0 < b < v, the unique solution s* of the equation
V'(s) = 0 can typically be computed without difficulty for moderate values of
« and 8. As a numerical example we take the case @ = 8 = 1, and compute the
optimal value s* of s as a function of the value b. These computations are pre-
pared for ¢ = 5/4, 3/2, 7/4, 2, 3, 5.
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