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ON THE LEAST SQUARES ESTIMATION OF NON-LINEAR
RELATIONS

By C. ViLLEGAS

Instituto de Matemdtica y Estadistica, M ontevideo!

1. Introduction. Consider a non-linear relation
(1°1) y=f(x17"'7xm;al;""ap)

among the real variables z, , - -, » and y, where f is a known function and a; ,

-, ap are unknown parameters. The problem of estimating these parameters
by least squares methods has been considered recently by Hartley and Booker
[1], assuming that the variables z; are not subject to error and that the variable
9 is observed with an error which is normally distributed. In this paper, which is
only a complement to a previous paper on linear relations [2], these assumptions
will be dropped, but it will be assumed instead that replicated observations are
available.

2. Notation and model. Suppose that, in order to estimate the non-linear rela-
tion (1.1), we have performed an experiment with n replications, which may
possibly have an incomplete block design, and suppose that, from the usual
statistical analysis of the data, we have obtained &k (m 4+ 1) estimators z;;, ,
Ym (1=1,---,k;7=1,---,m) converging in probability, when » tends to in-
finity, tovalues;; , ¥ whichsatisfy the non-linear relation (1.1). Using the vector
space approach of [2], we shall consider an auxiliary p-dimensional Euclid-

ian space U with an orthonormal basisuy, - - - , u, and an m-dimensional Euclid-
ian space U with an orthonormal basis vy, - - -, v,, and we shall define on them
the linear functionals 4, X , X; by Aup = an (h =1, -+ ,0); Xin V; = Zijn
and X;v; = x;; . Then we have

(2.1) yi = f(Xi, 4).

We shall assume that f is a continuously differentiable function. The value of
the differential of f at an arbitrary point (X, A*;AX, AA) will be denoted by
AXTx(X, A%) + AAf (X, A™), where f4(X, A*) ¢ U and fx(X, 4%) ¢ V. We
shall write simply

(22> fi =fA(X’i:A)7 in =fX(X’i:A)’
and we shall assume that the vectors f; do not lie on any proper subspace of .

We assume, in addition, that the joint distribution of the 2k random variables
WAy (where Ayim = yim — ¥:) and n*AX,, (where AXs, = X — X,) con-
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verges to a limit distribution (usually a normal distribution, with mean value
equal to zero). From this assumption it follows, in particular, by Theorem 3.1 of
[2], that the joint distribution of the random variables 2 (AYin — AXinfxs) con-
verges to the joint distribution of random variables d; (which, usually, are nor-
mally distributed, with mean value equal to zero). We assume also that the ex-
pected values o;; = & did; exist, that the matrix {o;} is positive definite, and that
the o;; are unknown, but consistent estimators s;; are available. Finally, we as-
sume that a preliminary estimator 4, of 4 is also available. It has been pointed
out by a referee that the only condition which must be satisfied by 4, is

(2.3) [4n = Al = 05(n7).

In other words, we assume that, given ¢ > 0, there are numbers K > 0, N > 0

such that )
Prob{n’ |[As — A S K} 21 — ¢

for all n = N. In Section 5 it will be shown how, under mild additional assump-
tions, a simple preliminary estimator A, may be obtained.
Sometimes the non-linear relation is given in an implicit form

f(x, - ) Tm; a1, -, ap) = 0.

This case can be brought back to the model considered in this paper by setting
Yi = Yin = 0.

3. An equivalent linear relation model. Define
(3.1) fin = fa(Xin, 4a),
(3.2) Gin = Yin — f(Xin, Az) + Anfin.
Since f,4 is, by assumption, a continuous function, f;» converges in probability to
f; and therefore g;, converges in probability to a limit g; given by
(3.3) g; = Af;.

Note that fin , gin are known, but f;, g; are unknown. In what follows fin , gin
will play the role of the observed data in a linear relation model which we are
going to set up. Note also that the “true” values f; , g; satisfy the linear relation
(3.3) whereas the “observed” values fi, , g typically will not satisfy it. Define
the “error” e.» by

(3.4) gin = Afin + €in .
Obviously e:» converges in probability to zero. From (3.2) and (3.4) we have
(3.5) Cin = Yin — f(Xin 5 An) + AAnfin )

where AA, = A, — A. By the differentiability of f at the point (X, 4), and by
our hypothesis about AX i, and AA, we have

ein = AYin — AX infxi + op(n_é)’
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and consequently the joint distribution of the random variables n'e:, converges
to the joint distribution of the random variables d; .

4. Results. If, in addition, we assume that, with probability 1, the matrix
{si;} is positive definite and the vectors f;, do not lie on any proper subspace, then
the hypotheses made in [2] are satisfied, and we may apply the estimation theory
developed there. In order to write the results in the notation of [2], consider an
auxiliary k-dimensional Euclidian space £, with an orthonormal basis wy, -« -,
wy, and define the linear transformations F, , F': £ — U and the linear functionals
G., G by

FnWi = fin 5 FW,' = fi,
GuWi = gin, GwW; =g

From the theory developed in [2] it follows that, if the linear transformation
S: £ — £ is defined by (Sw;, w;) = s;;, then the S-least squares estimator, de-
fined by

(4:.1) Zn = GnS_an/(FnS_IFn/)_I,

where F,,: U — £ is the adjoint of F, , is asymptotically efficient within the class
of ordinary estimators associated with the model (3.4). In the usual case in which
the d; are normally distributed, with mean values equal to zero, the error of pre-
diction (A, — A)u, for any fixed u € U, is asymptotically normally distributed,
with asymptotic mean value equal to zero and asymptotic variance equal to the
inner product (u, (FE7'F')'u), where = is the limit of S. Note that, although
the data of the linear model (3.4) depend on the preliminary estimator which is
used, the minimum asymptotic variance of an efficient estimator is independent
from it. It will be convenient to say that an ordinary estimator for the non-linear
relation is an ordinary estimator for an associated linear model like (3.4), corre-
sponding to any admissible preliminary estimator. Clearly, then, the least squares
estimator A, defined by (4.1) is asymptotically efficient within the whole class of
ordinary estimators for the non-linear relation, in the sense that it minimizes the
asymptotic mean square error of prediction within that class.

In the case in which the deviations e;, are asymptotically independent, with
asymptotic mean square errors o;; = o, we can take as S the linear transforma-
tion defined by Sw; = s’w; , where s;” is a consistent estimator of oi. In this case
the S-least squares estimator is the linear transformation which minimizes the
weighted sum of squares of deviations

(4.2) 28 (gin — Afin)”.

As was pointed out by a referee, the assumption that, with probability 1, the
matrix {s;;} is positive definite and the vectors f;» do not lie on any proper sub-
space may be dropped without any serious consequences. In effect, in such a case,
in probability, that is, with a probability which tends to 1 when 7 tends to in-
finity, the matrix {s;;} is positive definite and the vectors fi» do not lie on any
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proper subspace. It can be easily seen that this is all that is required in order that
all the above mentioned results remain valid, provided that the ordinary esti-
mators of a linear relation be redefined in the following way: a random linear
functional 4, is an ordinary estimator of 4, if 4,* = G,L, , where L,: U — £ is
a random linear transformation such that, in probability, F,L, is equal to the
identity transformation.

It can be proved also that the following definition is equivalent: a random
linear functional 4,* is an ordinary estimator of 4, if, in probability,
(4.3) A" = GuCoF (FuCoFn) ™,

where C,: £ — £ is a random positive definite transformation. The equation
(4.3), which was conjectured by a referee, implies, as was pointed out by a second
referee, that the notion of ordinary estimator is closely associated with the notion
of projection. In effect, C.*F,' A’ is the projection of C,'G, over the range of the
linear transformation C,.'F, (see p. 1681 of [2]).

6. A preliminary estimator. Assume that the equations
(5.1) g = (X, A (i=1,--,p),
have a unique solution
A* = so(Xl*, Tty X,,*; Z/l*, Tt Z/p*)
in a neighborhood of the point (X1, -+, Xp; %1, -+, ¥»), and that ¢ is con-
tinuous at this point. Then
(5.2) An = o(Xin, -+, Xon; Yin, *** , Ypn)

is defined in probability and is a consistent estimator of 4. We shall prove now
that A, is an admissible estimator, i.e., that it satisfies the condition (2.3). Ob-
viously A, minimizes

(5.3) Qu(4™) = 22 lin — f(Xin, AT

Assuming that the set of possible values of the parameter is open, by differen-
tiation of Q.(A™) we have, whenever 4, is defined,

(5.4) 2 yin — f(Xiny Au)lfin = 0.
By substitution of (3.5) in (5.4) we have
2P fin AMofin = 0p(n7)
and, if Fy is the restriction of F to the subspace spanned by wy, -« - , W,
IAALFF + 0,(D]] = 04(n7").

If we assume that f; , - - - , f, do not lie on any proper subspace, then by Theorem
3.5 of [2] FoFy is invertible and

1a4a]l = [[(FoFs) ™ + 0,(1)]| Op(n7Y),
from which (2.3) follows immediately.
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6. Comparison with other least squares estimators. The sum of squares
(4.2) may be written also as

(6.1) 28 lym — Lin(4A™T,
where
(62) Lm(A*) = f(Xin ) An) + (A* - An)fA(Xi" ) A")

is the first order Taylor development of f(Xin , A*). Hence, if 4, is a good pre-
liminary estimator, then 4, will be near the estimator A which minimizes
Qn(A*) = th;l si'2[yin — (X, A*) ]2’

and which will be called the non-linear least squares estimator. In the hope of
getting estimator: which are closer to 4, , it has beén recommended to follow
the Gauss-Newton iteration procedure, in the jth step of which we minimize
(6.1) taking as preliminary estimator the estimator obtained in the previous
step. However, we clearly see now that the iterated least squares estimators ob-
tained in this way are also ordinary estimators, and therefore all of them have
the same asymptotic efficiency as the estimator obtained in the first step of the
iteration procedure, and consequently, as far as the asymptotic efficiency is
concerned, there is no need to proceed further with the iteration method. This
does not mean, however, that the small- and moderate-sample size properties
cannot be improved by proceeding further with the iteration, and additional
research, using perhaps Monte Carlo methods, would be desirable to clarify this
point.

We shall compare now our estimator A, with the non-linear least squares
estimator A, . We shall assume that A, is a consistent estimator of A, since
otherwise any further comparison is unnecessary. By an argument similar to
that made in the previous section, it may be proved that, if A, is consistent,
then it satisfies the condition (2.3). Hence we can use 4, as a preliminary es-
timator in order to compute an asymptotically efficient A, minimizing (6.1).
By differentiation of (6.1) we obtain

Z [yin - f(Xm )ﬁn)]fA(X‘in ) An) = 0.
Therefore, (6.1) is equal to
2 Win — f(Xin, AT + 22 [(AY — An)fa(Xin, Aa)T'.

Since this is obviously minimized by 4, , it follows that A4, is also an ordinary
least squares estimator, and therefore, as far as the asymptotic efficiency is
concerned, there is no need to choose A, instead of the far simpler to compute
estimator 4, .
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