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ON MOMENTS OF THE MAXIMUM OF NORMED PARTIAL
SUMS!

By DAvID SIEGMUND
Stanford University

1. Introduction and summary. Let X, X, X;, - - - be independent random
variables with £(X,) =0 (n= 1),andputS,=X1+ --- + X, (n=1).
Marcinkiewicz and Zygmund [5] and Wiener [8] have shown that if the X’s
have a common distribution, then

(1) Efsup. |S./n|]} < «
provided that
(2) E{X|U(X]} < =,

where we have put U(z) = max (1, log z) (U:(z) = U(U(z)), ete.). Burk-
holder [2] has extended this result by showing that (1), (2), and

(3) Efsup, [X./nf} < «,

are equivalent. More recently, motivated by certain optimal stopping problems
Teicher [7] and Bickel [1] under various assumptions on the distributions of
X;, X,, - -+ have shown that

(4) Efsupn calS,|"} <
for certain sequences (c,) and positive constants «. The interesting special case
(5) o = (nUs(n))™"

is mot covered by the results of these authors.

This note gives a method which seems suitable for proving statements like
(4) in a variety of cases. The method involves modifications of standard tech-
niques used in the study of the law of the iterated logarithm. In particular, for
each @« = 1, 2, --- we are able to establish necessary and sufficient conditions
for (4) when the X’s are identically distributed and the sequence (c,) satisfies
(5). In Section 2 we state and prove one such theorem. Section 3 is devoted to
explaining in somewhat more detail the scope of our results and their relation to
the previously mentioned literature.

2. A maximal theorem.
TaEOREM 1. Let X, X1, X5, - - - be tndependent, identically distributed random
variables with EX = 0. The following statements are equivalent:

(6) BIX*UIXD/U(XD)} < =;

Received 15 May 1968; revised 11 October 1968.
1 Technical report no. 30. Prepared under the auspices of National Science Foundation
Grant GP-5705.
527

[
v
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @% /2
The Annals of Mathematical Statistics. KIS ®

)

WWww.jstor.org



528 DAVID SIEGMUND

(7) Efsup, (nUx(n))7'8,"} <
(8) Efsup, (nUs(n)) "X} < .

Proor. We shall show that (6) = (7) = (8) = (6). Suppose initially that
the distribution of X is symmetric and EX® = 1. Put

(9) = (nUx(n))7,  ba = 2 (Ua(n))” (n = 1),
and define
X = X.I{|X.,| b}, X =X.—-X.;
S, =>rx/, 8 =8.-8..

To prove (7) it suffices to show

(10) E{sup, c,|S. |} < =
and
(11) E{sup, c,|S," [’} < .
Now

Efsup ¢S} = B{XTe1X} = XTaBXS + 2057 lEIX ),
and from (6)
SiaEl X
= Do 2oiek [ iz ghien X
Do Dprcr [wicixivin X° S const. 27 U(5)/Ue(5) [wj<ixi sbj4n Xo
< const. E{X*(U(|X])/U(|X]))} < .
Similarly

ST alE| X" £ const. EX® < o,
and (11) follows. To prove (10) it suffices to show that
(12) [2 wP{sup ¢.)|S,/| > u} du < o

for some zo > 0. For each & = 0, - - - let m; be the largest integer < 3*. Writing
en = ¢}, we have by Levy’s inequality
(13)  Plsup eS| > u} = 2io Plen, SUpn.ncnisn 1S4 > u)
< 4 3 %0 PlenSnpe, > ul
We now use the fact that if [Z] < b, then for any ¢ > 0 for which tb < 1
E{exp (tZ)} = exp {tEZ + EZ%,

and Chebyshev’s inequality
(P{S, > z} < exp (—tz) []1 E{exp (tXi)}, t > 0)
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to obtain

log P{Sn,., > emu} < —temu + ey (0 < ¢ < bueyy, kb = 0,1, ++-).
Setting ¢ = b,,,, we have

(14) log P{Sh,,, > enu} £ —Ki(u — K») Us(mpn),

where K; , K,, - - - denote constants, the exact values of which are of no interest.
Taking x, to satisfy Ki(zo — K;) = 2, we have from (12)-(14)

[ oy uP{sup, e.|S.’| > u} du
< Ks 2 [wexp {—Ki(u — Ko)Us(m)} du
< KX pafouexp {—Ki(u — Ks) log k} exp {—Ki(u — K»)Ux(3)} du
S Ks 2k [uexp {—Ki(u — K»)Us(3)} du < .

This proves that (6) = (7) for symmetrically distributed X. In general, let
X, X, ... beiid and independent of X1, X;, - - - with

PX,? <2} =P X 22} (—o <z< o).

Let 8, = 2.7 X", Then (see Loeve [3], p. 263, or Bickel [1])
E{sup c,|S,['} = B{sup c.[Sn — E(8.” | X1, Xa, -+ )}
< E{sup, B[S, — 8. | X1, Xa, - -]}
< E{E[sup, c.|Sn — S, | X1, Xa, -1}
B{sup, ¢S, — 8,7} <

by our previous result.
To show that (7) = (8) we merely observe that

X = €a(Sn — Snc1)? £ 2(eaSe’ + €aaSna).
Suppose now that (8) is satisfied. Then
> et Plsup, ¢,X,> > b} < o,
or equivalently
S (1 = JI7aF (e k) < =,

where we have let F denote the distribution function of X* and have assumed,
as we may by a change of scale, that (1) > 0. Hence

JT [T (1 = F(aUs(2)y)) dy da
< a2l — Fle, k) £ —2ialog I1%=1 F(ea k)
< const. Dy (1 — [[oai Flca k) < .

Setting u = zUs(x)y, we obtain
IT [ovs@ (1 = F(w)) du(zUs(x)) " dx < .
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If we let ¢ denote the inverse of the function z — zU;(z), we have by Fubini’s
theorem

(15) JTUE® (@Us(z)) ™ da](1 — F(u)) du < oo.
Since o(u) ~ (w/Ux(u)) (u — ) and [{ (2Usx(2))dz ~ (U®E)/Us(t)
(¢ — ), it follows that (15) is equivalent to

JT W) /Us(u))(1 = F(u)) du < =,
which in turn is equivalent to (6).

3. Remarks. Relatively straightforward modifications of the proof of Theorem
1 lead to various other results, a few of which are summarized below.
Let X, X1, X;, - -+ be independent random variables with EX, =0 (n = 1).
(16) If the X’s are identically distributed, « = 1, and (c,) satisfies (5),
then (4) is equivalent to

E(X?) < =.

(17) If the X’s are identically distributed, & = 3, 4, ---, and (¢,) satisfies
(5), then (4) is equivalent to

EX|* < .
(18) If the X’s are identically distributed, & = 2, ¢, = (nU(n))™", then
(4) is equivalent to
B(X*Uy(|X])) < .
(19) If the X’s are identically distributed and ¢, = (nUz(n))_%, then
E{exp (¢ sups ¢a|Sa])} < =
for some ¢ > 0 if and only if

Elexp ({X])} < =

for some ¢ > 0.
The result (18) improves on Teicher’s theorem [7] in the sense that with the
sequence (c,) of (18) Teicher requires that

(20) E(X’U(X]} < =

to insure (4). In this regard note that even (6) is weaker than (20). Moreover,
our methods apply in the non-identically distributed case, whereas Teicher’s,
which depend on the Wiener ergodic theorem [8], do not. (19) in part generalizes
a result of Freedman [4].

It is interesting to compare our results with those of Marcinkiewicz and
Zygmund [5] in the special case @ = 2. For future reference we state the ele-

mentary

(21) Lemma (Marcinkiewicz and Zygmund). If 21, 2., - -+ is any sequence



MAXIMUM OF NORMED PARTIAL SUMS 531

of real numbers and a;, as, - - - a non-increasing sequence of positive
numbers, then

SUPn @ 21 24| < 2 sup DETAR
The proof, which is omitted, is similar to that of the closely related Kronecker
lemma. If ¢, | and Z‘f cnEX,: < o, to prove (4) it suffices by (21) to prove
(22) Ef{sup,| 2.1 e’ X"} < const. D1 aBX,

which is what Marcinkiewicz and Zygmund do (see their Theorems 1 and 7).
(In the case a = 2, Bickel’s method likewise proves (22).) Moreover, when
applicable, this idea leads to elegant proofs. For example, 1f Xi, Xp, -+ are
independent and symmetrically distributed, then with ¢, = ¢ we have by Levy’s
inequality

E{max: i <a | Zlf ek'Xk/IZ}

(5 P{maxi<i<n | D 1 o Xi| > w!) du
< 2Pt aXd] > u)du = 2207 aiX),

from which (22) follows by monotone convergence. Symmetrization as in the
proof of Theorem 1 proves (22) in general. Truncation and a similar calculation
provide an easy proof that (2) = (1) in the identically distributed case. (The
method of Section 2 completes the proof of the equivalence of (1), (2), and (3).)
However, under the assumptions of, say, (18) the right hand side of (22) is
+ o, and in fact

(23) P{sup, [Us(n)] | 207 eeXs| = + oo} =

To prove (23) observe that by the Lindeberg-Feller theorem (some calculation
is required to verify the Lindeberg condition)

[Ua(n)] ! 21 X

converges in law to the standard normal random variable; (23) follows by the
Kolmogorov 0-1 law (see, e.g. [6]). Thus the method of Marcinkiewicz and
Zygmund does not without essential modification prove (18).
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