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1. Introduction. The mean of a distribution and the sample mean are key con-
cepts in the theory of statistics. The generalized means studied in this paper
share important properties of the expectation, which is seen in this context as a
distinguished member of a very large class.

There is an especially close relationship between the sample mean and the
theory of estimation associated with one parameter exponential families of dis-
tributions. Each of the generalized means determines analogous one parameter
families of distributions. Such families are introduced in Section 4. In sampling
from such a distribution the maximum likelihood estimate of the generalized
mean of the distribution is the generalized mean of the sample. Under appropriate
regularity conditions it is a strongly consistent and asymptotically normal esti-
mator.

In Section 2 the generalized means, called ¢-means, and sample ¢-means are
defined and some of their properties examined. A minimizing property is proved,
and they are shown to have the Cauchy mean value property. Also, an extension
of Jensen’s inequality is observed to be valid for r-means. Asymptotic properties
of strong consistency and normality of sample ¢-means are developed in Section 3.
A study is made of conditions under which the sample ¢-means are infinitely
often, or all but finitely often, above or below the distribution ¢-mean as sample
size becomes infinite.

Guenther [6] has recently discussed briefly estimation of A in sampling from
the one parameter family of densities

(1.1) flz;N\) = 2 0 <z <1 XN >0.

The following observations relative to this example are, on the one hand, irrele-
vant from the point of view of the discussion in [6]; on the other hand, they do
not at all indicate the scope of the present investigation. Nevertheless, they
illustrate a partial motivation for considering means other than the usual sample
mean. We note first that with changes of variable and of parameter, Y = —log X,
B8 = 1/X, (1.1) becomes the ordinary exponential distribution. The sample mean
is unbiased, sufficient, and efficient (in Cramér’s finite sample sense); it is
“the natural” estimate of B; the corresponding estimate of N\ is then
n/(— 2 ilog z;). We observe further that (1.1) is a ¢-family as defined in
Section 4, with ¢(z, 8) = log 86 — log z, 6(u) = exp (—1/u); the ¢-mean of
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(1.1) is exp (—1/X). The maximum likelihood estimate of exp (—1/\) is the
sample ¢-mean, exp (D, log z:/n) (the geometric mean of 1, - - , 2,), yielding
again the estimate n/(— >_:log z;) for \.

An account of these generalized means containing some of the results of the
present paper appears in lecture notes [2] of one of the authors. A subclass of
these means was investigated by Huber [7] in connection with a study of
robust estimation. A subclass of these, the r-means, has been investigated by
Gentleman [4]. Some properties of the r-means are implicit in work by Nikolski
[9] and by Ando and Amemiya [1].

2. ¢p-means and some of their properties. Let R denote the set of real numbers,
and let ¢(-, -) be an extended real valued function on B x R such that:

(2.1) ¢(=, 8) is non-decreasing in @ for each z in R;
(2.2) o(x,0) = 0for 6 > z, and ¢(z, ) < 0for b < z;
(2.3) ¢(z, 0) is a Borel measurable function of z for each fixed 6 in R.

Note that conditions (2.1) and (2.3) are almost enough to make ¢ jointly

Borel measurable in z and 6.
If v is a measure on the Borel subsets of the reals, we define N(8) = A (6, v, ¢) by

NO) = [o(z, 0)dv(z) = [¢¥(z, 0)dv(z) — [ (z, 6) dv(z)

if at least one of the summands on the right is finite; here we use the conventions
" = max {a, 0} and ¢~ = max {—a, 0} when @ is in [— 0, «]. We see that
if N(6,) is finite for some 8, then \(8) is defined (but not necessarily finite) for
all 6, and if N(6:) and N (6;) are defined then A(61) < N (6;) if 6; < 6,.

DEeriNITION 2.1. The real number p is a ¢-mean of v if A(#) < Oforallf < u
and N(0) = O for all 8 > u. The set of ¢-means of » will be denoted by M (») or
M (v, ¢). If v is the probability measure generated by the distribution function
F of the random variable X, then M (F), M(F, ¢), M(X) or M(X, ¢) will also
be used to denote the set of ¢-means. The notation @ = sup M (v) and g =
inf M (v) will be used.

By the support of a measure » on the Borel subsets of E is meant the intersec-
tion of all closed subsets C of R such that v(R — C) = 0. We define the interval
of support of v to be the intersection of all closed intervals I such that
v(R — I) = 0. If the interval of support of » is a proper subset of B, then ¢(z, 8)
really need not be defined outside the Cartesian product of the interval of sup-
port of » with itself. (Some of our theorems would need minor modifications in
this case.) If the interval of support (call it I) of » is a proper subset of R, and
if ¢ is defined on I x I so as to satisfy (2.1)-(2.3), then ¢ can be extended to
R x R so as to preserve (2.1)—(2.3); all extensions give the same set of ¢-means
of ». One way of extending ¢ is to let ¢(z, ) = o if 8 > x and (z, ) is not in
I xI,¢(x,z) =0if (z,z)isnotinl x I, and ¢(x,0) = —o if § < z and
(z,0)isnotinl x I.

If ¢(x, ) = 6 — z, the ¢-mean coincides with the usual mean. If 0 < p =
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p+q=16¢(,0) =1/pfor6 > z,¢(zx,z) = 0,and ¢(z,0) = —1/qforo < z,
then the p-mean is the p-fractile. Thus the ¢-mean is the median if ¢(z, 9)
= sgn (6 — z).

DeriniTionN 2.2. If » = 0 and ¢(z, 8) = |0 — x| sgn (6 — z) when § = =z
and ¢(z, ) = 0, then the ¢-mean will be called the r-mean and denoted by
M,(v), M,(X), or M.(F).

If ¢(¢) is non-decreasing, g(¢) > 0 fort > 0, g(¢) < 0 for¢ < 0, and ¢(z, 6)
= ¢g(8 — z), then the interval of ¢-means of a distribution function F is, in a
sense, a location parameter of the distribution. If ¢ is increasing then ¢1(z, )
= ¢l¥(z), ¥(0)] satisfied (2.1)-(2.3) as does ¢z(x, 0) = —o[¥(x), ¥(0)] if ¢
is decreasing. Many such means, with ¢(z, ) = 8 — z are discussed by Gini
[5]. If h(z) is positive and Borel measurable, then ¢*(z, 8) = h(z)é(z, 0)
again satisfies (2.1)-(2.3).If 2,0 > 0 and ¢ (=, 8) = 6 — =, one gets the harmonic
mean if A(z) = 1/z and the anti-harmonic mean if 2(z) = z. (Note that ¢(z) =
—1/6 + 1/x also gives the harmonic mean.) One has the “valore divisorio”’
([5], page 110) if z,0 > 0, h(z) = =z, and ¢(x, 0) = sgn (6§ — z). The ¢-mean
is the geometric mean if ¢(x, 8) = log 6§ — log « for z, 6 > 0.

In the following theorem we list some obvious properties of ¢-means and some
properties which follow in a straightforward manner from the definitions of
¢-mean and M(6) and from properties (2.1)-(2.3) of ¢.

TuEOREM 2.1.

(24) Ifa > 0then M(v) = M(aw).

(2.5)  IfN(p) = Othen pisin M(v).

(2.6) If M*(v) is the interior of M(v) and 0 is in M™*(v) then \(6) = O.

(2.7)  The set M(v) is a closed interval (possibly empty).

(2.8) M (v) is empty if and only if either
a) M0) s defined, non-zero, and of constant sign for all 6

or
b) N(8) is undefined for at least two values of 6.

(2.9) Condition (2.8a) 1s impossible if the support of v is bounded.

(2.10) If there s exactly one point u such that N(p) is undefined, then
M@) = {u}.

(2.11)  If for all 6 and 6" with 6 < 6" we have v{z: ¢(z, ) < ¢(z, 8)} > 0
then M (v) consists of at most one point.

(2.12) For 6 in M*(v), ¢(z, 8) is constant in 8 for almost all x (with respect
tov).

(2.13) If v is o-finite and if the sets {x: ¢(x, -) s discontinuous at 0} are
disjoint for distinct 6, then except for a countable collection of 6’s, N(8)
1s independent of the definition of ¢(z, -) at poinis of discontinuity;
thus the set M (v) 1s independent of the definition of ¢(x, +) at all points
of discontinuity. In particular, the last conclusion holds if the only dis-
continuity (as in the case of the median) s at 0 = z.

(2.14) If $*(z, 0) = o(z, 0) for x % 0 and if ¢(z, z—) < ¢"(z, ) <
o(z, x+) for all , then M (v, ™) = M (, ).
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CoroLLARY 2.1. If v 7s a finite measure with tnterval of support I, and if ¢
1s bounded on I x I, then M (v) # 0.

DeriNiTION 2.3. The real number up is a ¢-mean of the finite collection
S = {x1, -+, x,} of real numbers (not necessarily distinct) if it is the ¢-mean
of the measure » such that

»(B) = D> puIs(zi) where Ig(z) =1 ifzisinB
= (0 otherwise.

Equivalently, u is a ¢-mean of S if

(2.15) NB) = 2rad(m,0) <0 foralld < pu

and

(2.16) NO) = Diad(zi,8) 20 foralld > p.

We let M (S) denote the collection of ¢-means of S. If 2y, -+, z, are sample

values of a sample of size n from a distribution F, then because of (2.4) u is also
a ¢-mean of the probability measure corresponding to the sample distribution
function F, (i.e. uis in M(F,)), and p will be called a sample ¢-mean.

We note that
(2.17) if ¢ is finite valued then every finite collection of real numbers has at

least one ¢-mean; by (2.11) it is unique if ¢(z, 8) is strictly increas-
ing in 6 for each x.

If u = EX then E(X — u)* £ E(X — 6)® for all 6. In the following theorem
we extend this optimizing property of the expected value of a random variable
so that it applies to most ¢-means. In the special case where v is Lebesgue
measure and ¢(z, 8) = 2(0 — z) the following theorem gives the property of
regular means just mentioned.

TurorEM 2.2. Let v and v be sigma-finite measures on the Borel subsets of R,
and let ¢(-, +) satisfy (2.1)-(2.3), be Borel measurable on R x R, and satisfy
¢(z, ) = 0 for all x. Suppose p is in M (v) and N(n) is defined. Define

(1) ®(x,0) = [@ouww o, )| dy(u) if 0 > u,

(i) ®(z, 0) = [@avos ¢z, )| dy(u) if 0 < u, and let (z, u) be given by

(i) or (i) #f M(u) = 0 or N(p) < O respectively. Then

(2.18) f@(x, p)dv(z) = ftI)(x, 0) dv(x) for all 6.

There 1s equality in (2.18) #f and only ifeitherf@(w, p)dv(z) = o, 0orgf Nu) =0
almost everywhere (v) on (6, u) U [u, 8) or (8, p] u (u, 0) depending on whether
AMup) = 0 or Mu) < 0 respectively.

Proor. Suppose 6§ > u and N(u) = 0. Then

f‘b(x, w) dv(z) = ff((x,u):x<u<n°ru§u<xl ld’l div X v)
(2.19) = ff((:c,u)::c<u<u or § Su<z} Id’l d<V X 7)
+ f[u.ﬁ) [f(u,eo) Id)(xy u)l dV(x)] d’Y(“)
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and
J@(z, 0) dv(z) = [ [(uw:a<u<sor0gu<ay |6 d(v X )
= [ [i@ww<uuor 0zu<a |6 d(v X 7)
+ o U com 6z, )| dv(2)] dy(w).

The first terms in the final expressions for [ ®(z, p) dv(z) and [ ®(z, 0) dv(z)
are the same; we will compare the second terms. Recall that for § > u we have
N6) = 0 so that [¢*(x, 0) dv(z) = [¢ (z, 0) dv(z). But

Jwo [ we 62, u)| dv(u)] dy(u)
= [uo ¢ (&, w) d@]dy(w) = [uolfe*(z, u)d(@)] dy(x)
= [t [[ commr [0(z, u)| dv(2)] dy(w)
with equality if and only if
Jwo [ wolo(e, u)| dv(z)] dy(u)

is infinite or if A(u) = 0 a.e. (v) on [y, ). Thus in this case (2.18) holds and we
have equality if and only if either [ ®(x, u) dv(z) = o« (i.e. one of the two
expressions in (2.19) is infinite) or if A(u) = O a.e. (v) on [y, 0) = (6, u) U [y, ).

The proof is essentially the same in each of the other three cases and will
be omitted.

Various forms of the preceding theorem can be proved under various assump-
tions on ¢, », and v. Different definitions of ¢ and conditions under which there
is equality in (2.18) are involved in these various theorems. The theorem given
is not necessarily the most general, or even the most useful. It was chosen be-
cause it gives a certain amount of generality, is fairly easy to state, and because
of certain corollaries to it.

We note that in view of (2.14) the restriction “¢(z, ) = 0 for all 2 is not
as serious as might first be suspected. It does simplify the theorem statement and
the notation involved in its proof.

It can be shown that if u is in M (») and A(p) is undefined, then when y{u} = 0
we can use the definitions and conclusions of the theorem, and when y{u} > 0
we have ftI)(x, 0) dv(z) = oo for all 6.

In the special case where v is non-atomic (i.e. y{#} = 0 for each z in R) the
theorem is much more simply stated since all intervals involved may be assumed
to be open. We can define

&z, 0) = [@oyes oz, w)| dy(u) for all 9,
and there will be equality in (2.18) if and only if either [ ®(x, u) dv(z) =
orif ¥{(0, u) u (g, 0)} > 0. If in addition ¥(I) > O for every open interval I,
then we would have equality in (2.18) if and only if either [ ®(z, p)dv(z) =
or if 8 as well as u is in M (v). Note that in this case & does not depend on u
as it might in Theorem 2.2.
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It is perhaps worth noting that if ¢(z, ») is continuous in u for each z, then
from (2.12) we see that N(p) is the same for all u in M so that either M () is a
single point or AN(u) = 0 for all u in M (v). In the first case ® has only a single
definition, and in the second case we can use either definition (i) or definition
(i) for all 6 without running into trouble.

The following property of the usual mean value of a random variable is a
consequence of Theorem 3.2 of [3] and is obtained by setting M = {¢, @} and
Z = constant.

TrEOREM. Let X be a random variable, I an interval, and ® a convex function
defined on I, such that EX* < o, EX = u, P{X eI} = 1, and E®(X) < .
Then if ¥ (z) and ¢ (z) are the right and left derivatives respectively of ® and
¥ (2) £ ¥(x) £ ¥ (2) for allz, and if Ag, 2) = ®(x) — ®(2) — (z — 2)¥(2),
then

JAX,w)dP = [A(X,0)dP  for all 6.

If in Theorem 2.2 ¢(x, 8) = 0 — x, if v gives finite measure to finite intervals
so that there is a non-decreasing function ¥ inducing the measure v, and if
v = P, then the theorems are essentially equivalent.

The ¢-means have the Cauchy mean value property ([5], page 57):if S and T
are disjoint finite sets, then M (S u T') lies between M (S) and M (T). The follow-
ing theorem may be regarded as a generalization of this observation.

Tueorem 2.3. Let v with i = 1, --- , N or ¢ = 1, 2, --- be measures on the
Borel subsets of R and let v = Y ;vi. Assume M (v;) is non-empty for all 5. If
pe = inf U, M (v:) and u* = sup Ui M (v;) then M (») C [ux, 1.

ProOF. Suppose psx > — . If§ < pythen [ ¢ (x, 0) dvi(z) < [ ¢ (x,0) dvi(z)
for all ¢ so [¢ (x, 0) dv(z) < [¢ (x, 6) dv(x) with equality if and only if
both sides of the last expression are infinite. If strict inequality holds for all
0 < ux then M () C [u, © ). If equality holds for any § < usx thenif 6 < 6" < s
we have fdf(x, o) dv(z) = f¢+(w, o) dv(z) = f¢+(x, 0) dv(z) = o s0
M (v) is empty by (2.8b).

Similarly, if u* < o« then either M (») © (— o, u*] or M (») is empty.

Putting these together completes the proof of the theorem.

If a; > O for all z then since M (v;) = M (aw;) the above theorem remains
true if v, is replaced by a.v; everywhere. This theorem may be further generalized
by assuming that »(4) = [ »,(4) dy(w) where », is a measure for each point
w in @ from the finite measure space (2, Z, v), and by asuming that »,(4)
is a measurable function of » for each Borel measurable set A. The exact state-
ment of the theorem then becomes a little messy due to the care needed in
dealing with sets of y-measure zero.

One can obtain a little more information about the exact location of M (»)
in some cases but the additional conditions needed are not particularly nice and
the amount of extra information obtained is normally not very large.

In this paper we deal with one fixed ¢ at a time—except in the following
theorem which is included for completeness and because it is the analog to
Theorem 2.3 when one mixes over the function instead of the measure.
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TaEOREM 2.4. Let p;witht = 1,--- ,Nor< = 1,2, --- be extended real valued
functions on B x R which satisfy (2.1)—(2.3); let ¢ = X .id:; and let v be a
measure on the Borel subsets of R. Assume M (v, ¢;) is non-empty for all ¢ and that
that o(x, x) s defined for all values of z. If wse = inf U; M(», ¢:) and
l“'* = Sup UiM(V) d’%) then M(V7 d)) c [V*; f”*]'

We omit the proof of this theorem since it is essentially the same as the proof
of Theorem 2.3. Note that if «; > 0 then M (v, ¢;) = M (v, aips) and that the
same types of generalizations apply to this theorem as to Theorem 2.3.

We conclude this section by showing that a form of Jensen’s inequality is
valid for r-means.

LEmMA. Let X be a random variable, let u be a real number, and let g be a non-
decreasing function on R. The class C of functions f such that Egld — f(X)] £ 0
for all 6 < f(u) s closed under the operation “v ” where

(f v fo)(x) = max [fi(x), fo(2)].

Proor. Let f = fi v f, with f; and f» in C. If f(u) = fi(u) then since ¢ is
non-decreasing we have g[8 — f(X)] = gl0 — fi(X)] so that Eglo — f(X)] =
Eglo — f1(X)], and for 8 < f(u) = fi(r) we have Eglf — f1(X)] £ 0 since f;
was hypothesized to be in C. Similarly if f(uz) = fo(u) then 8§ < f(u) implies
Egl6 — f(X)] £ 0. Thus fisin C.

THEOREM 2.5. Assume that E |X|" < o« where r = 0, that u is in M.(X), that
f s convex, and that M [f(X)] 5 0. Then f(r) = sup M.[f(X)]. If r = 0, then
{1} = M.(X) and M,[f(X)] each consist of a single point, say M,[f(X)] = {u*};
n this case f(u) < p*.

Proor. The fact that M,.(X) and M,[f(X)] each contain at most one point for
r > 0 follows from the definition of r-mean (Definition 2.2) and from (2.11).
Thus the last part of the theorem is an immediate consequence of
u = sup M,[f(X)]; we shall now prove p < sup M,[f(X)] for r = 0.

Set g(0) = 0 and g(z) = |z| sgn z for x % 0. Let ¢(z, 6) = ¢g(6 — z). Since
E|X|" < « we have E g[8 — f(X)]] < « for each linear function f. Let
f(z) = ax + b.If a = 0 then f(p) = b and 6 < f(u) implies Egl0 — f(X)] =
g(0 —b) < 0.If a < 0, then if 6 < f(r) we have

Eglo — f(X)] = g(a)Egl(6 — b)/a — X]

and since 0 < au + b we have (6 — b)/a > p; thus Eg[(6 — b)/a — X] = 0.
However, g(a) < 0so Egl0 — f(X)] £ 0. The same method of proof applies if
a > 0. We have shown that § < f(u) implies Eg[6 — f(X)] =< 0 when f is linear.
It follows from the lemma that the same is true if f = Vj— f; where each f; is
linear. Now suppose f is convex and {f,} is a sequence of polygonal convex func-
tions converging upwards to f and such that f,(z) = f(u) for all »n. Then
gld — fu(X)] | gl0 — f(X)] and for all § < f(x) we have 0 = Egld — f.(X)]
| Eglo — f(X)] so that Eglg — f(X)] £ 0. Thus lime, s Egl0 — f(X)] = 0.
Since sup {\ | limg,x Eg[0 — f(X)] < 0} is just sup M,[f(X)] the proof of the
theorem is complete.

3. Asymptotic properties of sample ¢-means. Let X, X1, X,, ---, be inde-
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pendent random variables with common distribution function F. For each posi-
tive integer n, let F, be the sample distribution function of X; , Xp, -+, X, :
Fo() = 2iisiznxiza 1/n.

Tuarorem 3.1. (1) If ¢ is finite valued, then for each n M (F,) # é.

(2) If M(F) = ¢, then for each n, PIM (F,) % ¢] = 1.

Proor. If ¢ is finite valued, then every finite set has a ¢-mean, so a
sample ¢-mean always exists. We have 0 = S o(Xi,0) = — for
0 < min{Xy, -+, X, and0 £ D 1y ¢(X:,0) £ » ford > max { Xy, -+, Xa}.
From (2.8) it then follows that M (F,) 5 ¢ unless 2 (X, ; 6) is undefined
for at least two values of 6. Set

b = inf {6: P[¢p(X, 8) = »] > 0}, a = sup {0: P[¢(X, 0) = — o] > 0}.

We have E¢t(X,0) = o for > bifb < «,and B¢ (X, 0) = « forf < aif
a > — x. Since M(F) # ¢, it follows from Theorem 2.1 that ¢ < b. But if
9 < boriff > athen P i ¢(X;,0) is almost surely defined. Thus almost surely

i=1 ¢(X;, 0) can fail to be defined for at most one value of 6, 8§ = a = b, and
almost surely M (F,) = ¢.

The following theorem states the strong consistency of the sample ¢-mean as
an estimator of the population ¢-mean. A version of this theorem appears in [2]
and a version for translation means in [7]. Throughout the remainder of this
paper the phrase almost all n will be used to mean all but a finite number of values
of n, and the abbreviations i.0. and f.o. will stand for enfinitely often and only
finitely often respectively.

TueoreMm 3.2. If M(F) # ¢ and if G is an open set containing M (F), then
P{M(F,) C G for almost all n} = 1.

Proor. If a < u then Na) = [ ¢(z, a) dF (z) < 0, for if equality held we
should have a ¢ M (F). By the strong law of large numbers, as n — «© we have
(1/n) Dp1 &(Xk, a) — N(a) almost surely. Similarly, if b > &, asn — « we
have (1/n) Yt ¢(Xi, b) — X(b) > 0 almost surely. The conclusion of the
theorem follows.

In Theorem 3.3, results of M. Rosenblatt ([10], Theorem 2.1) on the oscillation
of sums of independent random variables are applied to yield information on the
oscillation of u, and &, about g and . By ¢(x, a—) we shall understand
limgta ¢(z, 0), and similarly ¢(z, a+) = limg;a ¢(z, 6). Thus, for example,
E¢p(X, a—) = flimaT,, ¢(x, 0) dF (z), whereas, by contrast, A a—) =
limgqq f o(z, 0) dF (z). It follows from the monotone convergence theorem that

(3.1) if Ma—) > —» then Na—) = E¢(X, a—),
andif N a+) < «» then Ma+) = E¢(X, a+).

TuEOREM 3.3. Assume M (F) # ¢.
(i) If esther E¢(X, a—) = 0 or E¢(X, a+) = 0, then P{y, < ai.o. and
i, = aio} = 1.
(i) If E¢(X, a—) < O then almost surely u, = a for almost all n. If
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E¢(X, a+) > 0then almost surely g, < a for almost all n. If both E¢(X,a—) < 0
and E¢(X, a+) > 0 then almost surely M (F,) = {a} for almost all n.

(iii) If E¢(X, a—) > 0 then almost surely g, < a for almost all n. If
E¢(X, a+) < 0 then almost surely p. > a for almost all n.

Proor. Let Y, Y1,Y,, --- , beindependent and identically distributed random
variables. Rosenblatt’s theorem states thatif £ |Y| < «, P[Y = 0] < 1,EY = 0,
and S, = X ry Yiforn = 1,2, ---, then almost surely S, > 0 infinitely often.
By Theorem 3.1, the hypothesis M (F') # ¢ implies P[M (F,) # ¢] = 1. In prov-
ing (i), we first apply Rosenblatt’s theorem with ¥, = ¢(X;, a—) and again
with V;, = —¢(X;, a—), 2 = 1, 2,---. We conclude that almost surely
>ty 6(X:, a—) = 0 infinitely often, and almost surely D oy ¢(X:, a—) < 0
infinitely often. The first inequality implies that a = u, and the second implies
that @ = @, . The proof of these conclusions under the hypothesis E¢(X, a+) =0
is symmetric.

In proving (ii), we note first that if E¢(X, a—) < 0 then the strong law of
large numbers assures us that almost surely > 7y ¢(X;, a—) < 0 for almost
all n. This implies a = y, for almost all . Similarly E¢(X, a+) > 0 implies that
almost surely @, < a for almost all n. Thus if both hold, almost surely y, = i, = a
for almost all n.

Applying the strong law again for (iii), we find that if E¢(X, a—) > 0 then
almost surely Y 7 ¢(X;, a—) > 0 for almost all n; ie., almost surely,
limgtq >ori6(X:,t) > 0 for almost all n. It follows that, almost surely, g, < a
for almost all n. The proof of the last conclusion is symmetric.

We note that

(3.2) If in part (i) of Theorem 3.3 we assume
P{¢(X, a—) = 0} # 1 in addition to E¢(X, a—) = 0,
then P{g, < ai.o.} = 1. Similarly, if
P{¢(X, a+) = 0} # 1 aswell as E¢(X, a+) = 0,
then P{u, > aio.} = 1.

We will prove the first of the two statements. Under our assumptions Rosen-
blatt’s theorem tells us that P{(1/n) D pu ¢(Xx, a—) > 0i.0.} = 1. The fact
that ¢(z, t) — ¢(x, a—) as ¢t T a says that if Er¢(X, a—) > 0, then
Ee (X, t) > 0 for t < a but sufficiently close to a, and consequently
M(F,) = ¢ or g, < a. It follows that P{g, < aio.} = 1.

CoROLLARY 3.1. If M(F) contains at least two points, then almost surely w, < u
infinately often and g. = E infinitely often.

Proor. If 4 < § < EthenX(#) = 0. By (3.1) 0 = Ma—) = E¢(X, g—) and
0 = NMg+) = E¢(X, u+). The conclusion of the corollary follows from (i) of
Theorem 3.3.

COROLLARY 3.2. If there exist real numbers a and b, not necessarily distinct, such
that — o < AMa) = 0 = N(b) < « then almost surely u, = u tnfinitely often and
and i, = E infinitely often.

Proor. Since N(a) (also N\(b)) is finite, A(#) is defined for all 6. Thus by (2.8),
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M(F) # ¢.If M(F) contains at least two points then Corollary 3.1 applies. If
M(F) = {p} sothat p = g = 7, thena < u = b. We consider three cases: \(u) =
0, Mu) > 0,and N(u) < 0.

Case 1. If \(u) = 0 then

E¢(X, p—) S E¢(X, p) = 0 = E$(X, p+).

The conclusion now follows from (i) and (ii) of Theorem 3.3.

Casg 2. If AM(p) > 0, then since M(a) = 0, a < u.Since — o < N (a), by (3.1)
E¢(X,p—) = Mp—) = 0. Also E¢(X, p+) = E¢(X, u) = Np) > 0. Again
the conclusion follows from (i) and (ii) of Theorem 3.3.

Cask 3. If AM(p) < 0, we use an argument symmetric to the one of Case 2.

In each of the following examples illustrating Theorem 3.3, X has the stand-
ardized normal distribution and M (X; ¢) = {0}. ’

ExampLE 3.1. ¢(z,0) = 1 when6 > Oandz < 6; ¢(z,0) = —1 when 8 < 0
and z > 0; ¢(x, 0) = 0 otherwise. Then E¢(X, 0+4) = 3, E¢(X,0—) = —1,
and almost surely u, = &, = 0 for almost all n.

ExampLE 3.2. ¢(2,0) = o forxz = 0,0 = 0; ¢(x,0) = 1 whenz < 6 < 0;
¢(xz,0) = —o when z < 0 and 0 = x; ¢(x, ) = 0 otherwise. Then
E¢(X,0—) = 1 so almost surely g, < 0 for almost all n.

ExamrLE 3.3. ¢(x,0) = O when 0 < 6 < z, ¢(z, ) = 6 — 2 otherwise. Then
E¢p(X,0+4+) > 0, E¢(X,0—) = 0. Thus almost surely 7, < 0 for almost all n
but also @, = O infinitely often, hence @, = 0 infinitely often.

Theorem 3.4 below gives conditions for asymptotic normality of the sample
¢-means. Essentially the same theorem appears in [2]. A version of this theorem
for translation means was proved by Huber [7] and his proof extends in a straight-
forward manner to our situation.

We define o*(§) = variance of ¢(X, 6) and let ¢* = ¢°(g) and & = (7).
Whenever we appear to be performing a Stieltjes integration with respect to
some distribution function, the reader should interpret the integral as being per-
formed with respect to the probability measure generated by that distribution
function.

Lemma 3.1. Let u be a real number such that 0 < o'(u) < « and such that
a*(0) — o () as 0 — u. Let € > 0 be a real number. Let 0, — p asn — « and define
A(n, €) by AN, &) = {z:|¢(z, 0.) — N(0.)| Z en'o(6,)}. Then
(33) fA(n.e) [‘b(% 0,,,) - >‘(0n)]2 dF(x) — 0 as n— .

Proor. Fix A > 0. Since ¢ is non-decreasing in the second argument, if
#—h 20 = p+ hwehave ¢(z, p — h) = ¢(x,0) =< ¢(z,pu + h) and
Mp — h) £ N0) = Np + ). Set u(x) = max {[¢(z, p + &) — Mp — &),
|¢(z, u — A) — Nu + A)|}. Then |p(z, 0) — N(0)| S w(z)ifp —h =0 = p+h.
By hypothesis, E¢*(x, §) < o for 0 near g, so that if 4 is fixed sufficiently small,
we have [ () dF (z) < [ {[¢(z, » + h) — Nu — B + [o(z, p — k) —
Nu 4+ 2P} dF () < «. Also, for n sufficiently large, u» — h < 0, < p + h and
A(n, e) C {z:u(z) = en’s(6,)}, so that

[ a0 [6(2,8.) — N0 dF (2) £ [z zento w'(z) dF (z) >0 as n— oo,
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THEOREM 3.;1. Suppgse M(X)=MF) =[ymgwith —o <uy=pg< «. Let
®(z) = (27)° fz_w ¢ P dt and let pn = wn + on(fEn — pn) where 0 < a, < 1. If

(34) NB)/(0 —p)—a as 0T u with 0<a< =,
(3.5) 0 < limgrua’(8) = o° < o,

then for allz < 0

(3.6) P{(u — w)/(g/an’) < 2} —» ®(2) a5 n— .
If

(3.7) N6)/(0 —u)—b as 0| m with 0<b< o,
(3.8) 0 < limg;z0°(8) = & < =,

then for allz > 0

(3.9) P{(pn — B)/(5/bn') < 2} —»®(2) as n— .

Proor. Let 6, = u + 20/ (an’). For arbitrary real z we have
[t é(Xe, 0a—) > 0] © [ < 0] C [ 6(Xs, 0,) 2 0.
In order to establish (3.6) it suffices to show that for z < 0
P>ty ¢(Xi,0,) 20 —>®(Z) as n - o
and
P2 ¢(Xs, 0,—) > 0] > &(2) as n— w.
Set
YVin = [¢(Xi, 02) — N(0a)]/5(6).

Tor fixed n the random variables Y, are independent and identically distributed
with EY;, = 0 and Var (Y,;,) = 1. Also,

P[>y ¢(Xi, 0,) 2 0] = P[0 Viu/n' = —n\(6,) /0 (62)].

From (3.4) and the definition of 8, we see that —n!\(6,)/0(0,) — —zasn— .
Thus it suffices to show that

POt YViu/mt = —2] > 1 — ®(—2) = &(2) as  n — o

for every z < 0.

We apply the central limit theorem in the form given in ([8], p. 295). The proof
that P{ > 71 &(X:,0,) = 0} — ®(2) will be completed when we have shown that
for every e > 0, E(YiI{|YVi| = en'}) — 0 asn — », where I{-} denotes the indi-
cator function of the event described in braces. But E(Y7.I{|Vu| = en'}) =
[ a0 [6(2, 62) — N(6,))* dF (z) /0" (6.) and by (3.3) the last integral approaches
zero as n approaches infinity. The proof that P{ St d(Xi,0,—) > 0} — &(2)
asn — « proceeds similarly using ¢(X , 6.— ) instead of $(X, 0,) and a version
of Lemma 3.1 for ¢(X:, 6,— ). The proof of (3.9) is symmetric to that of (3.6).
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CoroLLARY 3.3. Under the hypotheses of Theorem 34, if —0 < uy < g < ®
then Plu < un < &) —0asn— « and Ply < G, < il —0asn — .

Proor. (3.6) implies liminfP{z, > w} = % and (3.9) implies
lim inf P{u, > @} = 3.

CoRroLLARY 3.4. If M(X) = {u} and if hypotheses (3.4) and (3.7) are replaced
by the hypothests that \ is differentiable at p with N (1) > 0, then each of . and &, is
asymptotically normal with mean u and standard deviation ¢(u)/ (W ().

4. Families of distributions. We consider the class of one parameter families of
distributions, the logarithms of whose densities are convex in the parameter.
The parameter of such a family may usually be interpreted as a ¢-mean; and in
sampling from a member of such a family the sample ¢-mean is a maximum likeli-
hood estimator of the parameter. We show how a given function ¢ and a given
distribution F' determine such a family, and close the section with some examples.

Let « be a measure on Borel sets of real numbers with support in an interval I
(possibly infinite). Let ¥ (y, 7) be convex in 7 for each y & I. Suppose further that

for each real 7

(4.1) f(y,7) = exp {—¥(y,7)} is Borel-measurable
for yelI and is a probability density
with respect to  «.

Eh(Y) will denote [ A(y)f(y, v) dc(y). Set ¢(y, 7) = d ¥ (y, v)/dr, adopting
the convention that if ¥(y, r) = o« for 7 = b(y), then for such 7, Y(y, ) = o ;
while if ¥ (y, r) = o« for 7 < a(y) then for such 7, ¥(y, 7) = — . We note that
if ¢ satisfies (2.2) then a point of sign change of E4(Y, 0) is a y-mean of Y.
(8o is a point of sign change of a nondecreasing function f(8) if 6 > 6, implies
f(8) = 0 and 8 < 6 implies f(8) = 0.)

TuroreM 4.1. The parameter v in (4.1) is a point of sign change of E4(Y, 0).
It is the unique point of sign change if there exist 7 arbitrarily near + above and below
such that k{y: ¥ (y, 7) #= ¥ (y,7)} > 0.Ify1, -+ , yn are observed sample values in
random sampling from (4.1), the points of sign change of > vy, 0) are maximum
likelihood estimates of .

Proov. Suppose 7 > 7, and set 4 = {y: f(y, 7) # f(y, 7)}. If ye A then
exp {—[¥(y,7) —¥(y, M)} — 1> —[@(y,7) = ¥(y, )] = — (' —)(y, 7).
(These inequalities are valid also if ¥ (y, ') = o, in which case ¢(y, 7') = o
and ¥(y, 7) < ».) Thenif x(4) > 0,

0 = [4f{exp[—¥(y, 7)] — exp [—¥(y, 7)]} dx(y)
> — (' —7) [av(y, ) exp [—¥(y, 7)] dx(y).

Thus [4 ¢ (¥, ') exp [—¥(y, 7)] dk(y) > 0. If y ¢ A® either ¥(y, - ) assumes its
minimum at both 7 and 7/, or 7 > g(y), where g(y) is a point of sign change of
¥(y, 0) as a function of 6. In either case ¥(y, ) = 0. It follows that
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[ ¥y, ¥)f(y, 7) de(y) = 0, with strict inequality if k(4) > 0. The proof of the
reverse inequality for 7 < 7 is symmetric. The proof of the theorem is completed
by the observation that the convex function of 6, > 2, ¥(y:, 0), is minimized by
6 = 7 where 7 is any point of sign change of S e w(ys, 0), the right derivative of
2 i ¥ (ys, 0).

We now give conditions sufficient in order that a given function ¢ satisfying
(2.1)-(2.3) and a given distribution function F of a bounded random variable
determine a family (4.1).

TaeoreMm 4.2. If
(4.2) F s the distribution function of a nondegenerate random variable X

with range in a finite open interval (a, b);
(4.3) ¢ restricted to  [a, b] x [a, b] satisﬁes‘ (2.1)-(2.3);
(4.4) Pl¢(X, -) 1s discontinuous at 6] = 0 for each 0 ¢ [a, b];
(4.5) é(-,-) s bounded on [a, b] % [a, b];

and if also 7o & R, then there is a non-decreasing function 0(-) defined on R with
range in [a, b] such that

(4.6) [exp {—[7, o(z, 0(w)) du} dF (x) = 1 for all real r.
If in addition

(4.7) o(z,0) <0 for 6 <z, ¢(z,0) >0 for 6>z,
then 8(u) s strictly increasing, and a < 0(u) < b for all u. If, further,
(4.8) Plop(X, 0,) > ¢(X,0)] >0 for a =6, <0 =D,

then, 6(+) is continuous.

We remark that the family of densities in (4.6) is of form (4.1) with ¥(y, 7) =
[7,6(y, 0(w)) du, ¥(y, ) = &(y, 6(r+)). Thus Theorem 4.1 applies. If 6(-) is
continuous, it follows that 6(7) is a ¢-mean of the distribution (4.6) and that
each sample ¢-mean is a maximum likelihood estimator of 6(7). Theorem 2.2 can
also be used here.

Proor. For & > 0, exp [—he(z, 6)] T exp [—ho(z, a+)] as 6 | a. By (4.3),
é(xz, a+) = 0for z e (a,b). Using (4.2) and (4.5) we have

limey [ exp [—hé(z, )] dF(x) = [ exp [~ho(z, a+)]dF(z) = 1.

Similarly lim”bfexp [—ho(z, 0)]dF(z) = fexp [—hé(z, b—)]dF(z) = 1.
Also (4.4) and (4.5) imply that [ exp [—he(z, 0)] dF () is continuous in 6 on
[a, b]. Hence there exists 6, ¢ [a, b] such that [ exp [—ho(x, 61)] dF (z) = 1. Using
an induction argument, suppose it has been shown that there are
0y, 05, -+, 0a(k > 1) such that 6 = 6 = -+ < 61 = b and such that
fgj(x) dF(z) = 1,7 =1,2,--, k — 1, where gJ(x) = exp [— =1 ho(z, 6,)],
j =0,1,+---, k — 1. Set g(z) = exp[—h¢(x, 6—1)]. Then fgk_zdF =
[ ggx—2 dF = 1, hence by Schwarz inequality [ CorsadF = ([ qgi—s dF)? = 1.
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That is, fexp [—ho(x, 6e)]lgea(x) dF (z) = 1. We have also
lim1s [ exp [— 46 (x, 0)]ge—1(z) dF (z) = [ exp[—hé(z, b—)lgi1(z) dF (z) < 1.
Then there exists 6, such that 8,1 < 6; < b and

[ exp [= 25 h(a, )] dF () = 1.

We conclude that there exists a sequence 6; = 6, < - - - such that for every positive
integer k, 60 ¢ [a, b] and [ exp [— D 5 he(x, 6,)] dF (x) = 1. Thus if 6(u) = 6,
forro+ (G—Dh=u<rt+jhj=1,2,---,wehave

[exp[—[7, ¢(x, 0(w)) du] dF (z) = 1
forr =7 4+4h,7=0,1,---. .
Now set 7(z) = exp [hé(z, 6:)]. Then [dF(z) = [[1/r(z)]dF(z) = 1.
Hence
[rdF = [#(1/r)dF = [ r(1/r) dF]’ = 1.
As before, we have also that
limg ). [ exp [ho(z, 0)] dF (z) = [ exp [hd(z, a+)]dF(z) < 1

so that there exists 6_; such that a < 6_; < 6, and [ exp [h¢(z, 0_1)] dF (z) = 1.
Again we show inductively that there are 6_5 ,6_3, --- such thata = 6_,,1 < 6_,,,
m = 1,2, ---, and such that

fexp[—flocﬁ(x,l?(u))du]dF(x)=1 for T=71—kh, £k=0,1,2,---,

where 0(w) = 0;forro +jh 2 u < 7+ (J + 1)h,j = —1, —2,--- . Thus we
have for each 4 > 0 a non-decreasing step function 6(- ) on (— o, ) with range
in [a, b] such that [ exp[—[7, ¢(x, 0(u)) du] dF(z) = 1 for + = 7, + jh,
j=---,-—1,0,1,.-- . For fixed 4, > 0, and for an arbitrary positive integer n,
let 6,(-) denote the step function corresponding to 2 = 2 "%, . Choose a subse-
quence {6,,(-)} converging at the rationals. Set (%) = lim inf 6,,(u). Then g is
non-decreasing and {6,,(-)} converges also at points of continuity of 8. Let
{6,*(-)} be a subsequence of {6,,(-)} converging also at discontinuity points of
6. Then {6,%(-)} converges everywhere to a non-decreasing function 6(-) with
range in [a, b]. Set D = {y: 6 "(y) is a non-degenerate interval}. D is countable;
therefore by (4.4) there exists a set N such that P[X ¢ N] = 0 and such that if
z ¢ N, ¢(z, -) is continuous at y, for all yeD. We have ¢(z, 0,*(w)) —
¢(x, 0(u)) unless 8(u) is a point of discontinuity of ¢(z, - ). For fixed , £ N, the
collection of points, u, such that ¢(zx, -) is discontinuous at 8(u) is countable.
Thus for z2 N, ¢(z, 6,*(u)) — ¢(z, 6(u)) for almost all (Lebesgue measure)
u, for each 7
JHo(, 0.5 (u)) du — [T, ¢(x, 0(u)) du.

Further,

[exp [— [T oz, 0.7 (u)) dul dF (z) — [exp[—[7,6(z, 6(u)) du] dF ().

The last two convergences are justified by the bounded convergence theorem.
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Tf (r — r0)/ho is a binary rational, [ exp [—[7, (=, 0, (w)) du) dF (z) =
for n sufficiently large. It follows that for such r,
Jexp [—[7, ¢(x, 6(u)) du] dF (z) =

Since such 7 are dense in the reals and since f,o ¢(x, 6(u)) du is continuous in
r, we have [ exp [— [T, ¢(x, 6(w)) du] dF (z) = 1 for all 7.

Now suppose (4.7) holds. Since a < 6,(u) = b for all n and all ue R, We
have a < 0(u) < b for all u. Also, if 8(r1) = b for some 71 > 7o then 6(u) =
for u = 1. But for x < b, ¢(z, b) > 0, so that for r > 71,

Jexp [—[7,¢(x, 0(w)) du] dF (x)
= [exp [—(r — m)¢(x, b)] exp [ [T o(x, 0(w)) du] dF (z)
<[exp [— [T o(z, 0(w))du] dF(z) = 1, a contradiction.
Thus 6(x) < b and similarly 8(x) > a for all u.

Still assuming (4.7), we now show that 6(u) is strictly increasing. Suppose the
contrary, that there are an interval (¢, d) and a number k such that 0(u) =
forc < u < d.Let r1, 7 & (¢, d). Then
exp {— [T, 0(x,6(w)) du} = exp {— [T é(x, 0(u)) du — [7,é(=, 6(u)) du}

= exp {—(r — n)¢(z, k)} exp {— [T, &(, 0(u)) du}.
Thus if X is a random variable having density exp {— [+ ¢(z, 6(u)) du} with
respect to dF, the moment generating function of ¢(X, k) is identically 1 in a
neighborhood of the origin. Hence ¢(X, k) = 0 almost surely, and by 4.7,
X = k almost surely, with respect to that distribution. Thus
exp {— [T o(x, 0(u)) du} =0

for almost all z(dF) different from k. But since the exponential is strictly posi-
tive for all z, this implies F is degenerate, contradicting (4.2).

We have yet to show that under the additional hypothesis (4.8), 6(- ) is con-
tinuous. Set ¥(z, 7) = f,o ¢(z, 0(u)) du. The derivative from the right with
respect to 7 is ¥(z, ) = ¢(z, 8(r+)). Suppose 6 is discontinuous at 71 . Then
by (4.8)

0 < [{o(z, 0(rn+)) — oz, 0(ri—))} exp [—¥(z, m)]dF ()
= [ ¢(x, 6(r+)){exp [—¥(z, 1)] — exp [~¥(z, m + R)]} dF (2)
(4.9) + [ ¢(z, 0(r1+)) exp [—¥(z, 71 + R)] dF (2)
+ [ ¢(x, 6(r1—)){exp [~¥(z, 11 — k)] — exp [—¥(z, )]} dF (z)
— [¢(z, 0(r1—)) exp [~¥ (2, n — h)] dF (z).
Since ¢ is non-decreasing in its second argument, we have from the first part
of Theorem 4.1
J ¢z, 0(n+)) exp [=¥(z, 1 + k)] dF (z)
= [¥(z, n) exp [~¥ (2, 1 + R)]dF(z) = O
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and similarly

— [ ¢(x, 0(r1—)) exp [—¥(z, 1 — h)]dF (z)
< — [ ¢lx, 6[(r1 — B/2)+]] exp [~ ¥ (z, 1 — R)] dF (x)
= —[¥(x, n — h/2) exp [—¥ (2, = — k)] dF(z) = 0.

Thus the second and fourth terms in (4.9) are non-positive. From the bounded-
ness of ¢ we see that ¥ (2, 7) is for each fixed z continuous at r = 71, and that this
continuity is uniform in z. This and the boundedness of ¢ show that the first
and third terms in (4.9) converge to zero as A | 0. Taking the limit in (4.9)
ask | 0 thus gives the contradiction

0 < [{oz, 0(ri+)) — ¢(x, 6(n—))} exp [—¥(z, )] dF (z) = 0.

Therefore 6(- ) must be continuous and the proof of the theorem is complete.

The reader’s attention is called to results on asymptotic efficiency appearing
in [2]. It is of interest too to note that a “formal” calculation of the Frechet-
Cramér-Rao lower bound for the asymptotic variance of an unbiased estimator
of 6(r) in sampling from the distribution (4.6) yields the asymptotic variance
of the sample ¢-mean given by Corollary 3.4.

A first example of ¢-families of distributions is furnished by the well known
exponential families. If ¢(z, ) = 6 — =z, the density generated by ¢ and F
(setting 7o = 0) is exp [ar — ©O(7)], where exp O(r) = [ exp (xr) dF (). The
most general one parameter exponential family for which a sample of arbitrary
size has a single sufficient statistic is obtained through change of parameter and
change of variable: exp {g(y)p(a) — 8lo()]}-

If (z) > O on the support of dF, and if ¢(z, ) = h(z)(§ — z), then the
family generated by ¢ and F has densities f(z, ) = exp A(z)[zr — O (7)], where
O(r) = [36(u) du, the existence of 6(-) being guaranteed by Theorem 4.2.
The ¢-mean is () which is also the ordinary mean of a distribution having
density proportional to A(z)f(z, 7) with respect to dF. More generally, if o(zx, 0)
is of the form 2o h;(x)g;(8), the family given by Theorem 4.2 is an ordinary
exponential family.

We obtain a translation family if ¢(z, 8) = —g(z — 60) where g is non-decreas-
ing, sgn g(u) = sgnwu. Suppose G'(z) = g(z) and [exp [—G(2)]dz = 1 (as
may be achieved by addition of a constant to G, if the integral is finite). Setting
70 = 0, 0(u) = u, and F(z) = [2wexp [—G(u)] du one obtains the densities
exp [—G(z — 7) + G(zx)] with respect to F, or equivalently the densities
exp [—G(xz — 7)] with respect to Lebesgue measure. If r = Ois fixed and g(x) =
|z|” sgn z, then we obtain the family of densities C; exp {(—|z — 7"/ + 1)}
with respect to Lebesgue measure where C, is a normalizing constant; = is the
r-mean of a random variable with this density.

We now consider a specific instance of a ¢-family, not exponential, which might
serve as a reasonable model in certain situations. Suppose one is concerned with
strictly positive populations, approximately normal, with mean proportional to
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standard deviation. An appropriate model might appear to be the normal with
mean N > 0 and variance ¢’\° (¢ a known positive constant), truncated at O.
Its density with respect to Lebesgue measure is exp {—(z — \)%/26°\%}/
(27r)*<1>(1 /a)a\, x = 0, where ® is the cumulative standardized normal distribu-
tion function. We show that this family of densities is a ¢-family with ¢(z, 8) =
(20/¢) + (z/6®) — /20" = 2(6 — 2)[1 + (z)/(46%0)]/c, where
c= (4 + D 4+ 1;0(u) = —c¢/2u, u < 0;7(6) = —c/26,0 > 0; dF (z) =
lexp {—(z — 1/0)%/2}/(27)'®(1/0)] dz for = = 0. We have

Y(z,7) = [Lod(z,0(u)) du = (xr +1)°/26° — (x — 1/0)?/2 — In (—7) + Ing,
T < 0;

f(z, v) = exp [—¥(z, 7)] = —7/c exp {—(ar + 1)*/25" + (z — 1/0)"/2},

g(z, ) = f(z, 7(8)) = (¢/200) exp {—(z — 26/c)’’/86°c" + (z — 1/0)"/2}.

If we set A\ = 20/¢, then

g(z, 0)dF(z) = exp {—(z — N)¥/202\ da/(20)@(1/c)oNds, x > O.

(Thus the ¢-mean is 6 = cN\/2.)
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